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Systems/Circuits

A Motion-from-Form Mechanism Contributes to Extracting
Pattern Motion from Plaids

Christian Quaia, “Lance M. Optican, and Bruce G. Cumming
Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
20892

Since the discovery of neurons selective for pattern motion direction in primate middle temporal area MT (Albright, 1984; Movshon et al.,
1985), the neural computation of this signal has been the subject of intense study. The bulk of this work has explored responses to plaids
obtained by summing two drifting sinusoidal gratings. Unfortunately, with these stimuli, many different mechanisms are similarly
effective at extracting pattern motion. We devised a new set of stimuli, obtained by summing two random line stimuli with different
orientations. This allowed several novel manipulations, including generating plaids that do not contain rigid 2D motion. Importantly,
these stimuli do not engage most of the previously proposed mechanisms. We then recorded the ocular following responses that such
stimuli induce in human subjects. We found that pattern motion is computed even with stimuli that do not cohere perceptually, including
those without rigid motion, and even when the two gratings are presented separately to the two eyes. Moderate temporal and/or spatial
separation of the gratings impairs the computation. We show that, of the models proposed so far, only those based on the intersection-
of-constraints rule, embedding a motion-from-form mechanism (in which orientation signals are used in the computation of motion
direction signals), can account for our results. At least for the eye movements reported here, a motion-from-form mechanism is thus
involved in one of the most basic functions of the visual motion system: extracting motion direction from complex scenes.
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Anatomical considerations led to the proposal that visual function is organized in separate processing streams: one (ventral)
devoted to form and one (dorsal) devoted to motion. Several experimental results have challenged this view, arguing in favor of a
more integrated view of visual processing. Here we add to this body of work, supporting a role for form information even in a
function— extracting pattern motion direction from complex scenes—for which decisive evidence for the involvement of form
signals has been lacking. j

ignificance Statement

motion signals (signed speed in the direction orthogonal to their
preferred orientation). Recovering the motion direction of rigid
patterns containing more than one orientation then requires ad-
ditional processing (Movshon et al., 1985) and involves later
areas [e.g., middle temporal area (MT)]. This type of serial pro-

Introduction

At the earliest stage of cortical visual processing [primary visual
cortex (V1) in primates] visual information is filtered by
orientation-selective units with small receptive fields. As a result,
V1 units generally cannot respond to motion parallel to their

preferred orientation and only generate one-dimensional (1D)
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cessing plays an important role in many models of brain function.
How this integration of 1D signals is accomplished for patterns
containing two orientations (plaids) has been the subject of in-
tense study.

With some plaids (type I; Fig. 1A), summing the velocity vec-
tors of the two gratings is sufficient to recover the direction (al-
though not necessarily the speed) of pattern motion (Fig. 1B).
With other plaids (type II; Fig. 1C) this simple solution does
not work (Fig. 1D), and a more complex rule, such as the
intersection-of-constraints (IOC) rule (Fennema and Thomp-
son, 1979; Adelson and Movshon, 1982), described in the legend
for Figure 1B, must be invoked. Models based on a neural imple-
mentation of the IOC rule have been proposed (Simoncelli and
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Figure 1. Pattern motion in plaids. The pattern motion of a plaid is a function of both the
orientation and speed of the two gratings. 4, The two gratings have the same drifting speed,
and their motion directions are 120° apart (blue and green arrows). In this, like in all sinusoidal
plaids, the pattern velocity (dark red arrow) equals the velocity of the high and low luminance
blobs formed where the minima and maxima of the two gratings coincide. B, The pattern
motion direction can be computed using a construct called I0C. From the tip of each grating
motion vector (V; and V;), one draws the orthogonal constraints lines (C; and G,). These lines
(which are parallel to the orientation of the respective grating) define the locus on which all
velocities compatible with the motion of the 1D grating lie. The intersection of these two lines
represents the only velocity that is compatible with the motion of both gratings: the pattern
motion velocity (V). For this plaid, the pattern motion direction equals the average of the
gratings motion directions. This is then a so-called type | plaid. €, In this plaid, the two sinusoidal
gratings drift at different speeds. D, Notably, with this configuration, the pattern motion veloc-
ity vector (V) does notlie between the two grating velocity vectors (V; and V/;), as shown by the
10C construct. Thisis then a so-called type Il plaid. E, In a sinusoidal unikinetic plaid, one grating
drifts, whereas the other is static. F, In a binary noise unikinetic plaid, one line grating drifts,
whereas the other is static; however, there are no clear (i.e., pre-attentively salient) blobs to
track. G, Ina unikinetic plaid, made up of sinusoidal or noise gratings, the constraint line for the
static grating (G,) is still parallel to the orientation of the grating, but because the speed of the
grating is zero, it passes through the origin. The pattern motion direction (V,) must thus lie on
this constraint line and is thus parallel to the orientation of the static grating. Unikinetic plaids
are a limit case of type Il plaids.

