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Vertebrate audition is a dynamic process, capable of exhibiting both short- and long-term adaptations to varying listening conditions.
Precise spike timing has long been known to play an important role in auditory encoding, but its role in sensory plasticity remains largely
unexplored. We addressed this issue in Gambel’s white-crowned sparrow (Zonotrichia leucophrys gambelii), a songbird that shows
pronounced seasonal fluctuations in circulating levels of sex-steroid hormones, which are known to be potent neuromodulators of
auditory function. We recorded extracellular single-unit activity in the auditory forebrain of males and females under different breeding
conditions and used a computational approach to explore two potential strategies for the neural discrimination of sound level: one based
on spike counts and one based on spike timing reliability. We report that breeding condition has robust sex-specific effects on spike
timing. Specifically, in females, breeding condition increases the proportion of cells that rely solely on spike timing information and
increases the temporal resolution required for optimal intensity encoding. Furthermore, in a functionally distinct subset of cells that are
particularly well suited for amplitude encoding, female breeding condition enhances spike timing-based discrimination accuracy. No
effects of breeding condition were observed in males. Our results suggest that high-resolution temporal discharge patterns may provide
a plastic neural substrate for sensory coding.
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Introduction
Neural codes can take two basic forms: count-based (i.e., how
many spikes occur) and timing-based (i.e., when spikes occur)
(Theunissen and Miller, 1995; Eggermont, 1998; Huetz et al.,
2011; Gaucher et al., 2013). Despite decades of work establishing
the importance of precise spike timing in the auditory nerve (Ki-
ang, 1965; Rose et al., 1967; Young and Sachs, 1979), the role of
temporal coding has only recently been explored in more central
regions: midbrain (Holmstrom et al., 2010; Woolley and Portfors,
2013), thalamus (Huetz et al., 2009), and forebrain (Narayan
et al., 2006; Schnupp et al., 2006; Engineer et al., 2008; Kayser
et al., 2010).

Auditory encoding is dynamic, modulated by arousal state
(Dave et al., 1998; Cardin and Schmidt, 2003; Huetz et al., 2009),
behavioral experience (Bakin and Weinberger, 1990; Recanzone

et al., 1993; Polley et al., 2006), task engagement (Fritz et al., 2003,
2005; Niwa et al., 2012; Yin et al., 2014), and environmental cues
(Walkowiak, 1980; Hillery, 1984; Del Negro and Edeline, 2002;
Sisneros and Bass, 2003; Del Negro et al., 2005). Sex-steroid hor-
mones are effective regulators of neural function (Caras, 2013),
capable of rapid modulations via brain-derived neurosteroids
(Pinaud and Tremere, 2012; Remage-Healey et al., 2013) and
slower changes that correlate with hormonally mediated fluctu-
ations in reproductive condition (Sisneros et al., 2004; Caras et
al., 2010, 2012; Rohmann and Bass, 2011; Maruska et al., 2012).
Investigations of the effect of sex-steroid hormones on the audi-
tory forebrain have focused on average discharge rates (Tremere
et al., 2009, 2012; Remage-Healey et al., 2010, 2012; Caras et al.,
2012; Remage-Healey and Joshi, 2012); temporal coding modu-
lations remain largely unexplored (but see Liu and Schreiner,
2007; Tremere and Pinaud, 2011).

Precise spike timing plays an important role in the encoding of
sound level (Kiang, 1965; Malone et al., 2010), a fundamental
aspect of auditory processing. Signal amplitude is particularly
relevant during social interactions in breeding animals. For ex-
ample, female frogs and birds often prefer males that produce
loud vocalizations (Fellers, 1979; Arak, 1983, 1988; Gerhardt,
1987; Searcy, 1996). In addition, in some songbird species, low-
intensity songs convey aggression (Searcy and Beecher, 2009; Hof
and Hazlett, 2010; Akçay et al., 2011). These observations raise
the possibility that signal amplitude encoding is hormonally
modulated.
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Here, we addressed this issue by determining whether the
sound level of a naturalistic, time-varying stimulus is better en-
coded by spike counts and/or spike timing, and whether this
encoding is modulated by hormonal condition. We recorded
song-evoked in vivo single-unit responses in the auditory fore-
brain of Gambel’s white-crowned sparrows (Zonotrichia leuco-
phrys gambelii), a species in which both vocal motor (Park et al.,
2005; Meitzen et al., 2007a, b, 2009a, b) and auditory function
(Caras et al., 2010, 2012) are modulated by circulating levels of
sex steroids, which fluctuate on a seasonal basis (Wingfield
and Farner, 1978). We report that, in females, breeding con-
dition selectively enhances spike timing-based discrimination
and increases the temporal resolution for optimal intensity
encoding.

Materials and Methods
Subjects. Adult male (n � 19) and female (n � 21) Gambel’s white-
crowned sparrows were captured in eastern Washington state during
autumn and spring migrations between 2007 and 2011. Birds were
housed at the University of Washington in outdoor aviaries before being
moved indoors. Once inside, all birds were housed in aviaries on a short-
day photoperiod (8 h light:16 h dark) for at least 10 weeks to ensure
sensitivity to photoperiod and hormones (Wingfield et al., 1979). Food
and water were freely available. All procedures were approved by the
Institutional Animal Care and Use Committee at the University of Wash-
ington, Seattle.

Hormone and photoperiod manipulations. We manipulated light and
hormone levels to mimic nonbreeding and breeding conditions in the
laboratory. To induce a nonbreeding state, birds (males � 10, females �
12) were housed on a short-day photoperiod. Under these conditions,
gonads are regressed, plasma sex hormone levels are basal, and neural
morphology and physiology are typical of the nonbreeding season
(Middleton, 1965; Smith et al., 1995; Tramontin et al., 2000; Park et al.,
2005; Meitzen et al., 2007a). To induce a breeding state, males (n � 9)
and females (n � 9) were housed on a long day (20 h light:4 h dark)
photoperiod typical of their Alaskan breeding grounds. Additionally,
because supplemental hormone is necessary to raise plasma hormone
levels of laboratory-housed birds to physiological levels observed in the
wild (Smith et al., 1995), these birds received subcutaneous hormone
pellets made from Silastic tubing (i.d. 1.0 mm; o.d. 2.0 mm, length 12
mm; VWR), filled with crystalline testosterone (males) or estradiol (fe-
males) (Tramontin et al., 2003; Caras et al., 2010, 2012). Birds were
exposed to these conditions for a minimum of 3 weeks, a time period
sufficient to induce morphological and physiological changes typical of
the breeding season (Tramontin et al., 2000; Park et al., 2005; Meitzen et
al., 2007a).

