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The brain constantly creates perceptual predictions about forthcoming stimuli to guide perception efficiently. Abundant studies have
demonstrated that perceptual predictions modulate sensory activities depending on whether the actual inputs are consistent with one
particular prediction. In real-life contexts, however, multiple and even conflicting predictions might concurrently exist to be tested,
requiring a multiprediction coordination process. It remains largely unknown how multiple hypotheses are conveyed and harmonized to
guide moment-by-moment perception. Based on recent findings revealing that multiple locations are sampled alternatively in various
phase of attentional rhythms, we hypothesize that this oscillation-based temporal organization mechanism may also underlie the mul-
tiprediction coordination process. To address the issue, we used well established priming paradigms in combination with a time-resolved
behavioral approach to investigate the fine temporal dynamics of the multiprediction harmonization course in human subjects. We first
replicate classical priming effects in slowly developing trends of priming time courses. Second, after removing the typical priming
patterns, we reveal a new theta-band (�4 Hz) oscillatory component in the priming behavioral data regardless of whether the prime was
masked. Third, we show that these theta-band priming oscillations triggered by congruent and incongruent primes are in an out-of-phase
relationship. These findings suggest that perceptual predictions return to low-sensory areas not continuously but recurrently in a
theta-band rhythm (every 200 –300 ms) and that multiple predictions are dynamically coordinated in time by being conveyed in different
phases of the theta-band oscillations to achieve dissociated but temporally organized neural representations.
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Introduction
We do not live in a static and invariable world; rather, external
information dynamically evolves over time. Therefore, to cope
adaptively with an ever-changing environment, the brain con-
stantly creates perceptual predictions about forthcoming stimuli
to guide perception efficiently (Rao and Ballard, 1999; Engel et
al., 2001; Summerfield and Egner, 2009; Bastos et al., 2012; den
Ouden et al., 2012). Meanwhile, in most real-world contexts,
multiple and even conflicting predictions might exist concur-
rently to be tested against the current inputs (Carpenter and
Grossberg, 1987; Mumford, 1991, 1992), requiring a multipre-
diction coordination process. However, the mechanisms by
which the brain dynamically sends and coordinates multiple pre-
dictions to guide and modulate perception remain unknown.

Neuronal oscillations may act as a temporal organization in-
frastructure (Klimesch, 1999; Ward, 2003; Buzsaki, 2006) to me-
diate dynamically and harmonize multiple perceptual hypotheses
(Roelfsema et al., 1996; von Stein et al., 2000; Engel et al., 2001;
Arnal et al., 2011). Recently, several psychophysical studies using
a time-resolved behavioral measurement revealed rhythmic fluc-
tuations (Landau and Fries, 2012; Fiebelkorn et al., 2013a; Song et
al., 2014) directly in behavioral performances (‘behavioral oscilla-
tions’) and demonstrated a novel oscillation-based temporal mech-
anism in spatial attention such that multiple locations are sampled
alternatively in various phase of attentional rhythms. Based on
these findings, we posit that this oscillation-based temporal
organization mechanism may also underlie the multipredic-
tion coordination process.

Here, we used priming paradigms (Eimer and Schlaghecken,
2003; Sumner, 2007; Huang et al., 2011) in combination with a
time-resolved behavioral approach to address the issue. In a typ-
ical priming trial, an initial feedforward input (i.e., a prime) rap-
idly activates one perceptual prediction, which then descends
through re-entrant pathways to lower levels, where they are
matched to ongoing sensory inputs (i.e., a probe that is either
congruent or incongruent with the perceptual prediction trig-
gered by the prime; Enns and Di Lollo, 2000). As a result, we can
plot the fine temporal course of the prediction re-entrance pro-
cess by measuring performance of the subsequent probe at vari-
able time lags after prime presentation. Moreover, by examining
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the temporal relationship in the priming courses between con-
gruent and incongruent probe, we could also study how multiple
perceptual predictions interact dynamically with each other,
given that equally likely predictions about the probe have to be
held simultaneously.