Heeger, 1998; Perrone, 2004; Rust et al., 2006), but other mech-
anisms, which we will describe in Results, would also work. What
these other mechanisms have in common is that they extract, in
each frame, features that arise from the combination of the two
gratings and then track how those features move across frames. In
contrast, an IOC-based mechanism only relies on the 1D velocity
vectors of the two gratings in the plaid. A corollary of this distinc-
tion is that the IOC explicitly uses, when present, information
about the orientation of static gratings (i.e., form information).
Accordingly, an IOC operator embeds a so-called motion-from-
form mechanism, i.e., a mechanism in which form information,
typically orientation, affects motion processing. The importance
of such mechanisms in human motion perception is well estab-
lished (Geisler, 1999; Ross et al., 2000; Badcock et al., 2003),
but the role that motion-from-form might play in pattern
motion extraction has been neither recognized nor experi-
mentally evaluated.
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Plaids composed of two drifting gratings, used in the majority
of studies performed thus far, are obviously ill-suited to test the-
ories of pattern motion extraction that use static form informa-
tion. Unikinetic sinusoidal plaids (Fig. 1E), formed by adding a
drifting and a static sinusoidal grating having different orienta-
tions (Gorea and Lorenceau, 1991), are more useful but fall short
of isolating the role of form signals. We thus designed a novel type
of plaid, obtained by summing two random line stimuli (RLS;
Fig. 1F), which allows manipulations that cleanly discriminate
the predictions of different models. For example, when one RLS
drifts and the other is dynamically refreshed on each video frame
(i.e., flickering), the stimulus, which we call a flicker plaid, does
not contain 2D pattern motion (a different pattern is present in
each frame), seriously challenging existing models.

To infer how the brain processes our novel plaids, we recorded
the ocular following responses (OFRs; Miles et al., 1986; Gellman
et al., 1990) that they elicit in human subjects. We found that
flicker plaids induce OFRs directed parallel to the orientation of
the flickering RLS. By means of simulations, we then show that a
model based on the IOC (Simoncelli and Heeger, 1998), with
parameters derived from the literature (Nishimoto and Gallant,
2011) and not fit to our data, can reproduce these results. We
argue that this, and a range of additional results reported here, are
only compatible with models in which a motion-from-form
mechanism plays an important role in pattern motion analysis.

Materials and Methods

Subjects. Three male subjects (aged 3055 years) participated in all the
experiments; one was an author (C.Q.), and the others were experienced
as OFR subjects but unaware of the experimental questions being inves-
tigated. All had normal or corrected-to-normal visual acuity and normal
stereo-acuity. Experimental protocols were approved by the Institutional
Review Board concerned with the use of human subjects.

Visual apparatus. The subjects sat in a dark room and were positioned
so that their eyes were located approximately in the center of a cubic box
(70 cm side) containing orthogonal magnetic-field generating coils.
Their chin and forehead rested on padded supports, and their head was
stabilized using a head band. The coil box was surrounded by three
monitors, one in front of the subjects and one on each side. The latter two
were part of a Wheatstone mirror stereoscope, with removable mirrors.

For most of the experiments, visual stimuli, generated through a
EVGA GEForce GTX 680 graphic card, were presented on the CRT mon-
itor (NEC MultiSync FP2141SB) facing the subject. The monitor screen
was located 525 mm from the corneal vertex, covered 41° (horizontal) X
31° (vertical) of visual angle, was set at a resolution of 1024 columns X
768 rows, and had a refresh rate of 150 Hz. Only the red channel was used,
because red phosphors had the shortest persistence (800 s rise time, 3.2
ms fall time), guaranteeing the absence of motion streaks on the monitor.

For the dichoptic recordings, each eye saw one of the two side CRT
monitors (Sony GDM-FW900) through a 45° mirror, creating a binocu-
lar image straight ahead at a distance of 521 mm from the corneal vertex
(which was also the optical distance to the two monitor screens). In this
case, each monitor screen covered 50° (horizontal) X 32° (vertical) of
visual angle, was set at a resolution of 1280 columns X 800 rows, and had
arefresh rate of 140 Hz. Again, only the red channel was used to minimize
persistence (1 ms rise time, 4 ms fall time). A single video card (EVGA
GEForce GTX 580 Classified) was used to provide the inputs to both moni-
tors. Using the NVIDIA Control Center configuration tool, the two moni-
tors were set up so as to appear to the operating system (Microsoft Windows
XP) as a single monitor with a resolution of 2560 columns X 800 rows. Using
two photocells connected to a digital oscilloscope, we verified that the refresh
timing of the two monitors was tightly synchronized, with the left-eye image
consistently preceding the right-eye image by <50 us.

In both settings, luminance linearization was performed by interpola-
tion after dense luminance sampling (using a Konica Minolta LS100
luminance meter), independently for each monitor.
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Eye movement recording. A scleral search coil embedded in a silastin
ring (Skalar; Collewijn etal., 1975) was placed in one of the subject’s eyes,
or both for the dichoptic experiments, after application of topical anes-
thetic (proparacaine HCI). The horizontal and vertical orientations of
the eyes were recorded using an electromagnetic induction technique
(Robinson, 1963). These outputs were calibrated at the beginning of each
recording session by having the subject look at targets of known eccen-
tricity. Peak-to-peak noise levels resulted in an uncertainty in eye posi-
tion recording of <0.03°. Coil signals were sampled at 1000 Hz.

