
Behavioral/Cognitive

Distinct Neural Representation in the Dorsolateral,
Dorsomedial, and Ventral Parts of the Striatum during
Fixed- and Free-Choice Tasks

Makoto Ito and Kenji Doya
Okinawa Institute of Science and Technology Graduate University, Onna-son Okinawa 904-0412, Japan

The striatum is a major input site of the basal ganglia, which play an essential role in decision making. Previous studies have suggested
that subareas of the striatum have distinct roles: the dorsolateral striatum (DLS) functions in habitual action, the dorsomedial striatum
(DMS) in goal-directed actions, and the ventral striatum (VS) in motivation. To elucidate distinctive functions of subregions of the
striatum in decision making, we systematically investigated information represented by phasically active neurons in DLS, DMS, and VS.
Rats performed two types of choice tasks: fixed- and free-choice tasks. In both tasks, rats were required to perform nose poking to either
the left or right hole after cue-tone presentation. A food pellet was delivered probabilistically depending on the presented cue and the
selected action. The reward probability was fixed in fixed-choice task and varied in a block-wise manner in free-choice task. We found the
following: (1) when rats began the tasks, a majority of VS neurons increased their firing rates and information regarding task type and
state value was most strongly represented in VS; (2) during action selection, information of action and action values was most strongly
represented in DMS; (3) action-command information (action representation before action selection) was stronger in the fixed-choice
task than in the free-choice task in both DLS and DMS; and (4) action-command information was strongest in DLS, particularly when the
same choice was repeated. We propose a hypothesis of hierarchical reinforcement learning in the basal ganglia to coherently explain these
results.

Key words: action value; basal ganglia; decision making; reinforcement learning; state value; striatum

Introduction
The basal ganglia are known to play an essential role in decision
making. The striatum, the major input site of the basal ganglia,
has a dorsolateral-ventromedial gradient in its input modality.
That is, the dorsolateral striatum receives sensorimotor-related
information and the ventromedial region receives associative and
motivational information (Voorn et al., 2004; Samejima and
Doya, 2007). This organization suggests different roles for differ-
ent subareas of the striatum in decision making (Balleine et al.,
2007; Wickens et al., 2007).

Lesion studies suggest that the dorsomedial striatum (DMS)
and the dorsolateral striatum (DLS) contribute differently to
goal-directed actions (DMS), and habitual actions (DLS), respec-

tively (Yin et al., 2004, 2005a, b, Yin et al., 2006; Balleine et al.,
2007; Balleine and O’Doherty, 2010). Lesion and recording stud-
ies of the ventral striatum (VS) suggested its role in motivation in
response to reward-predicting cues (Berridge and Robinson,
1998; Cardinal et al., 2002; Nicola, 2010).

Based on reinforcement learning theory (Watkins and Dayan,
1992; Sutton and Barto, 1998), the actor-critic model hypothe-
sizes that the patch compartment, dominant in VS, realizes the
critic that learns reward prediction in the form of a “state value,”
and the matrix compartment, dominant in the dorsal striatum
(DS), implements the actor that learns action selection (Houk et
al., 1995; Joel et al., 2002). A variant of the hypothesis is that
matrix neurons learn “action values” of candidate actions (Doya,
1999, 2000). Theoretical models also suggested that model-based
action selection, which can realize flexible, goal-directed action
selection (Doya, 1999; Daw et al., 2005, 2011) occurs in the net-
work linking the prefrontal cortex and the striatum.

To further clarify different roles of subregions of the striatum,
however, it is essential to record from DLS, DMS, and VS during
choice behaviors. Many previous recording studies have reported
neural representations of state, action, reward, past action, past
reward, reward expectation, action value, and chosen value
within the striatum, but without systematic differences be-
tween the subregions (Samejima et al., 2005; Pasquereau et al.,
2007; Lau and Glimcher, 2008; Hori et al., 2009; Ito and Doya,
2009; Kim et al., 2009; Kimchi and Laubach, 2009; Kimchi et
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al., 2009; Roesch et al., 2009; Wunderlich et al., 2009; Stal-
naker et al., 2010; Gremel and Costa, 2013; Kim et al., 2013). A
small number of studies have reported some regional differ-
ences: upcoming action in DS, but not in VS (Kim et al., 2009),
upcoming state in VS, but not in DS (van der Meer et al.,
2010), and stronger past-action information in DMS than in
DLS (Kim et al., 2013).

In this study, we systematically analyzed neuronal activities
from DLS, DMS, and VS of rats performing a nose-poke choice
task consisting of fixed-choice and free-choice blocks. We specif-
ically investigated two predictions: (1) representation of action
values is strongest in DMS; and (2) action-command representa-
tion is stronger in fixed-choice blocks than in free-choice blocks
in DLS and the opposite holds in DMS.

Materials and Methods
Subjects. Male Long–Evans rats (n � 7; 250 –350 g body weight; �14 –29
weeks old) were housed individually under a reversed light/dark cycle
(lights on at 20:00, off at 08:00). Experiments were performed during the
dark phase. Food was provided after training and recording sessions so
that body weights dipped no lower than 90% of initial levels. Water was
supplied ad libitum. The Okinawa Institute of Science and Technology
Animal Research Committee approved the study.

Apparatus. All training and recording procedures were conducted in a
40 � 40 � 45 cm experimental chamber placed in a sound-attenuating
box (O’Hara & Co.). The chamber was equipped with three nose-poke
holes in one wall and a pellet dish on the opposite wall (see Fig. 1A). Each
nose-poke hole was equipped with an infrared sensor to detect head
entry, and the pellet dish was equipped with an infrared sensor to detect
the presence of a sucrose pellet (25 mg) delivered by a pellet dispenser.
The chamber top was open to allow connections between electrodes
mounted on the rat’s head and an amplifier. House lights, a video
camera, and a speaker were placed above the chamber. A computer
program written with LabVIEW (National Instrument) was used to
control the speaker and the dispenser and to monitor states of the
infrared sensors.

Behavioral task. Animals were trained to perform a free-choice task
and a fixed-choice task using nose-poke responses. In either task, each
trial started with a tone presentation (start tone: 2300 Hz, 1000 ms).
When the rat performed a nose-poke in the center hole for 500 –1000
ms, one of three cue tones (left tone: 900 Hz, 1000 –2000 ms; right
tone: 6500 Hz; 1000 –2000 ms; and choice tone: white noise, 1000 –
2000 ms) was presented (see Fig. 1B). The left and right tones indi-
cated which choices a rat should make to have the highest probability
of a reward. In contrast, the choice tone offered no information,
forcing the rat to make a choice. The rat had to maintain the nose-
poke in the center hole during presentation of the cue tone. Other-
wise, the trial was ended (a wait-error trial) with the presentation of
an error tone (9500 Hz, 1000 ms). After offset of the cue tone, the rat
was required to perform a nose-poke in either the left or right hole
within 60 s (otherwise, the trial was ended as an error trial after the
error tone) and then either a reward tone (500 Hz, 1000 ms) or a
no-reward tone (500 Hz, 250 ms) was presented. The reward tone was
followed by delivery of a sucrose pellet in the food dish. Reward
probabilities were varied depending on the cue tone and the chosen
action (see Fig. 1C). Reward probabilities were fixed for the left tone
(50% chance of reward for the left hole choice, 0% for right hole
choice) and the right tone (0%, 50%). Reward probabilities for the
choice tone were varied in a block-wise manner among the four set-
tings: (L90%, R50%), (50%, 90%), (50%, 10%), and (10%, 50%).