Specifically, as illustrated in Figure 1A, participants fixed their
gaze on the central spot and made speeded responses to orienta-
tion of the probe stimuli (pointing to left or right) with their
reaction time (RT) recorded. The 100 ms probe was preceded by
a 20 ms prime stimulus, which was either backward masked (Fig.
1A, left) or unmasked (Fig. 1A, right). The probe and the prime
stimuli had either the same (congruent condition) or different
(incongruent condition) orientations (Fig. 1B). Critically, to as-
sess the fine temporal dynamics of priming courses, we ranged
the stimulus onset asynchronies (SOAs; masked priming: mask-
to-probe SOA; unmasked priming: prime-to-probe SOA) from 0
to 0.8 s in steps of 0.02 s (Fig. 1A), corresponding to a sampling
frequency of 50 Hz.

Materials and Methods
Ethics statement. The study was approved by the ethics committee of
Institute of Biophysics at Chinese Academy of Sciences, Beijing.

Subjects. Fifty-six human subjects (18 for the masked priming experi-
ment, 8 males; 16 for the unmasked priming experiment, 6 males; 16 for
the neutral priming experiment, 6 males; 6 for the single-subject exper-
iment, 4 males; all right handed, average age 24 years) participated in the
experiments. All subjects had normal or corrected-to-normal visual acu-
ity, provided written informed consent, and were paid to compensate
them for their time.

Experimental procedures. Subjects sat in a dark room 57 cm in front of
a CRT monitor (100 Hz) with their heads stabilized in a chin rest and
their responses were recorded using a parallel port response keypad.
Visual stimuli were presented in black (0 cd/m 2) on a gray back-
ground (0.99 cd/m 2). As shown in Figure 1, the prime stimulus was a
left- or right-pointing arrow (2.86° � 1.21°), fitting into the inner
cutout of a mask with a rectangular outer shape (3.43° � 1.79°). The
neutral prime stimulus was a rectangle of the same size as the arrow
prime. The probe stimulus was a left- or right-pointing hollow arrow
(6.21° � 2.29°).

In each trial, subjects were requested to maintain visual fixation at a
central spot and make speeded response to the orientation of a probe
stimulus (pointing left or right). The RTs in each trial were calculated
from the offset of the probe stimulus. In masked and unmasked priming
experiments, the prime and probe are either congruent (pointing in the
same direction) or incongruent (pointing in a different direction). In the
neutral masked priming experiment, the prime is a “neutral” rectangle
figure that did not contain relevant orientation information for the sub-
sequent probe stimulus. The masked priming experiment consisted of a
20 ms prime stimulus, a 60 ms blank screen, a 100 ms mask stimulus, and
a 100 ms probe stimulus (Fig. 1A, left), whereas in the unmasked priming
experiment (Fig. 1A, right), the stimulus sequence consisted of a 20 ms
prime stimulus and a 100 ms probe stimulus without a mask stimulus in
between. The intertrial interval ranged from 1 to 2 s. Critically, to achieve
dense temporal assessment of behavioral performance, we used time-
resolved measurement such that the probe stimuli appeared at one of 40
temporal intervals from 0 s to 0.8 s in steps of 20 ms (masked priming
experiment: mask-probe SOA; unmasked priming experiment: prime-
probe SOA), corresponding to a sampling frequency of 50 Hz. Each
subject completed 16 trials for each condition (congruent and incongru-
ent) at each of the 40 SOA intervals. The SOA of each trial was pseudo-
random from 0 to 0.8 s in steps of 20 ms, balanced across trials to have
exactly the same likelihood. For the single-subject study, each subject
completed 64 trials for each condition (congruent and incongruent) at
each SOA interval. For the masked priming task, the mask-probe SOA
ranged from 0 to 0.4 s in steps of 20 ms and, for the unmasked priming
task, the prime-probe SOA ranged from 0 to 0.5 s in steps of 20 ms. The
reason we shortened the SOA range in the single-subject study was to
obtain enough trials (64 instead of 16 trials in previous experiments) at
each SOA interval to get a good approximation of the behavioral time
courses in single subject.

Data analyses. Behavioral RT data were analyzed with MATLAB (The
MathWorks) using functions from the EEGLAB toolbox and CircStat
toolbox. For each subject, we excluded RTs �3 SDs from the mean cross
all trials. We calculated the temporal profile of RTs as a function of SOA
from 0 to 0.8 s in steps of 0.02 s (50 Hz sampling frequency) for each
condition (congruent vs incongruent).

For each subject, we first extracted a slowly developing trend repre-
senting the classical priming effect time course by calculating the 240 ms
(12 time bins) moving average of RT time courses for each condition
(congruent and incongruent), respectively. Next, for each subject, we
subtracted the slow trends from corresponding RT time courses to
obtain detrended RT time courses separately for each condition to
remove possible interferences from classical priming and expectancy
effects (Fiebelkorn et al., 2013a; Song et al., 2014).