Experiment control. The experiment was controlled by two computers,
communicating over an Ethernet with TCP/IP. The Real-time EXperi-
mentation software package (Hays et al., 1982), running on the master
computer under the QNX operating system, was responsible for provid-
ing the overall experimental control, as well as acquiring, displaying, and
storing the eye movement data. The other machine, directly connected to
the CRT displays, ran under the Windows XP operating system and
generated the required visual stimuli in response to REX commands.
This was accomplished using the Psychophysics Toolbox 3.0.8, a set of
MATLAB (MathWorks) scripts and functions (Brainard, 1997).

Behavioral paradigm. Trials were presented in blocks; each block con-
tained one trial for each stimulus condition. All conditions within a block
were interleaved randomly. Each trial began with the appearance of a
central fixation cross on a blank, midluminance (6.0 cd/m?) back-
ground. The subject was instructed to look at the center of the cross and
avoid making saccadic eye movements. After the subject maintained
fixation within a small (1° on the side) invisible window around the
fixation point for 800—-1100 ms, the fixation cross disappeared, and
the visual stimulus sequence (24 frames) was presented. Subsequently,
the screen was blanked (again at 6.0 cd/m?), signaling the end of the trial.
After a short intertrial interval, a new trial was started. If the subject
blinked or if saccades were detected during the stimulus presentation
epoch, the trial was discarded and repeated within the block. With few
exceptions, a single experiment required multiple daily recording ses-
sions to collect enough trials from each subject (we collected between 150
and 450 trials for each condition, depending on the signal-to-noise ratio,
and between 1500 and 3000 trials in a session; the number of conditions
varied across experiments).

Visual stimuli. In all experiments described here, we presented plaids
obtained by summing the contrasts (i.e., deviations from the mean lumi-
nance) of a vertical and an oblique (tilted +45° or —45° from horizontal)
grating. All patterns had a mean luminance of 6.0 cd/m?, and patterns
were presented within a circular aperture, centered on the screen, with a
28° diameter. Outside the aperture, the screen was blank, with a lumi-
nance of 6.0 cd/m?>.

In some experiments, the two gratings were sinusoidal modulations of
luminance, with a spatial frequency (SF) that varied across experiments,
and was often different for the two gratings in a plaid. The vertical grating
drifted either to the right or to the left, with a temporal frequency (TF)
of 20 Hz (48° phase shift across frames), whereas the oblique grating
was static. Each grating had a 32% Michelson contrast, unless noted
otherwise.

In other experiments, the gratings were 1D RLS. For vertical RLS, each
line in a pattern (two-pixel, 0.08°, wide) was assigned randomly either a
high or a low luminance value (32% Michelson contrast). An oblique
RLS was obtained by generating a vertical RLS and then rotating it using
an anti-aliasing algorithm. Motion of the vertical RLS was simulated by
shifting, with a speed of 40°/s either to the right or to the left, a stimulus
larger than the screen behind a fixed aperture (i.e., the stimulus did not
wrap around). The oblique RLS was either static or different on each
frame. In some experiments, the drifting and static RLS were only visible
in a subset of the frame sequence.

Data analysis. All the measures reported here are based on either the
velocity of the instrumented eye or, when the stimuli were presented
dichoptically, on the version velocity (average of the velocity of the two
eyes). The calibrated eye position traces (see above, Eye movement re-
cording) were differentiated using a 21-point finite impulse response
acausal filter (47 Hz cutoff frequency). Trials with saccadic intrusions
and unstable fixation that went undetected at run time were removed by
the following automatic procedure aimed at detecting outliers. For each
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velocity signal (for monocular recordings: horizontal, vertical; for binoc-
ular recordings: left eye horizontal, right eye horizontal, left eye vertical,
right eye vertical, horizontal vergence, vertical vergence) at each time
point (0-169 ms from stimulus onset, in 1 ms increments), trials for
which the velocity deviated more than +4.5 SDs from the mean (across
all the valid trials for a given condition) were excluded. This was repeated
iteratively until no trials were excluded. Average temporal profiles, time-
locked to stimulus onset, were then computed over the remaining trials,
separately for each stimulus condition.

Opposite stimulus motion directions are known to elicit OFRs that are
not simply opposites (Bostrom and Warzecha, 2010; Quaia et al., 2012).
This asymmetry is attributable to the presence of a so called default
response (Quaia et al., 2012) and is probably partly related to the disen-
gagement of fixation. To remove this component and to increase the
signal-to-noise ratio, most ocular following studies report not the raw
OFR but rather the difference between the OFRs to opposite motion
directions. We did so here as well. The traces and measurements reported
here are thus based on the difference between the average response to
stimuli containing motion energy in opposite directions.

We used bootstrap-based methods (Efron, 1982) for all our statistical
analyses. For the component of the OFR orthogonal to the drifting grat-
ing, the latency was determined as the time at which the response (mean
of response to +45° and —45° static grating orientation) became signif-
icantly (p < 0.05) different from zero. For the components of the OFR
parallel to the drifting grating, the latency was determined as the time at
which the response to the +45° static grating first differed significantly
(p <0.05) from that to the —45° static grating. Bootstrap techniques are
used to compute these measures and to compute confidence intervals
around the measures themselves. A description of the procedures used
has been published in detail previously (Quaia et al., 2012).