Electrophysiology. Methods for in vivo electrophysiology have been de-
scribed previously (Caras et al., 2012). Briefly, birds were anesthetized
with 25% urethane (6 �l/g body weight, Thermo Fisher Scientific) and
were secured to a head holder that served as a stereotaxic device. A small
craniotomy was made above the right hemisphere and a micropipette
(5–19 M� impedance) filled with 10% fluororuby (10,000 molecular
weight tetramethylrhodamine dextran, Invitrogen) or 10% biontinylated
dextran amine (BDA, 10,000 molecular weight, Invitrogen) in 0.9%
NaCl was advanced into the auditory region of the caudal telencephalon
using stereotaxic coordinates relative to the bifrucation of the midsagittal
sinus (1.8 –2.8 mm anterior, 1.4 –1.6 mm lateral). Recordings were made
at a range of depths relative to the brain surface (0.806 –3.237 mm). Body
temperature was maintained at 40°C– 42°C throughout the recording
sessions (TC-1000 Temperature Controller, CWE). Up to three record-
ing tracks were made in each bird.

Spikes were amplified 10,000� (ISO-80, World Precision Instru-
ments; and MA3, Tucker Davis Technologies), filtered 0.1–10 kHz
(Krohn-Hite model 3550), digitized at 24.4 samples/s (RX6 multifunc-
tion processor, Tucker Davis Technologies), and monitored online. Cus-
tom MATLAB scripts (David Schneider and Sarah Woolley, Columbia
University) were used to analyze raw waveforms offline to ensure that

only well-isolated single units were included in the dataset (Caras et al.,
2012). Isolation was assessed using the following criteria: (1) a stable
waveform shape, (2) a high (�4) signal-to-noise-ratio, and (3) the ab-
sence of any interspike intervals �1 ms. The vast majority of analyzed
recordings (230/246) met the criteria for single units. The remaining 16
recordings demonstrated two separable waveforms with high signal-to-
noise ratios. These waveforms were manually sorted offline, and isolation
was verified by principal components analysis.

Songbird auditory processing may be lateralized, but lateralization
depends on a number of factors, including species, anesthesia, brain region,
analysis type, sex, and stimuli (Cynx et al., 1992; George et al., 2004, 2005;
Avey et al., 2005; Hauber et al., 2007; Poirier et al., 2009; Phan and Vicario,
2010). Therefore, to avoid a potential lateralization confound, we chose to
focus only on the right hemisphere for these experiments.

Stimulus delivery and calibration. The stimulus delivery system
and calibration procedures have been used previously (Caras et al.,
2010, 2012). A custom-made sound delivery tube enclosing a small
speaker (Etymotics ER-2B) and microphone (Etymotics ER-10B) was
positioned flush against the skull around the left external auditory
meatus and sealed with Petroleum jelly. Custom scripts (Python)
delivered stimuli through an RX6 multifunction processor (Tucker
Davis Technologies).

For our initial experiments, we used a band-limited white-noise-
generated calibration table of sound pressure levels (dB SPL re: 20 �Pa)
to determine root-mean squared sound pressure levels (RMS dB SPL) for
song stimuli. In later experiments, we determined RMS dB SPL values
separately for each song. The levels for earlier recordings were corrected
for each song type presented. RMS intensities for song stimuli were reli-
able within �4.9 dB SPL.

Auditory stimuli. The auditory stimuli used in this study have been
described elsewhere (Caras et al., 2012). Songs were recorded (Syrinx,
John Burt, www.syrinxpc.com) from 7 individual breeding-condition
male Gambel’s white-crowned sparrows. Each bird contributed one song
to the stimulus set. One of these males was also used as subject in this
study but was never presented with playback of his own song.

Data acquisition. Data acquisition procedures have been described
previously (Caras et al., 2012). Briefly, bursts of band-limited white
noise (0.25– 8 kHz) at 80 dB SPL were used as a search stimulus. Once
a cell was isolated, one song, chosen at random, was presented at a rate
of 0.14/s.

Because we wished to examine neural coding of intensity discrim-
ination, we presented stimuli at a wide range of amplitudes (�10 to
110 RMS dB SPL). Within that range, however, each cell was only
presented with 9 different (but consecutive) intensities. Songs were
presented in 10 dB descending steps, with 10 trials at each intensity. It
is important to note that many avian species are capable of generating
high-amplitude vocalizations; maximum values from 74 to 111.5 dB
SPL have been reported at a distance of 1 m (Brackenbury, 1979;
Brenowitz, 1982; Nemeth, 2004). Therefore, we consider the stimulus
intensities used in these experiments to be within a behaviorally rel-
evant range.

Computational methods. Our goal was to analyze the ability of individ-
ual neurons to reliably discriminate among song intensities, and to de-
termine whether sex-steroid hormones affect this process. In order for a
single neuron to successfully discriminate intensity, the spike trains elic-
ited by repeated song presentations at the same sound level should be
more similar to one another than the spike trains elicited by song presen-
tations at different sound levels. To compute the similarity between pairs
of spike trains elicited by a single cell, we adopted a spike train classifier
(Machens et al., 2003; Narayan et al., 2006; Wang et al., 2007; Billimoria
et al., 2008). As illustrated in Figure 1A, 9 dB SPL levels of a conspecific
song were presented to each cell and each level was repeated 10 times,
yielding nine raster plots of 10 repetitions at each level. One spike
train from each raster was randomly chosen as a template for that dB
SPL value. The remaining spike trains were then classified as belong-
ing to a particular level based on the dB SPL of the template it matched
most closely (Fig. 1 B, C). If a spike train was equally well matched
with two or more templates, it was randomly assigned to one of the
matches. If a spike train was assigned to the dB SPL that evoked it, the
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assignment was considered “correct.” The percentage of correctly
assigned spike trains was calculated after all assignments had been
made.

The methods outlined above describe the classification of spike trains
after a single, random selection of templates. Ideally, one would repeat
this process for all possible template combinations, and then calculate the
percentage of correct assignments, averaged across all permutations.
Spike trains were recorded for 10 presentations of song at nine different
sound levels, leading to a total of 10 9 possible template combinations;
repeating the classification process for all template combinations was
therefore deemed computationally unfeasible. Instead, we limited the
number of classifier repetitions to 1000 for each cell. Discrimination accu-
racy was quantified as the percentage of correctly assigned spike trains, aver-
aged over the 1000 estimates generated by the classifier. Discrimination
accuracy was also computed on an intensity-by-intensity basis.