Next, to investigate the spectral characteristics of the detrended RT
temporal profiles, we conducted spectrum analysis on the detrended RT
time courses separately for each subject. Specifically, we performed fast

Figure 1. Experiment procedure and design. A, Left, Masked priming. Subjects were in-
structed to fix their gaze on a central spot and make speeded responses to the orientation of a
100 ms probe stimulus (pointing left or right). The stimulus sequence consisted of a 20 ms prime
stimulus, a 60 ms blank screen, a 100 ms mask stimulus, and a 100 ms probe stimulus. Right,
Unmasked priming. Subjects performed the same task as in masked priming. Stimulus se-
quence consisted of a 20 ms prime stimulus and a 100 ms probe stimulus without a mask in
between. Notably, the probe stimulus occurred at varying intervals (0 to �0.8 s) after onset of
the preceding stimulus; the SOA for each trial was pseudorandom, ranging from 0 to 0.8 s in
steps of 20 ms, balanced across trials to have exactly the same likelihood for all conditions. B,
Prime stimuli contained congruent (same orientation), incongruent (different orientation) or
neutral (lower) information about the subsequent probe stimuli.

Huang et al. • Temporal Coordination of Multiple Hypotheses J. Neurosci., February 11, 2015 • 35(6):2830 –2837 • 2831



Fourier transform (FFT) to convert the priming
time courses into the frequency domain (after
zero padding and application of a Hanning win-
dow) separately for each condition (congruent
and incongruent). To examine the phase rela-
tionship between congruent and incongruent
conditions, we calculated the phase difference be-
tween congruent and incongruent conditions as a
function of frequency from 0 to 20 Hz (sampling
frequency of 50 Hz here) separately for each sub-
ject, then we calculated cross-subject coherence
in the phase difference values, resulting in a
congruent-incongruent (C-IC) phase difference
coherence pattern as a function of frequency.
Testing for nonuniformity for C-IC phase differ-
ences in the theta-band (3–5 Hz) across subjects
involved use of circular statistics (Rayleigh test for
nonuniformity for circular data in CircStats
toolbox).

We further performed a randomization
procedure by shuffling the RT time series for
congruent and incongruent conditions sepa-
rately within each subject to assess statistical
significance of observed priming oscillations
at theta band as well as the C-IC phase rela-
tionship. After each randomization, we con-
ducted FFT on surrogate signals, similar to
that of the original RT data analysis; we re-
peated this procedure 200 times, arriving at a
distribution of spectral power for each frequency
point from which we obtained the p � 0.05
threshold (uncorrected). We applied multiple-
comparison correction to the uncorrected ran-
domization threshold spectrum profile by setting
the maximum across all frequency bins as the
threshold (Nichols and Homes, 2002; Song et
al., 2014). Similarly, for each randomization,
we conducted the same phase analysis on the
surrogate signals by calculating cross-subject
coherence in the C-IC phase difference, re-
sulting in a distribution of C-IC phase coher-
ence for each frequency point, from which
we obtained the p � 0.05 threshold (uncor-
rected). Similar multiple-comparison cor-
rection analysis was applied by setting the
maximum threshold values across all fre-
quency bins as the final permutation thresh-
old for cross-subject coherence in the C-IC
phase difference.

Correlation analysis was performed to ex-
amine the relationship between the theta-
band priming oscillations and the typical
priming effects. Specifically, for each subject,
we calculated the spectral amplitude of the
theta-band rhythm for Congruent and In-
congruent conditions respectively (i.e., Congruent, Incongruent).
Furthermore, to characterize the typical priming effects[(i.e., positive
compatibility effect (PCE), negative compatibility effect (NCE)], the
slow trends for Congruent and Incongruent conditions were com-
pared, resulting in C-IC difference waveforms in each subject. The
PCE effects were calculated by averaging the C-IC differences within
PCE time range (for masked priming, SOA within 0-100 ms; for
unmasked priming, SOA within 100-800 ms) and the NCE effects
were calculated by averaging within NCE time range (for masked
priming, SOA within 200 – 800 ms; none for unmasked priming). The
correlation analysis was then performed between the amplitude of the
theta-band rhythms (Congruent and Incongruent) and the typical
priming effects (PCE and NCE).