Surgery. After rats mastered the free-choice task, they were anesthe-
tized with pentobarbital sodium (50 mg/kg, i.p.) and placed in a stereo-
taxic frame. The skull was exposed and holes were drilled in the skull over
the recording site. Three drivable electrode bundles were implanted into
DLS in the left hemisphere (0.7 mm anterior, 3.8 mm lateral from
bregma, 4.0 mm ventral from the brain surface), DMS in the left hemi-
sphere (0.4 mm posterior, 2.0 mm lateral from bregma, 3.2 mm ventral

from the brain surface), and VS in the right hemisphere (1.7 mm ante-
rior, 1.7 mm lateral from bregma, 6.0 mm ventral from the brain sur-
face). An electrode bundle was composed of eight Formvar-insulated, 25
�m bare diameter nichrome wires (A-M Systems) and was inserted into
a stainless-steel guide cannula (0.3 mm outer diameter; Unique Medi-
cal). Tips of the microwires were cut with sharp surgical scissors so that
�1.5 mm of each tip protruded from the cannula. Each tip was electro-
plated with gold to obtain an impedance of 100 –200 k� at 1 kHz. Elec-
trode bundles were advanced by 125 �m per recording day to acquire
activity from new neurons.

Electrophysiological recording. Recordings were made while rats per-
formed fixed- and free-choice tasks. Neuronal signals were passed
through a head amplifier at the head stage and then fed into the main
amplifier through a shielded cable. Signals passed through a bandpass
filter (50�3000 Hz) to a data acquisition system (Power1401; CED),
by which all waveforms that exceeded an amplitude threshold were
time-stamped and saved at a sampling rate of 20 kHz. The threshold
amplitude for each channel was adjusted so that action potential-like
waveforms were not missed while minimizing noise. After a recording
session, the following off-line spike sorting was performed using a
template-matching algorithm and principal component analysis by
Spike2 (Spike2; CED): recorded waveforms were classified into sev-
eral groups based on their shapes, and a template waveform for each
group was computed by averaging. Groups of waveforms that gener-
ated templates that appeared to be action potentials were accepted,
and others were discarded. Then, to test whether accepted waveforms
were recorded from multiple neurons, principal component analysis
was applied to the waveforms. Clusters in principal component space
were detected by fitting a mixture Gaussian model, and each cluster
was identified as signals from a single neuron. This procedure was
applied to each 50 min data segment; and if stable results were not
obtained, the data were discarded.

Then, gathered spike data were refined by omitting data from neurons
that satisfied at least one of the five following conditions: (1) The ampli-
tude of waveforms increased �150% or decreased �50% during the
recording session. (2) The amplitude of waveforms was �7� the SD of
background noise. (3) The firing rate calculated by perievent time histo-
grams (PETHs) (from �4.0 s to 4.0 s with 100 ms time bin based on the
onset of cue tone, the exit of the center hole, or the entrance of the left or
right hole) was �1.0 Hz for all time bins of all PSTHs. (4) The firing rate
represented by EASHs (see below) with 10 ms time bins smoothed by
Gaussian filter with � � 10 ms (see Fig. 3D–I, black) was �1.0 Hz at any
time bin. (5) The estimated recording site was considered to be outside
the target. Furthermore, considering the possibility that the same neuron
was recorded from different electrodes in the same bundle, we calculated
cross-correlation histograms with 1 ms time bins for all pairs of neurons
that were recorded from different electrodes in the same bundle. If the
frequency at 0 ms was 10� larger than the mean frequency (from �200
ms to 200 ms, except the time bin at 0 ms) and their PETHs had similar
shapes, either one of the pair was removed from the database. After this
procedure, to extract phasically active neurons (PANs; putative medium
spiny neurons), the proportion of time-spent intervals (ISIs) that was �1 s
(PropISIs �1 s) was calculated for each neuron (Schmitzer-Torbert and Re-
dish, 2004). Then, the neurons for which PropISIs �1 s was �0.4 were
regarded as PANs.

Histology. After all experiments were completed, rats were anesthe-
tized as described in the surgery section, and a 10 �A positive current was
passed for 30 s through one or two recording electrodes of each bundle to
mark the final recording positions. Rats were perfused with 10% forma-
lin containing 3% potassium hexacyanoferrate (II), and brains were care-
fully removed so that the microwires would not cause tissue damage.
Sections were cut at 60 �m on an electrofreeze microtome and stained
with cresyl violet. Final positions of electrode bundles were confirmed
using dots of Prussian blue. The position of each recorded neuron was
estimated from the final position and the moved distance of the bundle of
electrodes. If the position was outside DLS, DMS, or VS, recorded data
were discarded.

Decision trees. To estimate a decision tree for choice tones (see Fig. 2D),
sequences of choice behavior in choice-tone trials were extracted. We
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denote the action in the t th choice trial as a	t
 � �L, R�, the reward as
r	t
 � �0, 1�, and the experience as follows:

e	t
 � 	a	t
, r	t

 � �L1, L0, R1, R0}.

The conditional probability of making a left choice given the preceding
sequence of experiences is estimated by the following:

P̂	a	t
 � L�e	t � 1
, e	t � 2
,…, e	t � d



�
NL	e	t � 1
, e	t � 2
,…, e	t � d



NL	e	t � 1
, e	t � 2
, …, e	t � d

 � NR	e	t � 1
, e	t � 2
, …, e	t � d


,

where NL	e	t � 1
, e	t � 2
,…, e	t � d

 and NR	e	t � 1
, e	t � 2
,…,
e	t�d
)are the number of occurrence of the left (L) and right (R) actions,
respectively, after the experience of 	e	t � 1
, e	t � 2
,…, e	t � d

. d is
the number of previous trials taken into consideration. In this study,
conditional probabilities of left choices were calculated for all possible
combinations for d � 1 and d � 2. In the same way, to estimate a decision
tree for a left or right tone, sequences of choice behavior in left-tone- or
right-tone-trials (both in single fixed-choice blocks and in double fixed-
choice blocks) were used, respectively (for more detail, see Ito and Doya,
2009).

Evaluation of decision-making models. Any decision-making models for
a single stimulus (state) and binary choice (action) can be defined by the
conditional probability of a current action, given past experiences as follows:

PL	t
 � P	a	t
 � L�e	1 : t�1

,

where e(1 : t � 1) is a simple description of e(1), e(2), …, e(t � 1).
Behavioral data are composed of a set of sequences (sessions) of actions
and rewards. If necessary, we use the index l for the index of sessions, for
example, a{l}(t). The number of trials for session l is represented by Tl,
and the number of sessions is L.

To fit the parameters to the choice data and evaluate the models, we
used the likelihood criterion, which is the probability that the
observed data were produced by the model. The likelihood can be
normalized, so that it equals 0.5 when predictions are made with
chance-level accuracy (PL(t) � 0.5 for all t). The normalized likeli-
hood is defined by the following:

z � ��
l�1

L ��
t�1

Tl

z�l�	t
��
1

�
l�1

L

Tl

,

where z{l}(t) is the likelihood for a single trial as follows:

z�l�	t
 � � PL	t
 if a�l� 	t
 � L
1 � PL	t
 if a�l� 	t
 � R .

The (normalized) likelihood can be regarded as the prediction accu-
racy, namely, how accurately the model predicts actions using past
experiences. Generally, models that have a larger number of free pa-
rameters can fit the data more accurately and show a higher likeli-
hood. However, these models may not be able to fit new data due to
overfitting. For a fair comparison of models, choice data were divided
into training data (101 sessions) and test data (101 sessions). Free
parameters of a model were determined by maximizing the likelihood
of the training data. Then, the model was evaluated by the likelihood
or the normalized likelihood of test data (holdout validation).

Markov models. Markov models are the simplest nonparametric mod-
els. They predict an action from experiences in the past d trials. For all
possible sequences of actions and rewards in d trials, different parameters
defining an action probability were assigned as follows:

PL	t
 � we	t�d:t�1
,

where w represents the free parameters (for parameter search, see Ito and
Doya, 2009). Markov models provide a useful measure to objectively
evaluate other models.