If a cell is capable of discriminating among different intensities, we
would expect that its individual spike trains would be classified correctly
more often than would be expected by chance. Each cell was presented
with nine different stimulus levels; thus, chance performance of the clas-
sifier is 1/9 (11%). All aspects of the data analysis were performed using
custom scripts written in MATLAB by one of the authors (M.L.C.).

Our classifier describes the ability of a neuron to discriminate among
dB SPL values of a particular song. To assess intensity coding in a broader
sense (i.e., the ability of a neuron to discriminate sound level, regardless
of the spectrotemporal details of the stimulus), one would need to pres-
ent each cell with several different conspecific songs at different sound
levels. In our hands, neurons can be held in isolation for up to 15–30 min
on average, making it impractical to explore both song identity and song
level. Thus, as stated above, each cell was presented with a single song, at
a range of sound intensities. Therefore, for the remainder of this paper,
when we speak of “intensity coding” or “intensity discrimination,” we
note that there is an implicit assumption that the song identity is already
known.

Classification metrics. Because we were interested in comparing the
relative roles of count-based and timing-based encoding strategies, we
chose to quantify spike train similarity using two different metrics. For
the “spike count” metric, spike trains were assigned to the template with
the closest number of action potentials, neglecting all temporal informa-
tion. An example of the classification of a single spike train using the
spike count metric is illustrated in Figure 1B.

For the “spike timing” metric, we used an established correlation-
based measure of spike timing reliability, Rcorr (Schreiber et al., 2003;
Wang et al., 2007). All spike trains (including templates) were smoothed
with a Gaussian filter of mean 0 and SD �. The temporal similarity of a
smoothed spike train, s�i, and a smoothed template train, s�j, was calculated
as follows:

Rcorr �
s�i � s�j

�s�i��s�j�
,

Rcorr is a normalized measure ranging from 0 to 1. A value of 1 indicates
a perfect correlation between the spike train and the template; 0 indicates
no relationship. Spike trains were assigned to the template that produced
the maximum value of Rcorr.

This metric reflects a “timing-based” coding scheme, whose temporal
resolution is determined by �. An optimal � is small enough to capture
the dynamics of spiking activity on a fine time scale, but large enough to
allow for negligible amounts of jitter in the spike times. We did not know
a priori what the optimal � was, and it was possible that it differed for
each cell. Therefore, we classified spike trains after smoothing with filters
of the following widths: 1, 2, 4, 8, 16, 32, 64, 128, and 256 ms. The � that
generated the highest percentage of correct classifications was considered
the optimal �; all of the spike timing data reported here were generated at
each cell’s optimal �. An example of the assignment of a single spike train
using the timing metric is illustrated in Figure 1C.

Assessment of significance. To assess the statistical significance of our
percentage correct estimates, we adopted a trial-shuffling approach: in-
dividual spike trains of each neuron were randomly assigned to dB SPL
values, thus removing intensity-specific information, as illustrated in

Figure 2. Shuffled spike trains were then classified, and the classification
procedure was repeated 1000 times, as described above. This process
generates a distribution of random percentage correct values that would
be expected in the absence of intensity-specific encoding. The distribu-
tion for the original, unshuffled dataset was compared with the shuffled
(random) distribution: discrimination was considered statistically signif-
icant if the average of the original distribution exceeded the value of the
95th percentile of the shuffled distribution (Fig. 2). Similar approaches
have been used previously (Wang et al., 2007; Mesgarani et al., 2008;
Huetz et al., 2009).

Histology. Histological and electrode track reconstruction procedures
have been described previously (Caras et al., 2012). Briefly, electrode
tracks were marked by two injections using either iontophoresis (10%
fluororuby, 39/40 birds, BAB-501 Iontophoresis pump, Kation Scien-
tific) or pressure injection (10% BDA, 1/40 birds, Parker Picospritzer).
At the end of each recording session, birds were perfused (PBS, followed
by 4% PFA). Brains were dissected from the skull, postfixed, cryopro-
tected, and embedded in gelatin. Parasagittal 40 �m sections were cut on
a freezing microtome and mounted onto gelatin-subbed slides. Alternate
sections were processed for Nissl or air dried until fluorescent or BDA
processing.

Sections containing fluororuby were cleared, coverslipped, and dried
overnight. Sections containing BDA were incubated in 30% hydrogen
peroxide in 100% methanol, rehydrated in PBS, and visualized using the
ABC-DAB method (Vector Laboratories, Sigma). All images were cap-
tured on a Olympus BH2 microscope fitted with a Qimaging camera and
Qcapture software.

Of the 246 cells in our analysis, 222 of them were localized to either the
caudal mesopallium (CM) or Field L. Twenty-four cells were on the
border between CM and L and could not be definitively localized to one
region or another (see Table 2). We note that Field L is a heterogeneous
complex made up of different subregions that demonstrate differences in
spectrotemporal tuning (Sen et al., 2001; Nagel and Doupe, 2008; Kim
and Doupe, 2011). It is therefore possible that intensity discrimination
and/or the effect of breeding condition differ among these subnuclei, or
between CM and Field L as whole. Previous investigations of song dis-
crimination using similar computational methods to those described
here have treated Field L as a single entity (Narayan et al., 2006; Wang et
al., 2007; Billimoria et al., 2008), and others have pooled cells from CM
and Field L together for large-scale analyses of physiological response
properties (Grace et al., 2003). Because of the multidimensional nature of
our experimental design and the distinct findings we observed for spe-
cific response patterns (see Results), we lacked sufficient statistical power
to separate cells into further subcategories and have therefore chosen to
pool our cells for analysis. The distribution cell types for each anatomical
region can be found in Table 3, however, and are discussed in more detail
in Results.

Hormone measurement. We collected blood from the alar wing vein of
each bird into a heparinized tube and centrifuged the sample at 4°C
immediately before each recording session. We stored separated plasma
at �80°C until ELISA was performed. Plasma levels of 17-� estradiol
were assayed using a kit from Cayman Chemicals. All of the estradiol
levels reported here were originally measured for a previous study (Caras
et al., 2012). Plasma testosterone levels were assayed using a standard kit
from Enzo Life Sciences (formerly Assay Designs) that has been successfully
used with white-crowned sparrow plasma (Caras et al., 2010).