Results
Alternating theta-band oscillations in masked priming
time courses
Eighteen subjects participated in the masked priming task (Fig.
1A, left) and performed well in the probe orientation discrimina-
tion task (percentage correct: 0.99 � 0.0018). Only small number
of trials were discarded due to either no response or out-of-range
RTs (trial discarding percentage: 0.02 � 0.002). Figure 2A illus-
trates the raw RT time courses as a function of mask-to-probe
SOAs under prime-probe congruent (red) and incongruent
(black) conditions averaged across all subjects. Generally, the RT
traces showed classical “facilitation followed by inhibition” prim-

Figure 2. Masked priming. A, Grand average RT time courses (n � 18, mean � SEM) as a function of mask-to-probe SOA
(0 – 0.8 s in steps of 0.02 s), for congruent (red) and incongruent (black) conditions. B, Grand average 240 ms smoothed RT time
courses representing slowly developing trends, which resemble the classical masked priming effects (“PCE followed by NCE”
pattern). C, Grand average detrended RT time courses obtained by subtracting slowly developing trends shown in A from raw RT
time courses shown in B. Black dots indicate statistically significant difference between congruent and incongruent conditions
(paired t test, n � 18, p � 0.05). D, Grand average spectrum (n � 18) for detrended RT time courses as a function of frequency of
0 to 20 Hz for congruent (red) and incongruent (black) conditions. Dashed lines represent the statistically significance threshold
( p � 0.05) after permutation testing and corrections for multiple comparisons for congruent (red) and incongruent (black)
conditions, respectively. E, Cross-subject (n � 18) coherence in the phase difference between congruent and incongruent condi-
tions as a function of frequency ranging from 0 to 20 Hz. The dashed lines represent the corresponding statistical significance
threshold ( p � 0.05) after permutation testing and corrections for multiple comparisons. The red small figure shows polar
plots for the distribution (n � 18) of phase difference between congruent and incongruent conditions in the theta-band
(3–5 Hz, indicated by red star). The red line in the small polar figure indicates the mean C-IC theta-band phase difference
across subjects.
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ing patterns, as revealed in previous masked priming studies
(Eimer and Schlaghecken, 2003). Specifically, for short SOAs (�
100 ms), the congruent condition elicited faster RTs than the
incongruent condition (i.e., PCE), whereas for longer SOAs, the
priming effects reversed (i.e., NCE) such that the congruent con-
dition was slower than the incongruent condition. Furthermore
and critically, the RT time courses displayed an oscillatory pat-
tern in addition to the slowly developing “PCE followed by NCE”
trend. Specifically, the NCE was not sustained but revealed an
intermittent rhythmic pattern; in fact, statistically significant
NCE effects occurred in several nonconsecutive temporal inter-
vals and not at SOAs around 300 and 600 ms (paired t test, Fig.
2A). To better examine the oscillatory pattern embedded in RT
time courses, we extracted slow trends of RT time courses in each
subject by calculating 240 ms smoothed RT traces for the congru-
ent and incongruent conditions separately (similar slow trends
were obtained when using least-squares polynomial fitting
method). The slowly developing trends exhibited a “PCE fol-
lowed by NCE” pattern (paired t test, Fig. 2B) resembling classical
masked priming effects (Eimer and Schlaghecken, 2003). To re-
move possible interferences from the classical priming and ex-
pectancy patterns, we next removed the slow trends from the raw
RT courses separately for each subject. Detrended RT time
courses demonstrated a clear periodic pattern under both con-
gruent and incongruent conditions (Fig. 2C). Moreover, the os-
cillations under the two conditions were in a type of temporally
switching relationship (Fig. 2C), suggesting that the rhythms ini-
tiated by the congruent and incongruent primes might have a
consistent phase lag relationship in the theta-band.