DFQ-learning model. The DFQ-learning model (Ito and Doya, 2009) is
an extension of the Q-learning models. Action values Qi, which are esti-

mates of the rewards from taking an action i � �L, R}, are updated by
the following:

Qi	t
 � � 	1 � �1
Qi	t � 1
 � �1�1 if a	t � 1
 � i, r	t � 1
 � 1
	1 � �1
Qi	t � 1
 � �1�2 if a	t � 1
 � i, r	t � 1
 � 0

	1 � �2
Qi	t � 1
 if a	t � 1
 	 i

where �1 is the learning rate for the selected action, �2 is the forgetting
rate for the action not chosen, �1 represents the strength of reinforce-
ment by reward, and �2 represents the strength of the aversion resulting
from the no-reward outcome. This set of equations can be reduced to
standard Q-learning by setting �2 � 0 (no forgetting for actions not
chosen) and �2 � 0 (no aversion from a lack of reward). The FQ model is
a version introducing the restriction �1 � �2. Using the action values, the
prediction of the choice at trial t was given by the following:

P	a	t
 � L
 �
1

1 � exp�� 	QL	t
 � QR	t

�
. (1)

We considered cases of fixed and time-varying parameters. For fixed
parameter models, a set of parameters �1, �2, �1, and �2 were free param-
eters, which were assumed to be constant for all sessions. For time-
varying parameters, �1, �2, �1, and �2 were estimated in each trial,
assumed to vary according to the following:

� j	t
 � � j	t � 1
 � 
 j for j � �1, 2�

�j	t
 � �j	t � 1
 � �j for j � �1, 2�,

where 
j and �j are noise terms drawn independently from a Gaussian
distribution N(0, ��

2) and N(0, ��
2), respectively, and �� and �� are free

parameters that control the magnitude of change. The predictive distribu-
tion P	h	t
�e	1: t � 1

 of parameters h � 
QL, QR, �1, �2, �1, �2� given
past experiences e(1: t � 1) was estimated using a particle filter (Samejima et
al., 2005; Ito and Doya, 2009). The action probability PL(t) was obtained
from Equation 1 with the mean of the predictive distribution of QL(t) and
QR(t). In this study, 5000 particles were used for the estimation.

Event-aligned spike histogram (EASH). In our choice task, six task
events were defined: entry into the center hole (E1), onset of the cue tone
(E2), offset of the cue tone (E3), exit from the center hole (E4), entry into
the left or right hole (E5), and exit from the left or right hole (E6). The
interval between task events varied by trials. To align task event timings
for all trials, EASHs were proposed. First, the average duration for each
event interval was calculated; from E1 to E2 (Phase 2) � 0.75 s, E2 to E3
(Phase 3) � 1.50 s, E3 to E4 (Phase 4) � 0.54 s, E4 to E5 (Phase 5) �
0.76 s, and E5 to E6 (Phase 6) � 0.38 s. Then, spike timings during each
event interval for each trial were linearly transformed into a correspond-
ing averaged event interval. The number of spikes in each event interval
was preserved. Furthermore, we defined time points E0 (2 s before E1)
and E7 (2 s after E8) to define Phase 1 (from E0 to E1) and Phase 7 (from
E6 to E7). The transformation described above was not applied to spike
timings in Phases 1 and 7 because the durations of these Phases were not
changed by trials. In this way, a regular raster plot (see Fig. 3B, top) was
transformed into an event-aligned raster plot (see Fig. 3C, top). Then, by
taking a time histogram with 10 ms bins of the transformed raster plot,
EASH was obtained (see Fig. 3C, bottom).

Mutual information. To elucidate when and how much information
from each event, such as state, action, reward, was coded in neuronal
activity, the mutual information shared between firing and each event
was calculated using the method described by Ito and Doya (2009). For a
certain time window in each trial, we defined a neuronal activity as F and
a task event as X. F is a random variable taking f1, f2, f3, or f4 for each trial,
which represents the level of firing rate. X is a random variable taking x1

or x2, corresponding to chosen action, left or right, respectively, for the
action information (mutual information between firing rate and action).
For the state information, x1 and x2 correspond to fixed-choice and
free-choice blocks, and for the reward information, x1 and x2 correspond
to rewarded and unrewarded choices, respectively. Mutual information
shared by F and X is defined by the following:
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I	F, X
 � �
i�1

4 �
j�1

2

p	fi, xj
 log
p	 fi, xj


p	 fi
p	xj

.

For each neuron, mutual information (bits/s) was estimated (for more
detail, see Ito and Doya, 2009) for every 100 ms time bin of an EASH,
using whole trials, including single fixed-, double fixed-, and free-choice
blocks (see Fig. 5 A, C,F ). To test whether the averaged mutual informa-
tion (see Fig. 5 B, D, E, G) was significant, the threshold indicating signif-
icant information ( p � 0.01) was obtained in the following manner. A
binary event, x1 or x2, was generated randomly for each trial, and the
mutual information between this random event and spikes was calcu-
lated for all neurons. Then the mutual information was averaged over
each region. This calculation was repeated 100 times with new random
events. Then the second largest mutual information for each time win-
dow was regarded as the threshold indicating significant information.

Regression analysis. We conducted multiple linear regression analysis
to capture the information coded in neuronal firing. Because there are
various candidates for explanatory variables, selecting a set of explana-
tory variables is an important issue. A fitting model using many param-
eters tends to show low fitting error but can result in overfitting.
Furthermore, if some explanatory variables in a regression model are
correlated, a regression analysis tends to fail to detect these variables,
resulting in a Type II error. In the present study, we used the Bayesian
information criterion (BIC) to select a set of explanatory variables from
the full model (2) (described in Results). BIC can be regarded as a fitting
measure taking into account the penalty for the number of parameters in
the model. Assuming that the model errors �(t) are independent and
identically distributed according to a normal distribution, the BIC is
given by the following:

BIC � N log	�̂2
 � k log	N
,

where N is the amount of data, k is a number of the parameters (the
number of 
), and �̂2 is the error variance defined by the following:

�̂2 �
1

N�
t�1

N

��	t
� �
1

N�
t�1

N

�y	t
 � ŷ	t
�.

Here, ŷ	t
 is a prediction from the model in which the parameters 
i are
tuned so that �̂2 is minimized. If a model shows a smaller BIC, it means
that the model is better. Because the full regression model (2) includes six

variables (including the constant variable for 
0), we can consider 2 6

models for all combinations, regardless of whether explanatory variables
are included. We calculated the BIC for all combinations, and then we
selected a set of explanatory variables that showed the smallest BIC.
Then, we tested the statistical significance of each regression coefficient
in the selected model using the regular regression analysis. If p � 0.01, the
corresponding variable was regarded as being coded in the firing rate.
This variable selection was conducted independently for each neuron
and for each time bin.