Briefly, aliquots of each sample were run with kit standards following
each kit’s protocol. Each steroid was measured in a single assay. Some
female samples were lost during preparation; therefore, only 7 of 9 breed-
ing female samples and 7 of 12 nonbreeding female samples were assayed.
Most samples and all of the kit standards were run in duplicate; however,
3 breeding female and 2 nonbreeding female samples were run singly
because of insufficient sample volume. Because testosterone levels in
breeding males can exceed the highest range of the kit’s detectability (2
ng/ml), we made a 1:20 dilution of each breeding male sample with assay
buffer. After incubating samples with antiserum and a steroid-enzyme
conjugate, wells were emptied and washed, and substrate was added to all
sample wells. Plates were read immediately at 405 nm on a Dynex MRX II
microplate reader.
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We plotted the optical densities of the kit standards as a function of
known hormone concentration and fit the points with a sigmoid 4PLC
equation; sample hormone levels were extrapolated from this standard
curve. Intra-assay variability was 6.50% for estradiol and 9.94% for
testosterone.

Statistics. Comparisons consisting of only two groups were performed
with two-sample Student’s t tests. If the groups violated the assumptions
of normality, a nonparametric equivalent (Wilcoxon rank sum test) was
used instead. To assess the effect of breeding condition on discrimination
accuracy, we performed two-way (intensity � condition) mixed model
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Figure 2. Demonstration of trial shuffling approach. Trial shuffling removes intensity-specific information, generating a distribution of random percentage correct values. To assess statistical
significance, the distribution of the original (unshuffled) dataset is compared with 95th percentile of the shuffled (random) distribution (for full details, see Materials and Methods). A, Representative
raster plots from a single “bicoding” neuron recorded from a nonbreeding male (see Results and Fig. 3). Same plot conventions as in Figure 1A. B, Raster plots for the same unit as in A, after shuffling
trials to remove intensity-specific information. C, Distributions of count-based percentage correct values for the original (red) and trial-shuffled (black) data. Each distribution incorporates 1000
percent correct estimates (1 for each repetition of the pattern classifier). Red triangle represents mean for the original distribution; gray dashed line indicates the 95th percentile of the shuffled
distribution. D, Distributions of timing-based percentage correct values. Plot conventions are identical to C. E–H, Raster plots (E, F ) and percentage correct distributions (G, H ) for a single unit
recorded from a nonbreeding female classified as incapable of intensity discrimination.
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ANOVAs; separate analyses were performed for males and females. Not
all cells were tested with identical intensity ranges. Missing values present
an obstacle for running a repeated-measures ANOVA; we therefore re-
stricted our group analyses to 20 – 80 dB SPL, allowing inclusion of the
vast majority of our neurons. Unless otherwise stated, all values are re-
ported as mean � SEM. All statistical analyses were made using JMP 9.0.1
(SAS). The female data presented here were originally collected for pre-
vious study that examined estrogenic effects on average sound-evoked
firing rates (Caras et al., 2012).

Results
Plasma hormone levels
Females housed under breeding condition had higher levels of
plasma estradiol than their nonbreeding housed counterparts
(Table 1). These levels are similar to the physiological range re-
ported for wild breeding female white-crowned sparrows
(	300 –500 pg/ml) (Wingfield and Farner, 1978). Breeding con-
dition also elevated testosterone levels in our male birds (Table
1), although the breeding levels we report here are higher than
what has been observed in wild breeding males (4 –10 ng/ml)
(Wingfield and Farner, 1978).

Although sex steroids play an important role in mediating
seasonal breeding plasticity (Brenowitz, 2008; for review, see
Bass, 2008; Sisneros, 2009), it should be noted that potential
steroid-independent effects of photoperiod may partly contrib-
ute to the results presented here (Smith et al., 1997; Soma et al.,
1999; Riters et al., 2001; Park et al., 2005). We therefore present
the results below in the context of “breeding condition,” which
represents the combination of photoperiod and hormone ma-
nipulations in this study.

Single units form three classes on the basis of intensity
coding capabilities
We analyzed the intensity discrimination of 246 single units using
spike count-based and spike timing-based pattern classifiers (Ta-
ble 2). Of the 246 cells localized to CM or Field L, 91 were inca-
pable of significantly discriminating song intensities using either
spike count or spike timing information; subsequent examina-
tion of corresponding raster plots suggested that these cells did
not respond to song stimuli, and we therefore removed them
from the analysis (Fig. 2).

The remaining 155 cells were capable of discriminating song
intensities on the basis of only spike timing information, only

spike count information, or both spike timing and spike count
information. For simplicity, we will refer to these neurons for the
remainder of this paper as “temporal” cells, “count” cells, and
“bicoding” cells, respectively.

Representative raster plots for each response category (Fig. 3)
suggest distinct differences in response magnitude and temporal
structure as a function of song intensity. These differences were
verified quantitatively by calculating average firing-rate input–
output functions for each group. As shown in Figure 4A, at low
sound levels, each cell group had an average firing rate of 	3 Hz,
likely reflecting spontaneous activity. As song intensity increases,
count cells demonstrate suppressed activity. Conversely, tempo-
ral cells display steady firing rates, regardless of stimulus inten-
sity. Bicoding cells, on the other hand, increase their firing rates in
a monotonic manner as song intensity increases.

These three categories of cells cluster into distinct groups
when plotted as a function of spike count-based and spike
timing-based discrimination accuracy (Fig. 4B). On average, bi-
coding neurons (red diamonds) outperformed temporal cells
(blue squares) on spike timing-based intensity discrimination by
	8% (26.87 � 1.24 vs 18.56 � 0.56, Z � 5.79, p � 0.0001).
Similarly, bicoding neurons showed superior spike count-based
performance compared with count cells (red diamonds vs gray
squares; 25.15 � 1.11 vs 17.65 � 0.58, Z � �3.75, p � 0.001).
Together, these findings indicate that the avian auditory fore-
brain is capable of using both spike count and temporal informa-
tion to encode song intensity, and song-responsive cells within
this region form 3 distinct classes on the basis of their individual
encoding capabilities.