To further examine the characteristics of oscillatory compo-
nents in masked priming, we next performed spectrum analyses
on the detrended priming traces separately for each subject.
Moreover, to determine whether they reflected simply random
fluctuations in time, we performed permutation tests to examine
statistical significances. Figure 2D shows the grand average (n �
18) power spectrum of the detrended RT traces for the congruent
(red) and incongruent (black) conditions. Both congruent and
incongruent conditions showed significant (p � 0.05, corrected
for multiple comparison) activations in the theta-band (�4 Hz).
We next examined the phase relationship between the congruent
(red) and incongruent (black) conditions by calculating cross-
subject consistency in the C-IC phase differences as a function of
frequency. As shown in Figure 2E, the theta-band (�4 Hz,
marked by red star) showed significant (p � 0.05, permutation
test corrected for multiple comparison) cross-subject coherence
in the C-IC phase difference. The C-IC theta-band phase differ-
ence, representing the phase lag between congruent and incon-
gruent conditions, clustered around 108.4° (Fig. 2E, inset small
figure) and was statistically significant (Rayleigh test, p � 0.03),
supporting the consistent phase relationship in the theta-band
rhythms between the congruent and incongruent conditions
(Fig. 2C). Finally, we found no correlations (Pearson’s correla-
tion, n � 18) between theta-band oscillatory components and
classical priming effects (congruent vs PCE: r � 0.05, p � 0.86;
incongruent vs PCE: r � 0.12, p � 0.65; congruent vs NCE: r �
�0.31, p � 0.2; incongruent vs NCE: r � �0.09, p � 0.73). In
other words, the theta-band periodic pattern seems to be a sepa-
rable component embedded in time-resolved priming time
courses that is not attributable to classical priming effects.

In sum, we demonstrated that masked priming traces (Fig.
2A) actually consist of two concurrent components, a well estab-
lished “PCE followed by NCE” pattern (Fig. 2B) widely reported
in previous masked priming studies and, more critically, a new

theta-band (�4 Hz) oscillatory component (Fig. 2C) driven in an
out-of-phase manner by congruent and incongruent primes.

Unmasked priming also reveals alternating
theta-band oscillations
The logical next question is, do theta-band oscillations only occur
in masked priming or do they reflect a general phenomenon (i.e.,
prediction re-entrance and coordination) in priming? Unlike
masked priming (Fig. 1A, left), which is associated with a “PCE-
followed-by-NCE” pattern, unmasked priming (Fig. 1A, right)
reveals a “PCE-only” pattern. Theories abound to explain the
dissociations between masked and unmasked priming (e.g., mo-
tor inhibition, perceptual interactions, mask-triggered inhibi-
tion; for review, see Sumner, 2007; Sohrabi and West, 2009).
Taking a different perspective here, we focused on examining the
generality of rhythmic fluctuations in priming because both
masked and unmasked priming are associated with the generative
process with two concurrent perceptual predictions. Specifically,
we investigated whether theta-band oscillations observed in
masked priming also occur in unmasked priming despite their
dissociated classical priming effects (PCE-followed-by-NCE vs
sustained PCE only).

Sixteen subjects participated in the unmasked priming task
(percentage correct: 0.99 � 0.002; trial discarding percentage:
0.025 � 0.002). As shown in Figure 3A, the unmasked priming
traces also displayed an oscillatory pattern in addition to a slowly
developing trend. Specifically, the congruent condition (red)
elicited faster RTs than the incongruent condition (black) on
average, consistent with the typical PCE pattern in unmasked
priming (for review, see Sumner, 2007; Sohrabi and West, 2009);
the fine temporal structure of the unmasked priming traces,
again, showed a rhythmic pattern. After extracting and removing
slow RT trends (PCE-only course, similar slow trends were ob-
tained when using least-squares polynomial fitting method) rep-
resenting the classical unmasked priming effect (Fig. 3B), the
detrended RT time courses (Fig. 3C) demonstrated clear rhyth-
mical fluctuations for both congruent (red) and incongruent
(black) conditions. Initiated theta rhythms under both condi-
tions were also in an out-of-phase relationship. Spectrum analy-
sis and permutation testing supported significant theta-band
(�4 Hz) activations (Fig. 3D) and consistent theta-band phase
differences between congruent and incongruent conditions (Fig.
3E); the C-IC phase lag clustered around 152° (Rayleigh test, p �
0.002). We found no correlations (Pearson’s correlation, n � 16)
between theta-band oscillatory components and classical PCE
effects in unmasked priming (congruent vs PCE: r � �0.03, p �
0.9; incongruent vs PCE: r � �0.29, p � 0.28).

Taking these two experiments together, in addition to rep-
licating classical priming effects (PCE-followed-by-NCE in
masked priming; PCE-only in unmasked priming) in slowly de-
veloping trends, we discovered a general theta-band oscillation
component in priming behavior regardless of whether the prime
is masked. Furthermore, both congruent and incongruent con-
ditions underwent these rhythmic modulations in an out-of-
phase manner.