The direction of eye movements. Most perceptual and neurophysiolog-
ical experiments that investigated the mechanism(s) that extracts pattern
motion direction from plaids naturally described their observations in
terms of motion direction (either perceived or neurally coded). We have
not described the output of the ocular following system in terms of the
direction of the eye movement. We have instead used stimuli in which
component motion signals are all horizontal, so that any vertical eye
movement directly indicates a response to pattern motion. The reason
for doing so is that, in the ocular following system, the visual motion
signals present in area MT and the medial superior temporal (MST) area
are processed by a premotor circuitry, which then innervates the eye
muscles (Takemura et al., 2007; Miles and Sheliga, 2010; Masson and
Perrinet, 2012). This operates in a Cartesian coordinate frame, because
the eye muscles are organized in approximately horizontal and vertical
planes. Unfortunately, the gain of this sensory-to-motor transformation
for the OFRs is typically not the same for vertical and horizontal move-
ments (and these differences are idiosyncratic). As a consequence, the
magnitude of the OFRs induced by the same stimulus drifting horizon-
tally or vertically can be very different. In our subjects, J.H. had stronger
horizontal than vertical movements, C.Q. had the opposite, and B.M.S.
was fairly balanced. Because of this unbalance, the direction of oblique
movements can be misleading (Blum and Price, 2014).

To verify that this is indeed what makes eye movement direction mea-
sures unreliable, we took the subject that had the largest unbalance
(C.Q.) and recorded his OFRs in response to two unikinetic plaids. In
both cases, the static RLS was oblique (45°), but the drifting RLS could be
either vertical or horizontal. Theoretically, the motion direction for these
two plaids should be the same (45°). A directional bias in the visual
system would cause a different population of pattern motion neurons to
be activated, resulting in different eye movement directions. With a pre-
motor horizontal/vertical bias, the same population of pattern motion
neurons would be activated, resulting in the same eye movement direc-
tion (not necessarily 45°). We found that the movement directions were
very similar with the two plaids (data not shown), supporting the view
that the same oblique motion signal was fed to a premotor stage with
different gains for vertical and horizontal movement.

Perception with noise plaids. The plaid stimuli that we have used in our
experiments are quite different from those used normally in perceptual
studies of pattern motion perception. They are much larger (28° in di-
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ameter) and are presented for much shorter intervals (160 ms). In the
case of sine plaids, they also have much lower SF (0.25 cpd) and higher TF
(20 Hz). As far as we know, neither noise plaids nor flicker plaids have
been used previously. Accordingly, there are no perceptual studies on
which to rely, and we have not systematically measured perceived motion
direction with any of our stimuli. Qualitatively, unikinetic sine plaids
appear coherent (i.e., moving as a single plaid in a single direction), but
all others do not (at least at the short exposures we used). Asking a subject
to report perceived motion direction under conditions of poor coher-
ence is problematic, and we have not attempted it. However, after infor-
mal questioning, all subjects reported that, with flicker plaids, they clearly
perceived vertical and oblique gratings (i.e., transparency), but the ver-
tical grating did not move horizontally. Rather, they perceived motion in
an oblique direction. When the oblique grating was presented only for a
very short time (<20 ms), some subjects perceived it only in a limited
region of the visual field, and one did not perceive its presence at all.
Nevertheless, all perceived oblique motion of the vertical grating. With
dichoptic plaids, each subject perceived a (quite idiosyncratic) patch-
work, with some areas of the visual fields dominated by the stimulus seen
by one eye, others by the stimulus seen by the other eye, and still others in
which the stimuli coexisted.

Models and simulations. As noted in Introduction, several models have
been proposed to extract pattern motion from plaid stimuli. Some of
them rely on extracting features from the images and tracking their mo-
tion across frames. As explained in Results, because our flicker plaids
have been designed specifically to remove all features from the images,
those models will not, by definition, respond to our stimuli. Determining
how models inspired by the IOC would respond to our stimuli is instead
less straightforward and, as we will show, depends to some extent on
model parameters. To better illustrate these aspects, we thus simulated
how two models respond to our stimuli.

The first model we used is an implementation of the IOC rule. The
10C is a graphical construct (Fig. 1). It is based on the orientation and
signed speed of the 1D gratings that compose the stimulus (their contrast
and SF play no role). Constraint lines for each grating are determined
from the respective speed vectors, and their intersection determines pat-
tern speed. We are not aware of any proposed implementation of the IOC
mechanism that can be applied directly to image sequences, so we devised
an algorithm that represents a straightforward implementation of the
graphical construct. Assuming continuous motion, all the information
needed is contained in the first two frames. First, each orientation present
in the stimulus is extracted from each frame. Because we built the images
ourselves, we directly took the two individual RLS that were then
summed to make the plaid. If these are not available, one would have to
Fourier transform each frame, convert the horizontal and vertical SF
coordinates into polar coordinates (or, alternatively, compute the Fou-
rier transform directly in polar coordinates), apply, for each orientation
of interest, a narrow-band filter in the orientation domain to the ampli-
tude spectrum, and finally reconstruct the components through an in-
verse Fourier transform. With sinusoidal plaids, one can also directly
filter in the image domain by convolving the images with oriented Gabor
filters. Next, for each orientation, the two filtered frames are cross-
correlated. This will typically reveal a ridge of high cross-correlation,
corresponding to the displacement of the filtered stimulus across the two
frames (a proxy for speed). This ridge, parallel to the orientation of the
filter, represents the constraint line for that orientation. Finally, the
cross-correlation images for all orientations present in the stimulus
are multiplied. The location of the peak represent the intersection of the
constraint lines, i.e., the IOC solution. Because any sequence of noise
patterns will contain some spurious correlations, we average the cross-
correlations over 10 randomly generated sequences and only plot the
central part of the cross-correlation matrix.