Results
We recorded neuronal activity from DLS, DMS, and VS of rats
(n � 7) performing fixed-choice and free-choice tasks in an ex-
perimental chamber (Fig. 1A). After a rat poked its nose into the
center hole, one of three cue tones (left tone, right tone, and
choice tone) was presented (Fig. 1B,C). Reward probabilities
were varied depending on the cue tone and the chosen action
(Fig. 1C). Reward probabilities were fixed for the left tone (50%
for left choice, 0% for right choice) and the right tone (0%, 50%).
Reward probabilities for the choice tone were varied in a block-
wise manner out of the four settings: (90%, 50%), (50%, 90%),
(50%, 10%), and (10%, 50%). In the first and second blocks, the
left and right tones were presented, respectively (single fixed-
choice block) (Fig. 2A). In the third and fourth blocks, the left and
right tones were randomly presented upon each trial (double
fixed-choice blocks). In the fifth to eighth blocks, only the choice
tone was presented (free-choice blocks) (Fig. 2A). Four reward
probability pairs (Fig. 1C) were randomly assigned to the four
blocks. The same block was held until at least 20 choice trials were
completed (40 trials for double fixed-choice blocks). A block was
completed when the choice frequency of the action associated
with the higher reward probability reached 80% during the last 20
trials (40 trials for both tones in double fixed-choice blocks) and
a new block was started with no explicit cue presented to the rats.
To assess sensitivity to the change of reward probability, an ex-
tinction test consisting of 5 trials with no reward was conducted
for the left and right tones between the third and fourth double

Figure 1. Task design. A, Schematic illustration of the experimental chamber. The chamber was equipped with three holes for nose poking (L, left hole; C, center hole; R, right hole) and a pellet
dish (D). B, Time sequence of choice tasks. After a rat poked its nose into the center hole, one of three cue tones was presented. The rat had to maintain the nose-poke in the center hole during
presentation of the cue tone. After offset of the cue tone, the rat was required to perform a nose-poke in either the left or right hole and then either a reward tone or a no-reward tone was presented.
The reward tone was followed by delivery of a sucrose pellet in the food dish. The reward probability was determined by the given cue tone and the chosen action. C, The reward probabilities for cue
tones and actions. For the left tone, the reward probabilities were (left, right) � (50%, 0%). For the right tone, the probabilities were (left, right) � (0%, 50%). These probabilities were fixed
throughout the experiments. For the choice tone, reward probabilities were varied: one of four pairs of reward probabilities [(left, right) � (90%, 50%), (50%, 90%), (50%, 10%), and (10%, 50%)]
were used for each block.
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Figure 2. Rat performance in fixed-choice and free-choice blocks. A, A representative example of a rat’s performance. Blue, red, and orange vertical lines indicate individual choices for left, right,
and choice tones, respectively. A sequence of blocks consisted of two single fixed-choice blocks (left- or right-tone trials), two double fixed-choice blocks (mix of left- and (Figure legend continues.)
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fixed-choice blocks and for the choice tone between sixth and
seventh free-choice blocks. This block sequence was repeated two
or three times in one day recording session.

Numbers of trials required to complete one block were
22.56 � 8.70 for single fixed-choice blocks, 47.11 � 20.29 for
double fixed-choice blocks, and 41.10 � 27.58 for free-choice
blocks, (mean � SD). Here, we report the results of all 78,107
trials in 86 recording sessions, performed by seven rats, consisting
of 12,185 single fixed-choice trials (16.4%), 22,234 double fixed-
choice trials (30.0%), 36,292 free-choice trials (48.9%), and 3505
extinction test trials (4.7%).

Behavioral performance
First, we tested whether action selection was sensitive to the re-
ward omission in fixed-choice blocks and free-choice blocks. In
the extinction tests (Fig. 2B,C), whereas the choice probabilities
for the free-choice tone shifted toward 50% following the first
nonrewarded trial (orange lines, Fig. 2B), choice probabilities for
the left and right tones remained biased even after five no-reward
trials (Fig. 2B, blue and red lines), suggesting a low sensitivity to
the change in reward contingency. Choice probabilities during
extinction tests were significantly different between the left and
right tones and the choice tone (Fig. 2C; p � 0.0001, � 2 test).

Decision trees (Fig. 2D–F) indicate how choice probabilities
changed with previous action and reward experiences. The deci-

sion tree for choice tones expands symmetrically (Fig. 2D), indi-
cating that action selection was sensitive to past experiences, as in
our previous study of free-choice trials (Ito and Doya, 2009). On
the other hand, action probabilities for the left or right tones (in
both single and double fixed-choice blocks) are biased toward 1
(Fig. 2E) or 0 (Fig. 2F), respectively, indicating insensitivity to
past experiences.

These results suggest that the action selection in the free-
choice blocks was more flexible and action selection in the fixed-
choice blocks more inflexible. The action in the fixed-choice
blocks might be related to habitual action (Barnes et al., 2005;
Bayley et al., 2005; Broadbent et al., 2007). In recent years, the
term “habitual action” is often used as a contrast of “goal-
directed action”; and in this context, these actions are distin-
guished by outcome devaluation tests and/or contingency
degradation tests (Yin et al., 2004, 2005a, b, 2006; Balleine et al.,
2007; Balleine and O’Doherty, 2010). It requires further experi-
ments to test whether the behaviors in the fixed- and free-choice
blocks in the present task can be regarded as goal-directed and
habitual actions, respectively.

We then analyzed choice sequences in the free-choice task
using value-based reinforcement-learning models (Ito and Doya,
2009). We used DFQ-learning (Q-learning with differential for-
getting) models, in which action values Qi(t) for i � {L or R} were
updated by the previous action and reward with four parameters:
the learning rate �1 for the action chosen, the forgetting rate �2

for the action not chosen, the strength of reinforcement �1 of a
reward, and the strength of aversion �2 from no-reward. DFQ-
learning models are experience based, model-free algorithms that
cannot reproduce goal-directed behaviors.

We consider cases of fixed parameters and time-varying pa-
rameters. For fixed parameters, these were assumed to be con-
stant for all sessions. For time-varying parameters, these were
assumed to vary with drift-rate parameters �a and �k, and esti-
mated along with time courses of action values by dynamic
Bayesian inference (Ito and Doya, 2009). We tested six subtypes
of DFQ models (Q-learning with �2 � � 2 � 0, FQ-learning with
�1 � �2, and full DFQ learning for fixed or time-varying param-
eters) and found that the FQ-learning model with time-varying
parameters predicted rat behaviors best (Fig. 2G). Prediction ac-
curacy was higher than that of Markov models (generic time-
series prediction models). The dth Markov model is a purely
descriptive model, which predicts an action from the past limited
experiences in the d last trials. This model fitting result was al-
most the same as in our previous study (Ito and Doya, 2009). Rat
actions were predicted by the FQ-model with time-varying pa-
rameters (�1 and �2; � is not shown), and estimated action values
for left (QL) and right (QR) (Fig. 2H), which were used for the
analysis of neuronal activity (see Figs. 7 and 8).

We also tested a regular actor-critic model with constant vari-
ables (Sutton and Barto, 1998), but the normalized likelihood of
test data was close to the chance level (0.5080; data not shown).
For actor-critic models, we can consider numerous variations of
actor models; however, we could not find adequate actor-critic
models that fit the rats’ behavior better than the Q-learning mod-
els with constant variables.

Activity patterns of phasically active neurons
We recorded neuronal activity in DLS, DMS, and VS of rats per-
forming fixed- and free-choice tasks. Each rat was wired with
three bundles of eight microwires. Bundles were progressed by
125 �m between recording sessions so that data from new neu-
rons were acquired in each session. Stable recordings were made