To determine whether these functionally distinct cell types
segregate anatomically, we compared their relative proportions
within CM, Field L, and the CM/L border. As shown in Table 3,
there were significant differences: although bicoding and tempo-
ral cells were observed at approximately equal rates in Field L, the
distribution was biased toward temporal cells in CM (�2

4, N �
155 � 9.44, p � 0.05).

In addition, we examined whether the distribution of cell
types varied as a function of sex and/or breeding condition. Over-
all, the relative proportions of each cell type were similar in males
and females (�2

2, N � 155 � 2.85, p � 0.24), and across breeding
states (�2

2, N � 155 � 5.14, p � 0.08). A separate analysis, how-
ever, revealed that breeding condition has a robust sex-specific
effect: in females, the cellular distribution switches from primar-
ily bicoding cells under nonbreeding condition, to primarily tem-
poral cells under breeding condition (�2

2, N � 80 � 8.86, p �
0.01; Table 4). No effect of breeding condition was observed in
males (�2

2, N � 75 � 0.12, p � 0.94). Given that CM has a
higher proportion of temporal cells (Table 3), it was possible
that the difference observed in females reflected unequal sam-
pling of anatomical sites across breeding conditions, rather
than an effect of breeding condition per se. In fact, all anatom-
ical regions were sampled at approximately equal rates in
breeding and nonbreeding females (�2

2, N � 80 � 0.70, p �
0.70; also see Table 2), suggesting that the coding strategies of
individual female cells may be malleable, and depend on re-
productive context.

Male intensity discrimination is unaffected by
breeding condition
Previous work revealed that sex steroids can affect auditory
forebrain neurons in a cell-selective manner (Caras et al.,
2012), leading us to hypothesize that hormonal modulation of
intensity discrimination may occur in a particular cell type. To

Table 1. Plasma hormone levelsa

Nonbreeding Breeding Statistic p

Testosterone
(ng/ml)

0.376 � 0.08 (n � 10) 21.92 � 3.73 (n � 9) �5.77* �0.0001

Estradiol
(pg/ml)

18.77 � 3.51 (n � 6) 447.45 � 214.00 (n � 6) �2.80** �0.01

aData are mean � SEM.

*Student’s t test.

**Wilcoxon Z test.

Table 2. Breakdown of cells included in analysisa

CM CM/L border Field L Total

Breeding females 12 (6) 5 (4) 40 (9) 57 (9)
Nonbreeding females 11 (6) 5 (3) 56 (12) 72 (12)
Breeding males 19 (8) 7 (5) 33 (9) 59 (9)
Nonbreeding males 7 (5) 7 (6) 44 (8) 58 (10)
Total 49 (25) 24 (18) 173 (38) —
aValues are number of cells (number of birds). The number of birds indicated in the right-most column is not a simple
sum of the number of birds in each preceding column because units from each anatomical location may have been
recorded in the same bird.
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explore this possibility, we examined
the effect of breeding condition on the
neural discrimination of song intensity
after grouping cells according to their
encoding capabilities (Figs. 3 and 4).
Males and females were analyzed sepa-
rately. We report our findings for male
birds first.

To visualize the impact of breeding
condition on discrimination accuracy, we
created confusion matrices whose rows
indicate the actual stimulus intensity and
whose columns indicate the intensity as-
signment made by the classifier. Correct
estimates fall along the diagonal from the
upper left to the bottom right of each
matrix. The percentage of spike train
assignments for each stimulus level is rep-
resented by color, with warmer colors in-
dicating higher percentages. Figure 5A, B

shows spike count-based matrices for count cells from breeding
and nonbreeding males. A two-way mixed model ANOVA re-
vealed a moderate effect of intensity (F(6,36) � 3.22, p � 0.01),
arising from the slightly higher discrimination accuracy at
very low and very high dB SPL values (the upper left and
bottom right corners of the matrices, respectively). A compar-
ison of the original matrices (Fig. 5 A, B) suggests no effect of
breeding condition (F(1,6) � 0.26, p � 0.63), nor a level �
condition interaction (F(6,36) � 1.33, p � 0.27). A similar
conclusion is drawn by examining Figure 5C, which illustrates
a subtracted difference matrix (i.e., the nonbreeding matrix sub-
tracted from the breeding condition matrix). Caution is warranted
when interpreting these results, however, as relatively few count cells
were observed overall (n � 4 for each group).
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Table 3. Anatomical distributions of cell typesa

Bicoding Count Temporal Total (cells)

CM 21.9% (7) 12.5% (4) 65.6% (21) 32
CM/L 23.1% (3) 0.0% (0) 76.9% (10) 13
L 45.4% (50) 7.3% (8) 47.3% (52) 110
Total (cells) 60 12 83 155
aValues are percentages of cells within each anatomical region. Actual numbers of recording sites are in parentheses.

Table 4. Effect of sex and condition on cell type distributionsa

Bicoding Count Temporal Total (cells)

Breeding females 30.3% (10) 0.0% (0) 69.7% (23) 33
Nonbreeding females 53.2% (25) 8.5% (4) 38.3% (18) 47
Breeding males 31.6% (12) 10.5% (4) 57.9% (22) 38
Nonbreeding males 35.1% (13) 10.8% (4) 54.1% (20) 37
Total (cells) 60 12 83 155
aValues are percentages of cells. Actual numbers of recording sites are in parentheses.
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A similar analysis was performed for male bicoding cells. As
shown in Figure 5D, E, discrimination accuracy remains relatively
constant across all song intensity levels (F(3.44,65.38) � 1.52, p � 0.21).
Furthermore, the subtracted difference matrix (Fig. 5F) indicates no
significant effect of breeding condition (F(1,19) � 0.00, p � 0.99), nor
an interaction between breeding condition and song intensity
(F(3.44,65.38) � 0.80, p � 0.51). Together, these results suggest that
spike count-based intensity discrimination is not sensitive to male
breeding state.

A separate analysis was performed to examine the impact of
breeding condition on male spike timing-based discrimina-
tion. As shown in Figure 6, classifier performance improved as
song intensity increased for both temporal cells (Fig. 6 A, B;
F(4.09,159.55) � 8.04, p � 0.0001) and bicoding cells (Fig. 6 D, E;
F(2.61,49.68) � 9.43, p � 0.0001). Subtracted difference matrices
(Fig. 6C,F ) revealed no effect of breeding condition for either
cell group (temporal: F(1,39) � 0.83, p � 0.37; bicoding: F(1,19) �
0.40, p � 0.54), nor a level � condition interaction (temporal:
F(4.09,159.55) � 0.57, p � 0.69; bicoding: F(2.61,49.68) � 0.52, p �
0.65). Collectively, these findings suggest that males are capa-
ble of both count-based and timing-based encoding of song
intensity, and these capabilities are unaffected by changes in
breeding condition.