The second model we used is an implementation of the model by
Simoncelli and Heeger (1998) (S&H), based on the experimental results
and simulations of Nishimoto and Gallant (2011) (N&G). We consid-
ered using directly the reference implementation of the S&H model
(made openly available by Dr. Simoncelli on his institutional website)
but decided against it for two reasons. First, the weights between V1 and
MT neurons in the original S&H model were proposed on a theoretical
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basis; Nishimoto and Gallant (N&G) have instead inferred those weights
by fitting them to the response of real MT neurons to naturalistic movies.
The weights so found are thus experimentally validated. Second, the
reference implementation of the S&H model only samples stimuli at a
single scale and thus is not suited for processing broadband noise stimuli.
We also considered the model proposed by Rust et al. (2006), but it is not
available in a version that can accept arbitrary image streams. Note that,
just as in the original S&H model, we only modeled so-called pattern
cells, which are a fraction of all MT cells (Movshon et al., 1985; Rodman
and Albright, 1989; Kumano and Uka, 2013).

The V1 stage in the S&H model is represented by a population of ideal
V1 complex cells, each with a spherical (in spatiotemporal Fourier space)
receptive field; the receptive fields of the population tile the entire Fourier
space. Because such ideal neurons approximately compute the Fourier
energy in the region of spatiotemporal space covered by their receptive
field (Adelson and Bergen, 1985; Watson and Ahumada, 1985), this stage
can be bypassed, and the model can be implemented directly in Fourier
space (at least for spatially and temporally homogeneous stimuli). For
the MT stage, we then defined a population of MT neurons, each char-
acterized by a preferred velocity vector; we tiled the velocity space evenly,
covering the range between +12 and —12 pixels/frame. For each neuron,
we then defined the regions of the Fourier space that excite and inhibit
the cell, based on the results of N&G. S&H suggested that the excitatory
region should lie on a plane in Fourier space, the so-called velocity plane.
This is the plane on which all the oriented gratings that are compatible
with motion in the preferred direction and at the preferred speed of the
MT cell lie. Note that this plane will contain the grating orthogonal to the
preferred velocity vector of the MT cell and moving at its preferred speed,
but also gratings that have different orientations and move, in the direc-
tion orthogonal to their orientation, at a lower speed (Fig. 1B) than the
preferred speed of the MT neuron (Simoncelli and Heeger, 1998; Oka-
moto et al., 1999). If we define the velocity of interest (i.e., the preferred
velocity of the model pattern cell under examination) as a 2D vector,
v = [v,, v,], then the velocity plane, in Fourier space, is described by the
following equation (Watson and Ahumada, 1985; Grzywacz and Yuille,
1990; Simoncelli and Heeger, 1998):

TF = —v.SF v, SE,

X X - y Y

where SE, is the SF in the x direction, and SF is the SF in the y direction
(i.e., for a vertical grating, SF, = 0). N&G confirmed that the excitatory
inputs to each MT cell indeed sample the Fourier space around the ve-
locity plane. Accordingly, we set the excitatory weights for each MT
neuron as decreasing monotonically based on the distance from the ve-
locity plane for the cell. The distance of a generic point, P, = (sf,, sf,, tf),
from a generic plane, ASF, + BSF, + CIF + D = 0, is equal to the
following:

|Ast, + Bsf, + Ctf + D|
VAT + B+ C

d(sf,, sf,, tf) =

In our specific case, A = v,, B = V) C =1, and D = 0. Having so
determined d for each point in Fourier space, we then set the excitatory
weight from that point in Fourier space to our MT neuron according to
the following equation:

d(sfi, sy, 16)?

E (st s, tf) = e 27

with o = 0.025 (note that all three coordinates in Fourier space vary
between —0.5 and 0.5, the Nyquist limit).

Although excitatory connections are obviously crucial, inhibition
plays a key role in how MT pattern cells behave (Movshon et al., 1985;
Simoncelli and Heeger, 1998; Rust et al., 2006; Perrone and Krauzlis,
2008a; Tsui et al., 2010; Nishimoto and Gallant, 2011; Solomon et al.,
2011; Perrone and Krauzlis, 2014). S&H proposed that any region of the
Fourier space that does not excite an MT cell, inhibits it, and that the
algebraic sum of all weights is zero. However, N&G found that the inhib-
itory region is in fact much more concentrated and mostly lies around the
opposite-velocity plane. This implies that a stimulus moving in the di-
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rection opposite to that preferred by the neuron inhibits the cell much
more than a stimulus moving in an orthogonal direction: motion oppo-
nency (Adelson and Bergen, 1985). We used this principle to determine
the inhibitory weights for our MT cells and thus computed the inhibitory
weights I, using the same Gaussian equation (with the same dispersion
parameter) used for the excitatory weights but based on the distance
from the opposite-velocity plane, which is naturally described by the
following equation:

TF = v,SF, + v,SE,.