4

(Figure legend continued.) right-tone trials), and four free-choice blocks with different reward
probabilities (choice-tone trials). Bottom, Blue, red, and orange represent the probability of a
left choice for each tone (average of the last 20 trials). When the choice frequency of the action
that was associated with higher reward probability reached 80%, the block was changed. “e”
indicates an extinction test, consisting of 5 trials without reward delivery. This block sequence
was repeated two or three times in one day recording sessions. B, The average left-choice
probability during extinction tests (five unrewarded trials for each cue tone) with 95% confi-
dence intervals (shaded bands). Left choice probabilities for left tones, right tones, and choice
tones are plotted in blue, red, and orange colors, respectively. Left-choice probabilities for
choice tone trials were separated by the optimal action in the previous free-choice block (the
upper graph for left, the lower graph for right). C, Averages of left-choice probabilities over five
extinction trials for left tone (blue), choice tone (orange), and right tone (red) with 95% confi-
dence intervals. Top and bottom orange plots represent the average of the upper and lower
orange graphs, respectively in B. ***p � 0.0001 (� 2 test). D, The decision tree for choice tones,
the left choice probability for all possible experiences in one and two previous trials. Four types
of experiences in one trial [left or right times rewarded (1) or no reward (0)] are represented by
different colors and line types. For instance, left probability after L1 is indicated by the right
edge of a blue solid line (green arrow), and left probability after L1 R0 (L1 and then R0) is
indicated by the right edge of a red broken line connected to the blue solid line (brown arrow).
Values of trials � 0 (x-axis) represent the left choice probability for all trials. Shaded bands
indicate 95% confidence intervals. E, F, Decision trees for left tones and right tones, respec-
tively. Conditional left choice probabilities for left-tone (E) and right-tone trials (F) in single-
and double-fixed blocks are represented in the same manner as in D. G, Accuracy of each model
in predicting rat choices. Prediction accuracy was defined by the normalized likelihood of test
data. Free parameters of each model were determined by maximization of the likelihood of
training data. Markov d stands for dth Markov model, a standard prediction model from the past
d trials. Q, FQ, and DFQ indicate variations of reinforcement learning models. Numbers followed
by the name of models indicate the numbers of free parameters of each model. “const” means
that the parameters (�1, �2, �1, and �2) were assumed to be constant for all sessions, and
“variable” means that the parameters were assumed to vary. **p � 0.01, significant difference
from the prediction accuracy of FQ-learning (variable) (paired-sample Wilcoxon’s signed rank
tests). *p � 0.05, significant difference from the prediction accuracy of FQ-learning (variable)
(paired-sample Wilcoxon’s signed rank tests). H, An example of predictions of rat choices based
on the FQ-model with time-varying parameters. Top, Green line indicates PL(t) � L), the prob-
ability that a rat would select left at trial t, estimated from the rat’s past experiences
e(1), e(2), …, e(t�1). Vertical line indicates the rat’s actual choice in each trial. Top lines and
bottom lines indicate left and right choices, respectively. Black and gray represent reward and
no-reward trials, respectively. Middle, Estimated action values, QL and QR. Bottom, Estimated
�1 and �2.
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from 260 neurons in DLS, 178 neurons in DMS, and 179 neurons
in VS from seven rats (Fig. 3A) (see Materials and Methods).
Among these, 190, 105, and 119 neurons from DLS, DMS, and
VS, respectively, were classified as PANs (putative medial spiny
projection neurons) based on statistics of interspike intervals
(Schmitzer-Torbert and Redish, 2004) and waveforms (see Ma-
terials and Methods). Only data from these PANs were used for
the following analyses.

Intervals of time between task events (the commencement of
center hole poking, the onset of cue tone, the offset of cue tone,

the termination of center hole poking, the start of L/R hole pok-
ing, and the end of L/R hole poking) varied across trials (Fig. 3B).
To develop an overall neuronal activity profile despite this timing
variability, we created event-aligned spike histograms (EASHs)
(Fig. 3C). An EASH is derived by linearly scaling time intervals
between task events in each trial to the average interval across all
trials (see Materials and Methods). The peak at the start of L/R
poking is clearer in the EASH than in the PETH aligned by the
timing of center hole entry (Fig. 3B,C). We defined the intervals
between task events as trial Phases 1 through 7 (Fig. 3C). DLS,

Figure 3. Representative activity patterns of phasic active neurons in the striatum. A, Tracks of accepted electrode bundles for all rats are indicated by rectangles. Neurons recorded from blue,
green, or red rectangles were classified as DLS, DMS, and VS neurons, respectively. Each diagram represents a coronal section referenced to the bregma (Paxinos and Watson, 1998). B, A raster
showing spikes of a DLS neuron and corresponding events in free-choice and forced-choice trials, which are aligned with the entry time into the center hole. Bottom, PETH with 10 ms bins for this
neuron. C, A corrected raster plot and an event-aligned spike histogram (EASH) with 10 ms bins, derived by linearly scaling time intervals between task events in each trial to the average intervals
across all trials. Numbers of spikes between events are preserved. D–I, EASHs for representative neurons from DLS (D, E), DMS (F, G), and VS (H, I). Top, Four different blue and red lines indicate the
EASHs from four different pairs of selected actions and reward outcomes. Bottom, Purple and orange lines indicate EASHs for fixed-choice blocks and free-choice blocks, respectively. Black lines
indicate averages of EASHs for all trials. All EASHs (10 ms bins) are smoothed by Gaussian kernel with 30 ms SD. D, Same neuron shown in B and C.
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DMS, and VS neurons were activated at different task events and
phases, such as the start of center hole poking (Fig. 3D), and in
different trial phases, such as between the exit from the center
hole and the start of left or right hole poking (trial Phase 5, exe-
cution of action) (Fig. 3D,F,G). Most neurons changed their
activity patterns depending on upcoming actions, selected ac-
tions, reward outcomes, and types of choice blocks. For instance,
DLS neurons (Fig. 3D and 3E) changed their activities before
action execution depending on whether the left or right hole was
to be selected. Activities of DMS and VS neurons were modulated
by both executed actions and reward outcomes (Fig. 3F,H).
DMS and VS neurons (Fig. 3G and Fig. 3I, respectively) showed
different activities in fixed-choice blocks and free-choice blocks. In-
terestingly, Roesch et al. (2009) conducted similar fixed- and free-
choice tasks using odor stimuli, and reported that population
activity pattern in VS was the same between these tasks. A possible
reason for this difference is that Roesch et al. (2009) randomly se-
lected fixed-choice and free-choice in every trial, while in our task
these trials were separated in different blocks (Fig. 2A).

To develop an overview of neural activity profiles in DLS,
DMS and VS, we visualized normalized EASHs of all PANs (Fig.
4A), where indices of neurons are sorted by their activation peaks.
For each trial phase, we found neurons that increased their activ-
ity in all three subareas, but in different proportions (Fig. 4B).
The proportion of neurons that increased their activity as a rat
approached the center hole (trial Phase 1) was �60% in VS,
significantly larger than in DLS and DMS (p � 0.0015 and p �
0.0001, respectively, � 2 test). After a rat’s exit from the center hole

until its entrance into the L/R hole (trial Phase 5), �60% of DMS
neurons were activated, which was significantly larger than the
proportions of DLS and VS (p � 0.00021 for DLS, p � 0.040 for
VS, � 2 test). During the trial phase of receiving a sugar pellet (trial
Phase 7), the proportion of activated neurons was significantly
larger in VS than in DLS (p � 0.0040, � 2 test). Furthermore, VS
neurons maintained activation longer (more than half of peak
activity) than DLS (p � 0.0001, Mann–Whitney U test) and DMS
neurons (p � 0.0001, Mann–Whitney U test), and DLS neurons
had shorter durations of activation than VS neurons and DMS
neurons (p � 0.0001 for VS, p � 0.040 for DMS, Mann–Whitney
U test) (Fig. 4C).

Information coding of state, action, and reward
To elucidate when and how much information about each task
event was represented in each subarea of the striatum, the
amount of mutual information between neuronal firing and each
task event was calculated (Panzeri and Treves, 1996; Ito and
Doya, 2009).

State information (fixed- or free-choice block) was strongest
in VS, especially, during the approach to the center hole (trial
Phase 1) (p � 0.0001 for DLS, p � 0.022 for DMS, Mann–Whit-
ney U tests) (Fig. 5A,B). During this phase more than 60% of VS
neurons were activated (trial Phase 1, Fig. 4A,B). Action infor-
mation (left or right hole choice) started increasing during the
tone presentation (trial Phase 3) specifically in DLS (Fig. 5C–E).