Neutral primes do not initiate priming oscillations
Previous work has shown rhythmic patterns in visual detection
after a salient event (e.g., an auditory sound; Fiebelkorn et al.,
2011; Romei et al., 2012), we next conducted a control masked
priming task to determine whether a neutral prime (Fig. 1B, bot-
tom), which is a salient but irrelevant event, could also initiate
theta-band oscillations in subsequent probe performances. Six-
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teen subjects participated in the study and
performed the same task (percentage cor-
rect: 0.99 � 0.001; trial discarding per-
centage: 0.023 � 0.002). As illustrated in
Figure 4A, the detrended RT time courses
(middle) with neutral prime revealed
smaller (cf. Figs. 2D, 3D) and no signifi-
cant spectral peaks in the theta band
(right), indicating that salient but unin-
formative primes do not effectively initi-
ate priming oscillations, possibly because
of their failure to trigger particular per-
ceptual predictions. These results also
suggest that onset-triggered periodicities
in detection performances cannot ac-
count for the observed theta-band oscilla-
tions in the present studies.

Priming oscillations in
individual subjects
Finally, we investigated whether theta-
band rhythms and the C-IC phase rela-
tionship in priming could be reliably
demonstrated in individual subjects. We
recruited additional subjects (three for
masked priming and three for unmasked
priming) to perform the priming task for
64 trials at each SOA value under each
condition (congruent and incongruent).
Figure 4B plots the raw RT time courses as
a function of SOA under the congruent
(red) and incongruent (black) conditions
for each of the three subjects in a masked
priming (Fig. 4B, left) and an unmasked
priming task (Fig. 4B, right). Similar to
the group results (see Fig. 2C for masked
priming; Fig. 3C for unmasked priming),
every individual subject showed reliable
priming oscillations directly, as well as the
C-IC switching patterns in raw RT traces.
Note that despite the priming periodici-
ties consistently shown in all subjects, the
fine temporal structures varied to some
extent across subjects. For example, in
masked priming (Fig. 4B, left), subject 3
began to leave “PCE” and enter the
“NCE” pattern around 300 ms, whereas
subject 1 and subject 2 were still in the
“PCE” phase. Rhythmic fluctuations were
most consistent across subjects during early SOA periods, likely
reflecting temporary intersubject alignment by the resetting
event (i.e., the prime stimuli) and became gradually variable
across subjects thereafter.

Discussion
Using a fine-grained behavioral measurement, we assessed prim-
ing performances in human subjects to investigate the fine tem-
poral structure of the multiprediction coordination processes
during which the brain generates, sends, and harmonizes multi-
ple and conflicting perceptual hypotheses about forthcoming in-
puts. Typical priming effects (“PCE followed by NCE” in masked
priming and “PCE-only” in unmasked priming) were replicated in
slowly developing trends. Critically, after removing classical priming

patterns, we demonstrated a new theta-band oscillatory compo-
nent driven in an out-of-phase manner by congruent and incon-
gruent primes in both masked and unmasked priming tasks.
Together, these results suggest that perceptual predictions de-
scend to sensory areas not continuously but recurrently in a
theta-band rhythm and multiple predictions are carried by feed-
back signals in a temporally dissociated “competition-like” man-
ner (i.e., conveyed in different phases of theta-band rhythms).

Perception has been viewed as an inferential process of hy-
pothesis testing (i.e., predictive coding; Rao and Ballard, 1999)
during which generated hypotheses descend to lower areas to be
matched against sensory inputs. This process has been suggested
to be mediated by ongoing interactions between feedback con-
nections carrying perceptual hypotheses and bottom-up inputs