Finally, N&G found that the lowest TFs do not contribute very strongly to
the response of MT neurons. In the S&H model, a static stimulus parallel
to the preferred direction of motion of the MT neuron activates it as
strongly as a stimulus that is orthogonal to it and moves at its preferred
speed. This is not observed in real MT cells: static parallel stimuli activate
MT pattern cells, but they do so not as robustly as moving stimuli
(Albright, 1984; Rodman and Albright, 1989; Wallisch and Movshon,
2011; Khawaja etal., 2013). To account for these findings, we reduced the
weights for low TFs according to the following equations:

tf?
E\(sf,, sf,, tf) = E, (sf,, sf,, tf) (1 - Ke"ﬁ)

tf2
I,(sf,, sf), tf) = I(sf,, sf,, tf) (1 - e‘ﬁ), (1)

with o = 0.025 and K = 0.5. The resulting pattern of excitatory and
inhibitory connections matches quite well the behavior of MT pattern
cells, as recorded by N&G (their Figs. 4A, 5A). Importantly, it provides
some overall excitatory input from low TF components, necessary for
MT neurons to exhibit a (weak but nonzero) response to stationary
stimuli. In one model simulation, in which the aim was to test the behav-
ior of the model without excitation or inhibition from this region, we set
K = 1in Equation 1.

The weight matrix was then computed by subtracting the inhibitory
weights from the excitatory ones:

WI(sf,, sf,, tf) = E(sf,, s, tf) — Ii(sf,, sf,, tf).

To introduce the nonlinear operators at the level of V1 neurons that have
been shown to be crucial to reproduce the activity of MT neurons (Si-
moncelli and Heeger, 1998; Rust et al., 2006; Nishimoto and Gallant,
2011), we added a static nonlinearity (expansive or compressive) to
modulate the Fourier energy at each spatiotemporal frequency. Within the
context of these models, this is approximately equivalent to adding the non-
linearity to the output of V1 complex cells projecting to area M T, which in
turn is functionally similar to the tuned normalization mechanism invoked
by others (Simoncelli and Heeger, 1998; Rust et al., 2006). Note that we did
not include the untuned normalization (i.e., a contrast gain control mecha-
nism) present in the N&G model, because it only improved slightly their fits
and was not critical for the simulations presented here.

The response of each MT pattern cell in our implementation of the
S&H model was then as follows:

2a

R=| > 2 X Wisk,sf, tf ‘F(sfx, Sf,0 )

SFc SE, TF

where| |indicates half-rectification (i.e., negative values are set to zero),
F is the 3D Fourier transform, and « is the exponent of the static nonlin-
earity mentioned above.

We made no attempt to readout from this population an overall ve-
locity signal, which could then be used to drive perception or eye move-
ments. The readout problem was left open by the S&H model and its
derivations, and our intent here was to test how these models respond to
our novel stimuli, not to further extend the models themselves.

Numerical simulations of the models were performed using custom
Python scripts, executed under the Canopy Python Distribution
(Enthought).
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Results

Using eye movements to study pattern motion extraction

In unikinetic plaids (Fig. 1E), the pattern moves parallel to the
orientation of the static grating, with a speed and sign that are
determined by the speed and direction of the drifting grating (Fig.
1G). For example, with the plaid shown in Figure 1E, if the verti-
cal grating drifts to the right at 80°/s, the pattern moves up and to
the right at 113.1°/s.

The ultrashort latency reflexive ocular following system can be
used to great effect to study how the visual system extracts a
pattern motion signal from such plaids. As shown previously by
Masson and colleagues (Masson and Castet, 2002; Masson, 2004;
Barthélemy et al., 2008; Barthélemy et al., 2010), when presented
with such a stimulus, the eyes first move in the direction orthog-
onal to the drifting grating (i.e., horizontally with the stimulus
shown in Fig. 1E), but after a delay of ~15 ms, the eyes start
tracking the pattern.

In Figure 2A, we show the OFRs induced by two unikinetic
sinusoidal plaids in one of our subjects. In both stimuli, the ver-
tical grating drifted to the right (at 20 Hz), but the oblique grating
was tilted either +45° (thick lines) or —45° (thin lines) off the
horizontal. The horizontal eye traces (gray) were very similar in
the two cases; the vertical eye traces (black) were instead approx-
imately opposite in the two cases, following the orientation of the
oblique grating (and thus of the pattern motion direction). This
is an invariable finding with such symmetric stimulus configura-
tions. In all the experiments described below, we used both of
these stimulus configurations (i.e., a drifting vertical grating
paired with an oblique grating tilted either +45° or —45°). How-
ever, for clarity of presentation, from now on, we plot (Fig. 2B)
the so-called folded responses (Rambold and Miles, 2008):

( _— H+45 + H—45 _— V+45 - V—45>

H= 2 V= 2

where H and V represent the horizontal and vertical components
of the eye velocity, respectively. The vertical component is the
signature of the pattern motion computation and is the focus of
our study.