Regarding action information, Kim et al. (2009) reported that
slight, but significant upcoming-action signals were represented

Figure 4. Activity pattern in the striatum. A, Normalized activity patterns of all recorded PANs from DLS (N � 190), DMS (N � 105), and VS (N � 119). An activity pattern for each neuron was
normalized so that the maximum of the EASH was 1 and represented by pseudo-color (values from 0 to 1 are represented from blue to red). Indices of neurons were sorted based on the time that the
normalized EASH first surpassed 0.5. Seven trial phases were defined based on task events. B, Preferred trial phases for each subarea. The proportion of neurons, the normalized EASHs of which
reached 0.5 during each trial phase. **p � 0.01, *p � 0.05 (� 2 test). C, The averaged activity ratio of striatal neurons for each subarea. The activity ratio (the duration, in which the normalized EASH
was �0.5, divided by the duration of the corresponding trial phase) was calculated for each trial phase. Then the proportions of the activity duration were averaged over the trial phases. **p � 0.01,
*p � 0.05, (Mann–Whitney U test).
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Figure 5. Information coding of state, action, and reward. A, State information coded in each neuron. Mutual information between firing rate for each 100 ms time bin of EASH and state
(fixed-choice blocks or free-choice blocks) (bit/s) is shown by pseudocolor. Indices of neurons are the same as in Figure 4A. B, Averaged state information for the neurons in each subarea. C, Action
information (left or right hole choice), calculated using both fixed- and free-choice blocks. D, Averaged action information over the neurons in each subarea. E, Action information before execution
of action (close-up of D). F, Reward information (delivered or not), calculated using both fixed- and free-choice blocks. G, Averaged reward information over the neurons in each subarea. B, D, E, G,
Black lines indicate thresholds with significant information ( p � 0.01). Shaded bands represent SE.
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in DS but not in VS. In this study, we
found consistent and more detailed action
representations. Action information dur-
ing the 100 ms before the offset of the cue
tone was significantly higher in DLS than
in DMS and VS (p � 0.0175 for DMS, p �
0.00091 for VS, Mann–Whitney U tests).
Immediately after the offset of the cue
tone (trial Phase 4) action information
in DMS rapidly increased and became
higher than that in DLS and VS during the
100 ms before the offset from the center
hole, while information in VS was weakest
(p � 0.16 for DLS, p � 0.0027 for VS, p �
0.0001 for DLS vs VS, Mann–Whitney U
tests) (Fig. 5D,E). During action execu-
tion (trial Phase 5), the action informa-
tion was the highest in DMS (p � 0.0001
for DLS, p � 0.0001 for VS, p � 0.0001
for DLS vs VS, Mann–Whitney U tests)
(Fig. 5D).

Reward information (delivered or not)
started rising simultaneously in all subar-
eas after the start of L/R poking, when the
reward or no-reward tone was presented
(trial Phase 6, Fig. 5G). Reward informa-
tion was strongest in VS, followed by
DMS, and reward information in DLS was
significantly less than that in VS and DMS
(p � 0.012 for DLS vs DMS, p � 0.0001
for DLS vs VS, p � 0.13 for DMS vs VS,
Mann–Whitney U tests). We also found
similar patterns in the proportion of
event-coding neurons, namely, how many
neurons changed their firing rates for se-
lected actions, reward outcomes, and the
different choice blocks (states) (Fig. 6).
For instance, the proportion of state-
coding neurons during cue presentation
(trial Phase 3) was the largest in VS, and
the proportion of action-coding neu-
rons was the largest in DLS before action
execution and in DMS during action ex-
ecution. The proportion of reward-
coding neurons was the largest in VS
during the L/R poking (Fig. 6D). These
proportions in the population were sim-
ilar in fixed-choice and free-choice
blocks (Fig. 6 B, C).

Model-based analysis of action value
and state value coding
We then conducted a model-based analy-
sis of neural coding (Corrado and Doya,
2007; O’Doherty et al., 2007) using the
FQ-learning model with time-varying parameters that best fit rat
behaviors during free-choice blocks (Fig. 2G,H) (Ito and Doya,
2009). We conducted multiple linear regression analysis using
the following regression model:

y	t
 � 
0 � 
Lt � 
aa	t
 � 
rr	t
 � 
a�a	t � 1


� 
r�r	t � 1
 � 
QLQL	t
 � 
QRQR	t
 � �	t
, (2)

where y(t) is the number of spikes in trial t at a certain time bin. 
i

is the regression coefficient, a(t) is actions (1 for left, 2 for right),
and r(t) is reward (1 for reward, 0 for no-reward). a(t � 1) and
r(t � 1) are action and reward in the previous trials, respectively.
QL(t) and QR(t) are action values estimated using FQ-learning
model, and �(t) is an error term. The second term, 
Lt, was in-
serted to absorb any increasing or decreasing trend in the firing

Figure 6. Percentages of neurons coding state, action, and reward. A, Time bins during which neuronal activities were com-
pared for each event. B, C, Percentages of neurons that showed significant selectivity (Mann–Whitney U test, p � 0.01) for each
event in fixed-choice blocks (B) and free-choice blocks (C). Action command (AC) and action-coding neurons are defined as neurons
that show significantly different firing rates in left- and right-selected trials for 500 ms before or after action execution (offset of
center-hole poking), respectively. Reward1 and Reward2 are reward-coding neurons that show reward selectivity for 500 ms
before and after offset of L/R poking, respectively. D, Percentages of event-coding neurons detected by whole trials. State-coding
neurons are defined as neurons that showed different firing rates in fixed- and free-choice blocks. B–D, All populations are
significantly larger than the chance level (binomial test, p � 0.01). **p � 0.01, *p � 0.05, significant differences in percentages
between subareas (� 2 test). E, The tendency of preferences of event-coding neurons shown in D. Percentages of neurons that
showed higher activity in fixed-choice than in free-choice, in left-selected trials than in right-selected trials, or in rewarded trials
than in unrewarded trials, respectively, among each event-coding neuron. **p � 0.01, *p � 0.05, significant difference from 0
(Wilcoxon signed-rank test).
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rate during a session. How to select a set of explanatory variables
is an important issue in regression analyses. In this analysis, for
each neuron and for each time bin, we chose the set of explana-
tory variables from the full model (2) so that the BIC was mini-
mized (see Materials and Methods).

The firing rate of a DLS neuron (Fig. 7A) was significantly
correlated with the left action value QL during cue presentation
before action onset (trial Phase 3). Firing of DMS neurons (Fig.

7B) showed a negative significant correla-
tion with the left action value QL during
action execution (trial Phase 5). VS neu-
rons that had negatively correlated firing
with both left and right action values dur-
ing the approach to the center hole (trial
Phase 1), suggested state-value coding
(Fig. 7C). Firing of neurons in these 100
ms time bins changed in a remarkably
similar manner to the time courses of ac-
tion values and state values estimated
from animal behavior (Fig. 7A–C).

Substantial proportions of neurons in
DLS, DMS, and VS coded actions before
and after action execution (Fig. 8A). Kim
et al. (2013) reported that action in the
previous trial was strongly coded in DMS
through the entire trial period; and in our
experiment, although the previous action
signal in DMS seemed to be relatively
weak, a significant proportion of DMS
neurons coded previous actions during
action execution (trial Phase 5; Fig. 8B).
Substantial proportions of neurons in all
subareas coded rewards after the start of
L/R hole poking (Fig. 8C), and rewards in
the previous trial were also strongly coded
in all trial phases in all striatal regions (Fig.
8D), consistent with previous studies (Ito
and Doya, 2009; Kim et al., 2009, 2013).