Female spike timing-based intensity discrimination is
sensitive to breeding condition in a cell-selective manner
We next examined whether breeding condition affects female
spike count-based intensity discrimination. No count cells were
recorded in breeding females (Table 4), so no comparison could
be performed for this cell type. However, for completeness, the
confusion matrix generated by the 4 count cells recorded in
nonbreeding females is shown in Figure 7A. No effect of level
was observed (F(6,12) � 0.89, p � 0.53), likely due to the small
sample size.

In female bicoding neurons, spike count-based discrimina-
tion accuracy was highest at the extreme intensity values, contrib-
uting to a significant effect of level (F(3.21, 93.28) � 4.91, p � 0.01;
Fig. 7 B, C). However, as shown in Figure 7D, there was no
overall effect of breeding condition (F(1,29) � 0.21, p � 0.65),
nor an interaction between breeding condition and song in-
tensity (F(3.21,93.28) � 1.37, p � 0.26). Thus, like males, female
spike count-based discrimination is unaffected by hormonal
state.

Finally, we examined the effect of breeding condition on fe-
male spike timing-based intensity discrimination. As above, we
created confusion matrices for temporal cells from breeding (Fig.
8A) and nonbreeding (Fig. 8B) females. Both matrices show an
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Figure 5. Breeding condition does not affect male spike count-based intensity discrimination. A, Spike count-based confusion matrix for count cells from breeding males. Rows represent actual
song intensity levels; columns represent song intensity levels predicted by the spike count-based classifier. Correct estimates fall along the diagonal running from the upper left to the bottom right
corner. The percentage of spike train assignments are represented by color, as indicated by the bar on the left. Plot conventions are identical for B, D, and E. B, Confusion matrix for count cells from
nonbreeding males. C, Confusion matrix created by subtracting the nonbreeding male matrix in B from the breeding male matrix in A. A different color scale is used, as indicated by the bar on the
right. D, Spike count-based confusion matrix for bicoding cells from breeding males. E, Confusion matrix for bicoding cells from nonbreeding males. F, Confusion matrix created by subtracting the
nonbreeding male matrix in E from the breeding male matrix in D.

3438 • J. Neurosci., February 25, 2015 • 35(8):3431–3445 Caras et al. • Seasonal Plasticity Modulates Spike Timing



improvement in classifier performance as song level increases
(F(4.45,151.23) � 5.42, p � 0.001). The subtracted difference matrix
in Figure 8C, however, reveals no effect of breeding condition
(F(1,34) � 0.10, p � 0.76), nor a level � condition interaction
(F(4.45,151.23) � 1.19, p � 0.32).

For bicoding neurons, there was a similar effect of level, such
that accuracy clearly improved with increasing song intensity
(F(3.06,88.76) � 7.86, p � 0.0001; Fig. 8D,E). Here, however, there
was also a robust effect of breeding condition: Bicoding neurons
from breeding females (Fig. 8D) outperformed those from non-
breeding females (Fig. 8E) by an average of 11% (F(1,29) � 6.17,
p � 0.02). This effect is most easily observed by examining the
difference between the breeding and nonbreeding female ma-
trices, as shown in Figure 8F. Although the difference appears
particularly strong for low and mid levels (20 –50 dB SPL;
orange and red squares in upper left quadrant), the level �
condition interaction was not significant (F(3.06,88.76) � 0.80,
p � 0.50). Together, these results suggest that, like males,
females are capable of using count-based and temporal strat-
egies to encode song intensity, but only spike-timing based
encoding is sensitive to changes in hormonal state, and only in
a cell-selective manner.

Breeding condition increases the range of discriminable
intensities in females on a cell-by-cell basis
The previous analyses revealed an effect of breeding condition on
female bicoding cells at a group level. In principal, this finding

could be explained by one of two scenarios. First, breeding con-
dition may increase the range of discriminable song intensities on
a cell-by-cell basis. Alternatively, cells may be specialized for the
discrimination of specific song intensities, and breeding condi-
tion may enhance performance for each cell (particularly those
specialized for low-mid levels) without increasing their discrim-
inable range.

To distinguish between these two possibilities, we examined
the spike timing-based discrimination range for each female bi-
coding neuron. In Figure 9A, each cell is depicted along a single
row. Within each row, thick solid lines connect consecutive in-
tensities that the cell can discriminate at a statistically significant
level. Solid points indicate isolated intensities that are signifi-
cantly discriminable (see Materials and Methods); dashed lines
are used as needed to fill in any gaps between the lowest and
highest discriminable intensities for each cell; they serve as visual
guides only and do not indicate successful discrimination. Cells
are grouped according to breeding condition; within each group,
cells are arranged in order of the minimum intensity discrim-
inable. Qualitatively, it appears that bicoding cells from breeding
females (top) have wider discrimination ranges than cells from
nonbreeding females (bottom). This observation was verified by
calculating the difference between the highest and the lowest sig-
nificantly discriminable intensity (the “absolute range”) for each
cell that significantly discriminated at least 2 intensities. As
shown in Figure 9B, bicoding cells from breeding females have
absolute ranges that are, on average, 28 dB wider than bicoding

%

A B C
Male spike timing-based discrimination (temporal cells)

D E F
Male spike timing-based discrimination (bicoding cells)

 

%

Breeding Males

Predicted Level (dB SPL)

A
ct

ua
l L

ev
el

 (d
B

 S
P

L)

 

 

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

 5

10

15

20

25

30

Nonbreeding Males

Predicted Level (dB SPL)
10 20 30 40 50 60 70 80 90

Difference

 

%

Predicted Level (dB SPL)

 

10 20 30 40 50 60 70 80 90

−10

 −5

  0

  5

 10

Breeding Males

Predicted Level (dB SPL)

A
ct

ua
l L

ev
el

 (d
B

 S
P

L)

 

 

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90
 0

10

20

30

40

50

60

Nonbreeding Males

Predicted Level (dB SPL)
10 20 30 40 50 60 70 80 90

Difference

%

Predicted Level (dB SPL)

 

 

10 20 30 40 50 60 70 80 90

−20

−10

  0

 10

 20

Figure 6. Breeding condition does not affect male spike timing-based intensity discrimination. A, Spike timing-based confusion matrix for temporal cells from breeding males. Plot conventions
are identical to Figure 5. B, Confusion matrix for temporal cells from nonbreeding males. C, Confusion matrix created by subtracting the nonbreeding male matrix in B from the breeding male matrix
in A. Color scale is on the right. D, Spike timing-based confusion matrix for bicoding cells from breeding males. E, Confusion matrix for bicoding cells from nonbreeding males. F, Confusion matrix
created by subtracting the nonbreeding male matrix in E from the breeding male matrix in D.