Figure 2 highlights a critical advantage of measuring eye
movements over collecting perceptual reports: the evolution of
responses can be observed with high temporal resolution. As
noted by Masson and colleagues, this allows to easily identify the
presence of two signals: an early one related to the component
motion and a significantly delayed one (in this case by 21 ms, p =
0.001, unpaired ¢ test) related to pattern motion. However, it is
also important to stress that ocular following eye movements and
perception often behave differently in response to motion stim-
uli, with perception being more sensitive to some stimuli and eye
movements to others (Bostrom and Warzecha, 2010; Simoncini
etal., 2012; Blum and Price, 2014; Glasser and Tadin, 2014; Price
and Blum, 2014). It is generally agreed that eye movements are
less sensitive to cognitive expectations and thus reflect low-level
computations more faithfully (Spering and Carrasco, 2015), but
much remains to be understood. Accordingly, it must be recog-
nized that the neural computations that we uncover here are not
necessarily accessible to perception, and their effect on perceptual
processes would need to be assessed separately. A brief, qualita-
tive description of how our subjects perceived the stimuli used in
this study is provided in Materials and Methods (see Perception
with noise plaids).
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Pattern motion extraction with A
RLS plaids 2
Asmentioned in Introduction, besides the
IOC, there are several mechanisms that
have been proposed to extract the pattern
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motion signal from plaids. For example,
the visual system might do the following:
(1) track the 2D features of maximum/
minimum luminance (“blobs”) in the
patterns (Derrington and Badcock, 1992;

Eye speed (deg/s)
o

0 N
| | | 1 1

Alais et al., 1994; Masson and Castet,
2002; Barthélemy et al., 2008; Dimova and
Denham, 2010); (2) track the intersec-
tions between the zero-crossing (or mean
luminance) lines of each grating (Bowns,
1996, 2011, 2013); (3) extract the motion
of contrast modulations in the pattern
(Wilson et al., 1992); and (4) respond to
the local orientation of 2D features (Di-
mova and Denham, 2010). With uniki-
netic sinusoidal plaids, the IOC as well as
mechanisms that track either the high and low luminance “blobs”
or the intersections of the zero-crossings/mean-luminance lines
(provided that the interframe phase shift of the moving grating is
<90°, because such lines have twice the SF of the gratings) would
all work. A mechanism based on contrast modulations (often
referred to as second-order) could also work: alternate bands of
high and low contrast, tilted 22.5° clockwise from horizontal, are
clearly visible in Figure 1E (right). However, this mechanism
would only provide an approximate solution, because the orien-
tation of the contrast modulations (and hence their direction of
motion) varies as a function of the relative SF of the two gratings
(if the gratings have the same SF, as in Fig. 1E, the direction of
motion of the contrast modulation differs from that of the pat-
tern by 22.5°). Finally, the 2D orientation of the local features
(blobs) is shifted, relative to the direction orthogonal to the mov-
ing grating, in the wrong direction (in Fig. 1E clockwise from
vertical) and can be excluded. Thus, there are at least four mech-
anisms (IOC, tracking of blobs, zero crossings, or contrast mod-
ulations) that in principle can, at least approximately, extract
pattern motion direction in unikinetic sine plaids and account
for the eye movements shown in Figure 2.

A unikinetic sinusoidal plaid thus has limited value in dis-
criminating between an IOC mechanism and the alternatives, as
recognized previously (Gorea and Lorenceau, 1991). However,
some simple stimulus manipulations can lead to a much more
powerful tool. Replacing sinusoidal gratings with RLS eliminates
from the plaid all preattentively selectable (i.e., salient) features,
produces a large number of zero-crossings/mean-luminance
lines, making them effectively untrackable, and eliminates any
contrast modulations (Fig. 1F). An IOC operator would still suc-
ceed. To demonstrate this, in Figure 3 (top row), we show simu-
lations of an implementation of the IOC that is image
computable (see Materials and Methods, Models and simula-
tions) based on cross-correlating orientation-filtered images.
From left to right, we show a frame in the stimulus, the next
frame, the constraint line for the vertical component (extracted
by cross-correlation of orientation-filtered images), the con-
straint line for the oblique component, and finally the product of
the last two images: the intersection of the constraint lines. The
pattern motion direction (up and to the right) is correctly ex-
tracted. In Figure 4, we show the OFRs induced in three human
subjects by such a stimulus (gray lines). Just like with unikinetic

Figure 2.
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OFRs to unikineticsine plaids. A, When a sinusoidal unikinetic plaid formed by summing a drifting vertical grating and
astaticoblique grating is presented, a short-latency OFR ensues. Initially, the OFR is driven by the drifting grating only, and the eye
velocity is horizontal (Hor; gray lines). After 15-20 ms, a vertical component of the eye movements emerges (Ver; black lines).
Notably, this component has a different sign depending on the orientation of the static grating (thick vs thin lines). B, Because the
horizontal component of the eye movement is the same regardless of the orientation of the static grating and the vertical
component is very nearly opposite, the data can be summarized by plotting the semi-sum of the former and the semi-difference of
the latter: the folded OFRs. Subject B.M.S.
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Figure 3.  Computing the 10C with noise plaids. Expected response of an 10C operator to

unikinetic (top row) and flicker (bottom row) noise plaids. The I0C operator we implemented
infers speed by extracting the displacement over two frames; two frames of each pattern are
shown in the first two columns. The third and fourth columns show the cross-correlation be-
tween the two frames after filtering the images with vertical or oblique-preferring filters, re-
spectively. This operation extracts the constraint lines for the two orientations. The fifth column
shows the product of the previous two columns: the I0C. The I0C extracts a pattern velocity
signal for unikinetic, but not flicker, plaids. Therefore, the response to flicker plaids should be
driven only by component-selective processes.

sinusoidal plaids (Fig. 2), the eyes initially moved horizontally,
tracking the motion direction orthogonal to the drifting RLS.
After a delay of 10-20 ms (Table 1), a vertical component of the
eye velocity emerged, reflecting the extraction of a pattern mo-
tion signal. The aforementioned trackable features, absent from
these stimuli, are thus not necessary for extracting pattern
motion.