Action-value coding neurons are de-
fined as neurons with activities signifi-
cantly correlated with either action value,
left (QL) or right (QR). Although signifi-
cant proportions of neurons in each sub-
area had action-value coding in all trial
phases, the proportion of action-value
coding neurons was highest in DMS dur-
ing action execution (Fig. 8E; p � 0.00058
for DLS, p � 0.081 for VS, Mann–Whit-
ney U test). The majority of these action
value-coding neurons in DMS repre-
sented QR, the action value for right hole
choice, and the proportion of neurons
coding QR during action execution was
significant larger in DMS than in DLS
(p � 0.00017, Mann–Whitney U test),
both of which were recorded from the left
hemisphere.

The strongest action value representa-
tion in DMS is consistent with our predic-
tion (I). We also found action-independent
value-coding neurons (state-value coding
neurons), which are defined as neurons
with activities significantly correlated

with both action values with the same sign. The proportion of
state-value coding neurons was the highest in VS in all trial
phases, especially in starting phase (trial Phase 1) and action ini-
tiation phase (trial Phase 4), the proportion was significantly
larger in VS than in DLS and DMS (p � 0.039 for DMS and p �
0.0027 for DLS, in trial Phase 1; p � 0.024 for DMS and p �
0.0045 for DLS, first half of Phase 4; Mann–Whitney U test) (Fig.
7F). We did not find significant numbers of policy-coding neu-

Figure 7. Model-based analysis of action value and state value. A, A DLS neuron showing the correlation with the action value
for left, QL. EASHs for trials with higher QL and lower QL are shown with green and gray lines, respectively (top left). Blue and red
rectangles represent significant neuronal correlations with each variable ( p � 0.01, t test) (bottom left). For QL and QR, blue and
red colors represent positive and negative correlations, respectively. For action, blue and red represent higher activity in left- and
right-selected trials, respectively. For reward, blue and red represent higher activity in rewarded and unrewarded trials. The firing
rate in the yellow time bins for each trial (gray lines) was smoothed with a Gaussian filter (black lines) (top right). QL, estimated by
the FQ model, is shown with gray lines, and the smoothed one is indicated with black lines (bottom right). B, A DMS neuron
showing the negative correlation with QL. C, An action-independent, value-coding (state-value coding) neuron in VS, showing the
negative correlation with both QL and QR.
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rons (those with significant correlations with both action values
with opposite signs), in any subarea or in any time bin (data not
shown).

Action-command information in fixed- and
free-choice blocks
To assess the roles of different subareas in the striatum in fixed-
and free-choice blocks, we compared action command coding in
the three subareas separately for four different task blocks; the
single fixed-choice block, the double fixed-choice block, the free-
choice block with higher reward probabilities [(L � 90%, R �
50%) and (50%, 90%)], and the free-choice block with lower
reward probabilities [(L � 50%, R � 10%) and (10%, 50%)] (Fig.
9). We calculated action information from the last 20 trials in
each block so that the estimation bias of the mutual information
was identical for all types of blocks. Action information in the

single and double fixed-choice blocks started to rise first in DLS
during cue presentation and then in DMS after cue offset (trial
Phase 4), and finally in VS after onset of action execution (trial
Phase 5) (Fig. 9A,B). Contrary to expectation, this temporal pat-
tern of action information was seen also in free-choice blocks
(Fig. 9C,D). There were no conditions in which the action com-
mand in DMS was stronger than in DLS.

We also compared the strength of action coding in different
blocks for each subarea (Fig. 10). In DLS, the action information
in single and double fixed-choice blocks started increasing imme-
diately after the onset of cue presentation (Fig. 10A). Action in-
formation in free-choice blocks with higher rewards increased
more slowly than that in fixed-choice blocks, and action infor-
mation in free-choice blocks with lower rewards appeared later
and was weaker. There were significant differences in action in-
formation between fixed-choice blocks and free-choice blocks in

Figure 8. The proportion of neurons coding action, previous action, reward, previous reward, action value, and state value. Proportions of neurons showing significant correlation with each
variable ( p � 0.01, t test) are shown for DLS, DMS, and VS. These neurons were detected by multiple linear regression analysis, which was conducted for 500 ms before and after the seven trial
events. Colored disks represent that the populations are significantly higher than the chance level ( p � 0.01, binominal test). Colored dots in the upper area indicate significant differences in the
proportions between subareas ( p � 0.05, Mann–Whitney U test). A, Action-coding neurons. B, Neurons coding action in previous trials. C, Reward-coding neurons. D, Neurons coding rewards in
previous trials. E, Action-value-coding neurons. Action-value-coding neurons are defined as neurons showing correlation with either QL or QR. F, Action-independent value-coding (state-value-
coding) neurons. These neurons are defined as neurons showing correlation with both QL and QR having the same sign.
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Figure 9. Action-command information in fixed- and free-choice blocks. Mutual information per seconds between action (upcoming action for Phases 2– 4, executing action for Phases 5 and 6),
and firing in the last 20 trials of four different blocks. A, Single fixed-choice blocks. B, Double fixed-choice blocks. C, Free-choice blocks with higher reward probabilities [(L � 90%, R � 50%) and
(50%, 90%)]. D, Free-choice blocks with lower reward probabilities [(L � 50%, R � 10%) and (10%, 50%)]. The plot of action information starts from a triangle indicating the time when the value
surpassed the significance level ( p � 0.01). Action information was calculated using a sliding time window of the preceding 500 ms (step size, 50 ms) to clarify after which task event the action
command signal increased.

Figure 10. Action-command information in DLS, DMS, and VS. A–C, Action information during single fixed-choice blocks (SF), double fixed-choice blocks (DF), the free-choice block with higher
reward probabilities (FH), and the free-choice block with lower reward probabilities (FL) averaged for DLS (A), DMS (B), and VS (C). D–F, Action information during free-choice blocks when the action
was the same as in the previous trials (stay), or when the action was switched from the previous action (switch). The plot of action information starts from a triangle indicating the time when the
value surpassed the significance level ( p � 0.01). Action information in this figure was calculated using a sliding time window of the preceding 500 ms (step size, 50 ms) to clarify after which task
event the action command signal was increased.
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trial Phase 3 (during the 500 ms before cue presentation) and trial
Phase 4 (during the 500 ms before center hole exit) (p � 0.00047
and p � 0.00037, respectively, paired-Mann–Whitney U test). In
DMS, action information was stronger in single and double
fixed-choice blocks than in free-choice blocks (Fig. 10B), similar
to that in DLS, with significant differences in trial Phases 3 and 4
(p � 0.040 for Phase 3, p � 0.0029 for Phase 4, paired-Mann–
Whitney U test). Action information in VS had a transient peak
during cue presentation only in single, fixed-choice blocks and
remained low until the onset of action execution (Fig. 10C) with
no significant differences between fixed- and free-choice blocks
in trial Phases 3 and 4 (p � 0.23 and p � 0.28, respectively,
paired-Mann–Whitney U test). While stronger action informa-
tion coding in fixed-choice blocks by DLS neurons is consistent
with our prediction (II), the same stronger action information in
fixed-choice blocks found also in DMS neurons is contrary to our
prediction (II).

We further analyzed the action command in free-choice
blocks depending on whether the action was the same as in the
previous trial (stay trials) or different (switch trials) (Fig. 10D–F).
In DLS, action information was stronger in stay trials than in
switch trials in trial Phase 3 (during the 500 ms before cue pre-
sentation) (p � 0.019, Mann–Whitney U test). In DMS, how-
ever, we could not find any difference in the action-command
signal between switch and stay trials.