Caras et al. • Seasonal Plasticity Modulates Spike Timing J. Neurosci., February 25, 2015 • 35(8):3431–3445 • 3439



cells from nonbreeding females (t(1,26), p � 0.001). Together,
these results suggest that breeding condition enhances intensity
discrimination by increasing the range of discriminable intensi-
ties on a cell-by-cell basis.

Breeding condition reduces the optimal temporal resolution
for female intensity encoding
The spike timing-based classification described here was per-
formed after convolving each spike train with a Gaussian curve.
The smoothed function generated by this approach mimics the
excitatory postsynaptic membrane potential of a hypothetical
downstream neuron. Thus, the width of the Gaussian used for
this convolution, �, determines the temporal window over which
the presynaptic neural response can be integrated: small values of
� preserve fine temporal structure but may be susceptible to un-
informative response jitter. Large values of � reduce noise, but at
a cost of reduced temporal resolution.

The spike timing-based discrimination results reported
above were calculated at each neuron’s optimal �. To deter-
mine whether breeding state alters the optimal temporal resolution
for the discrimination of song intensities, we compared average �
values between breeding and nonbreeding condition birds.

A representative response evoked at 90 dB SPL from a bi-
coding neuron is shown in Figure 10A. This cell, recorded
from a breeding female, has an optimal � of 4 ms. The tight
spike timing reliability exhibited by this cell is pronounced
when compared with the responses in Figure 10B, which
shows the activity of a bicoding neuron at the same intensity

(90 dB SPL) recorded from a nonbreeding female. This non-
breeding cell displayed a more sustained activity profile, and
its optimal � was substantially larger (64 ms) than the breed-
ing cell depicted in Figure 10A.

A two-way ANOVA was performed to determine the effects
of breeding condition and cell type (temporal or bicoding) on
female optimal � values. As shown in Figure 10C, breeding
condition significantly reduced the optimal � (F(1,70) � 8.75,
p � 0.01). This reduction amounts to increasing the temporal
resolution by a factor of 	4 –5 (nonbreeding: 63.4 � 13.84 ms,
breeding: 14.36 � 2.96 ms). No effect of cell type (F(1,70) �
0.00, p � 0.99) was observed, nor was there an interaction
between cell type and breeding condition (F(1,70) � 0.24, p �
0.62).

Conversely, breeding condition had no effect on male op-
timal � (breeding: 43.8 � 12.0 ms, nonbreeding: 52.4 � 11.72
ms; F(1,63) � 0.48, p � 0.49). Values were similar across cell
types (F(1,63) � 0.68, p � 0.41), and no condition � cell type
interaction was observed (F(1,63) � 0.83, p � 0.37; data not
shown).

Together, these results indicate that breeding condition in-
creases the optimal temporal resolution for intensity coding in a
sex-specific manner. Furthermore, breeding condition enhances
the neural discrimination of song amplitude in a select subset of
female neurons (bicoding cells) by increasing the range of dis-
criminable intensities on a cell-by-cell basis. This latter effect is
only observed when discrimination is made on the basis of spike
timing information.
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Figure 7. Breeding condition does not affect female spike count-based intensity discrimination. A, Spike count-based confusion matrix for count cells from nonbreeding females. Plot conventions
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Discussion
Spike timing and auditory discrimination
Understanding how spike timing contributes to sensory discrim-
ination is fundamental for linking neural activity with percep-
tion. In the auditory nerve and brainstem, spike timing plays an
important role in sound encoding (Kiang, 1965; Rose et al., 1967;
Young and Sachs, 1979; for review, see Frisina, 2001). Only re-
cently, however, have temporal codes been investigated in the
vertebrate telencephalon (for reviews, see Huetz et al., 2011; Gau-
cher et al., 2013). The majority of these studies have asked how
the discrimination of two or more vocalizations depends on the
temporal resolution of individual cortical responses (Huetz et al.,
2004, 2006, 2009; Narayan et al., 2006; Schnupp et al., 2006;
Wang et al., 2007; Billimoria et al., 2008; Engineer et al., 2008;
Recanzone, 2008; Russ et al., 2008; Walker et al., 2008; Centanni
et al., 2013; Ter-Mikaelian et al., 2013). Overwhelmingly, the data
point toward higher discrimination accuracy at shorter time
scales; in general, 1–30 ms has been reported as optimal for
single-cell temporal integration (Narayan et al., 2006; Schnupp et
al., 2006; Engineer et al., 2008; Recanzone, 2008; Russ et al., 2008;
Walker et al., 2008; Huetz et al., 2009; Centanni et al., 2013;
Ter-Mikaelian et al., 2013).

Here we found that single neurons in the avian forebrain are
capable of using spike timing reliability to accurately discriminate
the RMS sound level of a complex signal. Furthermore, we report

that similar temporal resolutions, (	10 – 60 ms), are optimal for
the discrimination of sound intensity. Our results support the
idea that the contribution of spike timing is not limited to the
discrimination of sounds that differ in terms of spectral or tem-
poral properties but also extends to complex sounds whose spec-
trotemporal features remain constant but vary in mean intensity
(Malone et al., 2010).

Identification of functionally distinct cell types
We found that cells in the avian auditory forebrain segregate into
three functionally distinct cell groups. Although we originally
identified these cellular clusters on the basis of their intensity
discrimination capabilities, we found that they are also well de-
scribed by their firing rate-song level profiles. Two of these clus-
ters display a marked similarity to data published by Billimoria et
al. (2008). These authors recorded extracellular activity from
Field L of male zebra finches and assessed how well neurons could
discriminate among different conspecific songs across a range of
intensities. They identified two classes of neurons: those that
demonstrated monotonically increasing firing rates as song in-
tensity increased (which they termed “intensity sensitive” neu-
rons), and those that displayed clear temporal responses but
maintained flat rate-level functions across song amplitude
(which they termed “intensity invariant” neurons). A compari-
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son of their work with the present study raises a few points worth
mentioning.