Figure 3. Unmasked priming. A, Grand average RT time courses (n � 16, mean � SEM) as a function of probe-to-probe SOA
(0 – 0.8 s in steps of 0.02 s) for congruent (red) and incongruent (black) conditions. B, Grand average 240 ms smoothed RT time
courses representing slowly developing trends, which resemble classical unmasked priming effects (“PCE only” pattern). C, Grand
average detrended RT time courses. Black dots indicate statistically significant differences between congruent and incongruent
conditions (paired t test, n � 16, p � 0.05). D, Grand average spectrum (n � 16) for detrended RT time courses as a function of
frequency of 0 to 20 Hz for congruent (red) and incongruent (black) conditions. The dashed lines represent the statistically
significance threshold ( p � 0.05) after permutation testing and corrections for multiple comparisons for congruent (red) and
incongruent (black) conditions, respectively. E, Cross-subject (n � 16) coherence in the phase difference between the congruent
and incongruent conditions as a function of frequency of 0 to 20 Hz. Dashed lines represent the corresponding statistically signif-
icance threshold ( p � 0.05) after permutation testing and corrections for multiple comparisons. The red small figure shows polar
plots for the distribution (n � 16) of phase difference between congruent and incongruent conditions in the theta band (3–5 Hz,
indicated by red star). The red line in the small polar figure indicates the mean C-IC theta-band phase difference across subjects.
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(Harth et al., 1987; Mumford, 1991, 1992). Notably, an appropri-
ate match may not be accomplished in just one pass, thus requiring
iterative interactions and matching between the perceptual hypoth-
eses and sensory events (Carpenter and Grossberg, 1987; Harth et
al., 1987; Mumford, 1992; Ullman, 1995; Enns and Di Lollo,
2000; Ahissar and Hochstein, 2004; McMains and Kastner, 2011).
Actually, several proposed models suggest iterative looping feedback
that finally culminates in confirmation of the perceptual hypothesis
that best fits input data (Carpenter and Grossberg, 1987; Harth et al.,
1987; Mumford, 1992; Enns and Di Lollo, 2000; Engel et al., 2001).
In the present study, we demonstrated a general theta-band oscilla-
tion component in priming behavioral time courses, suggesting that
perceptual predictions, initially triggered by prime events, return to
lower-order areas not continuously but recurrently and periodically
in a theta-band rhythm (every 200–300 ms). Our results thus pro-
vide novel evidence supporting the iterative dynamic characteristics
of the “predictive coding” process in visual perception.

We demonstrated that the fine priming time course actually
consist of two components: a slowly developing trend that resem-
bles a classical priming pattern and a new theta-band (�4 Hz)
rhythmic component. Replication of classical priming effects in
slow trends is consistent with coarse temporal measurements (at
SOAs every several hundred milliseconds) used in previous stud-
ies, thus suggesting little influence of the present design on clas-
sical priming behavior. Conversely, theta-band oscillatory
patterns, given their presence in both masked and unmasked
priming tasks, cannot be explained in terms of previous priming

theories (for review, see Sumner, 2007;
Sohrabi and West, 2009) that account for
the dissociations between masked and un-
masked priming in typical priming effects
(i.e., “PCE followed by NCE” in masked
priming and “PCE-only” in unmasked
priming). Moreover, the theta-band oscil-
latory did not correlate with the slow
trends, further suggesting that priming
oscillation might be a new and separable
component in priming behavior. Therefore,
we suggest that overall priming patterns are
concurrently mediated through two pro-
cesses, one based on classical priming mod-
els and one presumably related to the theta-
band prediction waves.

Transition from PCE to NCE in
masked priming but not in unmasked
priming was originally suggested to repre-
sent automatic motor inhibition that sup-
presses partial activation initially caused
by the prime (i.e., “motor self-inhibition”;
Eimer and Schlaghecken, 2003). Previous
studies reported reciprocal inhibitory in-
teractions in movement-related EEG po-
tentials after masked primes (Praamstra
and Seiss, 2005), suggesting response
competition taking place in motor cortex.
Moreover, additional PCE occurs after the
“PCE followed by NCE” pattern in
masked priming behavior (Sumner and
Brandwood, 2008), also consistent with
this interpretation. We postulate that the
observed priming oscillations are not
solely based on motor priming explana-
tions. First, we observed theta-band oscil-

lations in unmasked priming as well, which would be
inconsistent with “motor self-inhibition” because that is trig-
gered by partial motor activation caused by masked primes only.
Second, there were no correlations between priming oscillations
and the classical priming effects in the masked priming task; this
would not be expected if theta-band rhythms reflect reciprocal
motor inhibitions initiated by masked primes. Third, recent EEG
studies reported that the inhibitory EEG movement-related com-
ponent was actually triggered and modulated by the mask stimulus
after prime rather than being automatically initiated by the masked
prime (Jaśkowski et al., 2008). Further studies using both masked
and unmasked priming paradigms are needed to elucidate the neural
correlates of priming oscillations.