Discussion
To clarify the distinct roles of DLS, DMS, and VS in decision
making, we recorded neuronal activity from these portions of the
striatum of rats performing a fixed-choice task and a free-choice
task. The analysis of phasically active neurons, which are thought
to be medial spiny neurons, revealed differences in the temporal
profiles of firing and information coding. When rats began the
tasks by approaching the center hole, more than half of VS neu-
rons increased their firing (Fig. 4A,B), and activities coded the
information of the task condition (fixed- or free-choice blocks)
(Figs. 5B and 6D) and a state value (Fig. 8F). When presentation
of the cue tone started, action information began to rise only in
DLS (Fig. 5E). Then, immediately after offset of the cue tone,
action information in DMS sharply increased (Fig. 5D,E). When
rats started moving to the left or right hole, action information
became higher in DMS than in DLS and VS, and the proportion
of action-value coding neurons increased specifically in DMS
(Fig. 8C).

Clear peaks of action-value information during action execu-
tion in DMS and state-value representation in VS are consistent
with our prediction (I). Contrary to our prediction (II), action
information before action execution was stronger in fixed-choice
blocks than in free-choice blocks in both DLS and DMS (Figs. 9
and 10). However, further analysis of free-choice blocks revealed
that action-command coding was stronger in stay trials than in
switch trials in DLS, although there was no significant difference
in DMS (Fig. 10D,E). This suggests relatively stronger involve-
ment of DLS in repetitive behaviors.

Action value and state value coding
Although neuronal correlation with action values has been re-
ported mainly in DS (Samejima et al., 2005; Pasquereau et al.,
2007; Lau and Glimcher, 2008; Hori et al., 2009; Kim et al., 2009;
Wunderlich et al., 2009), clear differences in action-value repre-
sentation among the subregions of the striatum have not been
detected (Kim et al., 2009, 2013; Stalnaker et al., 2010). In support
of the prediction (I), our analysis revealed that the highest signal

of action values occurred in DMS during action execution (Fig.
8E). This is consistent with the role of action values in realizing
flexible action selection. Regarding state values, consistent with
previous suggestions (O’Doherty et al., 2004; Atallah et al., 2007;
Takahashi et al., 2007, 2008), we observed neuronal correlation
with a state-value signal most strongly in VS. A significant pro-
portion of state-coding VS neurons were observed from the ap-
proaching period (trial Phase 1) to the action-initiation period
(trial Phase 4) (Fig. 8F), supporting the idea that VS plays the role
of the critic (Joel et al., 2002).

Different dynamics of action command in DLS and DMS
The information of upcoming action, namely, action command,
has been found in DS of monkeys performing a choice task (Pa-
supathy and Miller, 2005; Samejima et al., 2005; Pasquereau et al.,
2007). By contrast, in rodent studies, it has been reported that the
action-command signal in DS was relatively weak or not repre-
sented in spatial choice tasks (Kim et al., 2009, 2013; Thorn et al.,
2010; van der Meer et al., 2010). By contrast, Stalnaker et al.
(2010) reported clear action-command signal in DLS and DMS,
similar to our results. In both tasks, rats were required to keep
nosepoking during the cue presentation before action selection.
This immobile phase might be important to capture the action-
command signal.

In our task, the rat had to maintain its nose-poke in the center
hole until the offset of a cue tone before moving to the left or right
hole; otherwise, the trial was ended as an error trial without a
reward. Thus, this task required two processes. One was to wait
until the offset of the cue and the other was to select either left or
right hole for the given cue. Considering the temporal profile of
action-command coding (Fig. 5D,E), DLS and DMS appear to be
involved in parallel and competitive decision modules. DLS
might belong to an elementary decision module that rapidly se-
lects an action responding to the given cue, ignoring the waiting
process. DMS might belong to a comprehensive decision module,
which can take into account both waiting and selecting. We spec-
ulate that a decision module related to DMS attempted to main-
tain nosepoking, whereas another decision module related to
DLS attempted to respond. The action was realized when both
modules agreed after offset of the cue tone in successful trials (no
wait-error trials).

Action command in fixed- and free-choice blocks
In fixed-choice blocks, the rats kept responding to the same ac-
tion for each tone cue regardless of the outcome, whereas in
free-choice tasks the rats showed high sensitivity to reward omis-
sion and past experiences (Fig. 2B–F). From this result, we ex-
pected that action-command representation in DLS, which is
involved in habitual action, would be stronger in fixed-choice
blocks than in free-choice blocks, and this relation would be re-
versed in DMS, which is involved in flexible, goal-directed action.

However, in both DLS and DMS, the action-command signal
was significantly stronger in fixed-choice blocks than in free-
choice blocks (Fig. 10A,B). Stalnaker et al. (2010) conducted
similar tasks using odor cues and also reported that the action
command of DMS was stronger in forced-choice trials than in
free-choice trials. Furthermore, temporal patterns of action-
command signals of all subareas (Fig. 5D,E) were preserved
when these were calculated separately for fixed- and free-choice
blocks (Fig. 9). When we compared the action-command signal
in stay trials and switch trials in free-choice blocks, while action-
command coding was stronger in stay trials than in switch trials
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in DLS, we could not find stronger action-command coding in
switch trials in DMS (Fig. 10D,E).

These results suggest that DLS or DMS becomes dominantly
active in fixed- or free-choice tasks, respectively, is not correct.
Our results show that the computations in DLS and DMS are not
mutually exclusive but performed in parallel both in fixed- and
free-choice tasks. The downstream network might select the final
output depending on the task condition (Thorn et al., 2010).

Hierarchical reinforcement learning model
Summarizing previous findings, the roles of the three striatal
subareas could be described as a “two actors-one critic” model.
The DLS is involved in simple state-action or stimulus–response
association (inflexible, habitual action), whereas the DMS per-
forms action based on an action-outcome association (flexible,
goal-directed action). The VS might help the learning of these
two actors via a dopaminergic response. However, dissociation of
DLS and DMS functions solely on the basis of habitual versus
goal-directed actions could not explain our results (Figs. 4, 5, 6, 7,
and 8).

An alternative model is that a hierarchical reinforcement
learning system is realized across the dorsolateral-ventromedial
axis of the basal ganglia (Samejima and Doya, 2007; Ito and Doya,
2011). In the present task, a rat needs to perform multiple motor
actions to complete a single trial: approaching the center hole,
sticking its nose into the hole, maintaining the nose-poke in the
hole, and so on. It is reasonable to conclude that the stratum is
also involved in these detailed actions. We proposed a working
hypothesis that VS, DMS, and DLS are hierarchical learning
modules in charge of actions at different physical and temporal
scales (Ito and Doya, 2011). VS is the coarsest module governing
actions of the whole animal, such as aiming for a goal, avoiding a
danger, or just taking a rest. DMS is the middle module in charge
of abstract actions, such as turn left, turn right, or go straight, by
taking into account contextual information. DLS is the module in
charge of the finest control of physical actions, such as the control
of each limb. Consistent with this hypothesis, the averaged firing
duration of VS neurons was the longest among three subareas,
that of DMS neurons was the second, and DLS neurons showed
the shortest firing duration (Fig. 4C).

A large majority of VS neurons was activated at the time that
rats started the tasks (Fig. 4B). This might be interpreted to mean
that VS is involved in higher-order decisions to initiate tasks, or
as a signal to promote the flexible approach proposed by Nicola
(2010). With regard to DMS, most neurons were activated during
execution of the action selection (Fig. 4B), and at that time, action
information was strongly represented (Fig. 5D). A similar DMS
activation during action selection was also reported by Thorn et
al. (2010). These findings suggest that DMS is the site most likely
to be involved in decisions regarding abstract actions, such as
“select the left hole” or “select the right hole.” Activity peaks of
DLS neurons were not only sharper than those of DMS and VS
(Fig. 4C) but also uniformly distributed compared with DMS and
VS, in the absence of specific preferred task events (Fig. 4B). Each
activity peak might help to control the body and limbs during a
brief time window, as proposed by Ito and Doya (2011).
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