First, Billimoria et al. (2008) suggested that their “intensity
sensitive” neurons are particularly well suited to convey infor-
mation about song amplitude. Our results support this no-
tion. Of the three cell classes we describe here, our “bicoding”
neurons display the greatest overall accuracy (Fig. 4B). On the
basis of their monotonically increasing rate-level profiles (Fig.
4A), it seems likely that these cells were drawn from the same
population as the “intensity sensitive” neurons of Billimoria et
al. (2008).

Second, based on their flat rate-level profiles (Fig. 4A), our
“temporal” cells are likely the same as the previously mentioned
“intensity invariant” neurons (Billimoria et al., 2008). Billimoria
et al. (2008) posited that these neurons maintain accurate song
representations regardless of sound level. Overall, our results
agree with their hypothesis: while these cells are capable of dis-
criminating song intensity on the basis of spike timing informa-
tion, their discrimination accuracy is significantly lower than the
bicoding neurons (Fig. 4B), and within their response range, their
response patterns are not well differentiated (Fig. 3B). Thus, it is
plausible that temporal cells, which make up a majority (54%) of
our sample, primarily serve an important purpose unrelated to
intensity discrimination (i.e., stable song encoding across differ-
ent listening conditions). Notably, while temporal cells constitute
approximately half of all cells recorded in Field L, they make up
the majority in CM and along the CM/L border. These findings
suggest that the neural representation of song identity (or other
auditory objects) stabilizes as one moves along the ascending
auditory pathway.

Finally, we describe a third group of cells that display sup-
pressed activity as song level increases. These “count” cells, which
comprise a minority of our dataset (8%), are capable of limited,
but significant, intensity discrimination solely on the basis of
spike counts. Their precise role in auditory coding remains to be
determined.

Androgens and spike timing-based auditory coding
Given the important role of testosterone in modulating vocal
communication, surprisingly little is known about the role of
androgens in modulating spike timing-based coding in the cen-
tral auditory pathway. Huetz et al. (2006) recorded single-unit
responses from the sensorimotor region HVC of male canaries
that were housed under differing photoperiods and examined the
contribution of spike timing in the discrimination of natural and
reversed versions of the bird’s own song. While their findings
highlight an important role for spike timing in the encoding of a
bird’s own song, no effect of photoperiod was observed. Simi-
larly, we report here that male spike timing-based coding of song
intensity is unaffected by breeding condition. These results raise
the question of whether male intensity discrimination is relatively
insensitive to changes in plasma hormone levels in general, or
whether estradiol, which was administered to females in this
study, is simply a more effective modulator. Additional studies
using a combination of systemic hormonal manipulations, in-
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cluding nonaromatizable androgens, such as dihydrotestoster-
one, are needed to distinguish among these possibilities, and to
determine whether androgens are capable of modulating audi-
tory coding in females.

Estrogens and spike timing-based auditory coding
A growing body of literature has highlighted the role of circulat-
ing and brain-derived estrogens in modulating auditory percep-
tion, evoked potentials, and neuronal activity (for review, see
Caras, 2013). The impact of estrogen on spike timing-based au-

ditory coding, however, remains poorly understood. To date,
only three previous studies have addressed this issue (Huetz et al.,
2006; Liu and Schreiner, 2007; Tremere and Pinaud, 2011). Liu
and Schreiner (2007) recorded multiunit responses from the au-
ditory cortex of female mice that were either recent mothers or
naive regarding pup care. The authors found that when record-
ings were analyzed with a 2 ms resolution, the responses of moth-
ers conveyed more information for pup call detection and
discrimination compared with responses of naive females. Al-
though interpretation of this finding is limited by the fact that
hormone levels were not measured, and the relative role of sex
steroids and pup-care experience cannot be separated (Mi-
randa and Liu, 2009), their results indirectly support a possi-
ble modulatory role for estrogen in spike timing-based neural
discrimination.

Additional evidence is provided by Tremere and Pinaud
(2011), who used a linear decoder to analyze the ability of single
neurons in the zebra finch caudomedial nidopallium to discrim-
inate among four conspecific songs during manipulation of local
estradiol levels. The authors reported that estradiol infusion en-
hanced discrimination accuracy, and estrogen receptor blockade
or aromatase inhibition decreased accuracy, even after normaliz-
ing spike trains to account for hormone-dependent changes in
evoked activity. Their results suggest that endogenous, brain-
derived estradiol may enhance song discrimination in part by
shaping fine temporal processing.

Our results support and expand on these findings by demon-
strating that, in females, breeding condition enhances spike
timing-based discrimination accuracy and expands the range of
song intensities that are neurally discriminable by bicoding neu-
rons. Additionally, we observed that breeding condition reduces
the temporal window required for optimal intensity discrimina-
tion. Finally, we found a seasonal shift in the cellular distribution,
such that bicoding cells constituted the majority of the cells in
nonbreeding females, whereas temporal cells made up more
than two-thirds of neurons in breeding females. Based on the
putative functional roles for the different cell types (discussed
above), it seems reasonable to hypothesize that estrogen acts
on bicoding cells to enhance intensity discrimination during
the reproductive period, whereas the increased proportion of
temporal cells allows for a stable representation of signal iden-
tity across seasons.

We presented a similar hypothesis to explain the selective ef-
fect of estradiol on sound-evoked firing rates of Field L neurons
(Caras et al., 2012). In this study, estradiol specifically affected the
activity of neurons with monotonic pure-tone rate-level func-
tions while leaving nonmonotonic neurons unaffected. An obvi-
ous question that arises from our present findings was whether
the estrogen-targeted cells in Caras et al. (2012) and the current
study are identical. It appears that this is not the case: monotonic
and nonmonotonic tone responses can be found in approxi-
mately equal proportions in bicoding and temporal cell popula-
tions (data not shown).

Collectively, these findings suggest that, in addition to in-
creasing neural discharge rates and sensitivity (Caras, 2013), es-
trogens shape single-unit responses at a high temporal resolution
to enhance the discrimination of vocal stimuli and optimize avian
vocal communication under different breeding conditions. Sim-
ilar strategies may be used by other vertebrate taxa to optimize the
recognition of mates during periods of reproductive readiness
or the recognition of offspring calls during periods of maternal
caregiving.
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