Here, priming oscillations were found to occur at the theta-
band. Theta-band rhythms are known to mediate sensory stream
processing (Luo and Poeppel, 2007, 2012; Luo et al., 2010; Kayser
et al., 2012; Fiebelkorn et al., 2013b), attention (Schroeder and
Lakatos, 2009; Busch and VanRullen, 2010; Landau and Fries,
2012; Fiebelkorn et al., 2013a; Song et al., 2014), and memory
(Lisman and Idiart, 1995; Luo et al., 2013) by cyclically modulat-
ing cortical excitability and segmenting inputs into appropriate
chunks in time (Giraud and Poeppel, 2012; Kayser et al., 2012).
Several recent behavioral studies also showed theta-band fluctu-
ations in spatial- or object-based attentional performance (Lan-
dau and Fries, 2012; Fiebelkorn et al., 2013a; Song et al., 2014).
Specifically, after resetting attention to 1 of 2 spatial locations,
visual performance at these locations underwent a 4 Hz fluctua-

Figure 4. Neutral masked priming and single-subject experiments. A, Grand average (n � 16, mean � SEM) RT time courses
(left) and detrended RT time courses (middle) as a function of mask-to-probe SOA (0 – 0.8 s in steps of 0.02 s). Right, Grand average
spectrum (n � 16) for detrended RT time courses as a function of frequency of 0 to 20 Hz. The dashed line represents the statistical
significance threshold ( p � 0.05) after permutation testing and corrections for multiple comparisons. B, RT time courses of each
individual subject in masked priming (3 subjects, left) and unmasked priming (3 subjects, right) for congruent (red) and incongru-
ent (black) conditions as a function of SOA. Each subject completed 64 trials for each condition (congruent and incongruent) at each
SOA interval. The bottom-right figure plots the grand average (n � 3) RT time courses in masked priming (left) and unmasked
priming (right).
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tion. However, in the present study, instead of being distributed
at multiple spatial locations as in previous studies, both primes
and probes occurred at the same location throughout the exper-
iments. Therefore, theta-band priming oscillations here cannot
be accounted for by spatial sampling rhythms that were suggested
in previous attentional studies. Furthermore, the results substan-
tially extend previous findings by suggesting that the theta
rhythm is not limited to spatial attention, but may reflect a more
general oscillatory mechanism in multi-item attention (e.g., lo-
cation, feature, perceptual prediction, etc.).

Finally, our findings addressed an important but essentially
unexplored question: how the brain dynamically manages and
coalesces multiple perceptual predictions to guide moment-by-
moment perceptions about the external environment. Although
abundant studies have demonstrated that perceptual predictions
modulate sensory activities (Hupé et al., 1998; Murray et al.,
2002; Summerfield et al., 2008; Alink et al., 2010; Arnal et al.,
2011; Costa-Faidella et al., 2011; Wacongne et al., 2011; den
Ouden et al., 2012; Kok and de Lange, 2014), most of them ex-
amined how one particular perceptual prediction affects low-
level sensory responses (i.e., consistent or inconsistent with the
hypothesis). To our knowledge, there are virtually no experimen-
tal data revealing the dynamic structure of the multiprediction
coordination process. Our results suggest that the re-entrance
process actually fluctuates over time in a theta-band rhythm and
the two predictions (i.e., congruent and incongruent) descend to
lower sensory areas alternately in time. Such “competition-like”
relationship between the two perceptual predictions might be
mediated by an oscillation-based temporal coordination mecha-
nism in higher brain regions. Specifically, different predictions
are carried by feedback signals in different phases of theta-band
oscillations to achieve organized and dissociated neural represen-
tations. Alternatively, it might be also accounted for by a “mutual
inhibition” interpretation in that one perceptual prediction, ac-
tivated by a prime, waxes and wanes in a theta-band rhythm,
which would make the other prediction to be inhibited and disin-
hibited accordingly. Most interestingly, such oscillation-mediated
population competition mechanisms have been proposed and
demonstrated in spatial attention (Buschman and Miller, 2009;
Fries, 2009; Landau and Fries, 2012; Fiebelkorn et al., 2013a; Song et
al., 2014), working memory (Lisman and Idiart, 1995), conscious-
ness (Doesburg et al., 2009), task rule switching (Buschman et al.,
2012), discrete nature of perception (VanRullen et al., 2007), and
interactions between feedforward and top-down processing
(Fontolan et al., 2014). Together, our results, in combination
with accumulating evidence, support an important role for neu-
ronal oscillation in various cognitive processes, via dynamical
organization and segregation of multiple neuronal populations
over time.
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