A limit of theories of visual processing based on feature detec-
tion is that what constitutes a “feature” is often not strictly de-
fined. This makes it difficult to falsify all possible feature-based
accounts. For example, although our unikinetic noise plaids do
not contain contrast modulations or zero crossings that might be
tracked, one might argue that they contain features, because any
intersection of the vertical and oblique grating could be consid-
ered a feature and thus tracked. There would be countless such
features in our stimuli, and they would not be generally salient.
Nonetheless, a sufficiently broad definition of feature could in
principle impute the responses to these noise patterns to a
feature-tracking mechanism. To deal with this possibility, we de-
vised a new stimulus, obtained by summing a vertical drifting
RLS and an oblique RLS that is created anew on each frame
(dynamic, or temporally uncorrelated, noise pattern). With such
a stimulus, which we call a flicker plaid, each frame might contain
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Table 1. Latency of OFRs to unikinetic and flicker noise plaids (Fig. 4)
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mechanism is responsible for both. The
human visual system is thus able to extract
a putative pattern motion signal even
from stimuli that do not have one and that
do not engage an IOC mechanism. Im-
portantly, this response can only arise by
combining the signed speed (i.e., motion
information) of the moving RLS with
the orientation (i.e., form information)

—— Unikinetic
— Flicker

1

Il

|

of the flickering RLS: a motion-from-
form mechanism.

No feature-tracking mechanism can be
responsible for the OFRs induced by these
stimuli, and neither can an IOC mecha-
nism (Fig. 3). However, as we will now
show, a model that has been inspired by
the IOC mechanism (Simoncelli and
) Heeger, 1998) responds similarly to uni-

kinetic and flicker plaids. In Figure 5, we

L L show simulations of our implementation

Time (s)

Time (s)

Stimulus Horizontal Vertical Delay p (delay = 0)
B.MS.
Unikinetic 75 (6.02) 94 (1.33) (6.12) 0.001
Flicker 81(2.53) 97 (1.86) 22) 0.001
cQ
Unikinetic 79 (3.60) 91(0.99) (3.713) 0.001
Flicker 78 (2.13) 94 (1.85) .80) 0.002
JH.
Unikinetic 80 (2.04) 90 (2.43) 10(3.18) 0.006
Flicker 79 (3.39) 95 (0.98) 16 (3.49) 0.001

The latencies of the horizontal and vertical components of the OFRs, and the delay of the latter relative to the former,
are listed separately for each experimental condition and subject. The values are expressed in milliseconds. SEM
estimates for each value are also indicated (in parentheses). The p values for the test that the delay is significantly
different from zero based on bootstrapping techniques (see Materials and Methods) is indicated in the last column.
Note that, because we used 1000 samples for our bootstrap analysis, we cannot estimate p values <<0.001. Hence,
we conservatively indicate a value of 0.001 whenever our algorithm returns a p value of 0.

a set of features, but it would be a different set in each frame: no
feature, however defined, could thus be tracked.

In a flicker plaid, the dynamic oblique RLS, while maintaining
a constant and well defined orientation, has motion energy
spread across all speeds, in both directions orthogonal to its ori-
entation. Even an IOC mechanism would thus not be expected to
extract a pattern motion signal from such stimulus, because the
constraint line for the oblique RLS would be undefined. To dem-
onstrate this, in Figure 3 (bottom row), we show simulations of
our IOC implementation applied to a flicker plaid: only the mo-
tion of the drifting RLS is extracted by the mechanism. Notice
that this is not a failure of the IOC, because in such a stimulus,
there is no conserved 2D pattern across frames and thus no “true”
pattern motion to be extracted.

In Figure 4, we show the OFRs induced in three human sub-
jects presented with flicker plaids (black lines), in which the
oblique grating changed every frame, i.e., every 6.67 ms. In all
subjects, both the horizontal (top row) and the vertical (bottom
row) components were very similar to those obtained with uni-
kinetic noise plaids (gray lines), and it is thus likely that a single

OFRs to unikinetic and flicker noise plaids. RLS unikinetic plaids (gray) and flicker plaids (black) induced very similar
OFRsin our three subjects. The horizontal component of eye velocity is shown in the top panels and the vertical in the bottom ones.
Folded responses are shown. Latency measures for the two components are reported in Table 1.

Time (s)

of that model (see Materials and Meth-
ods, Models and simulations), based on
a recently proposed refinement of it
(Nishimoto and Gallant, 2011). Each
panel shows how a population of model
MT pattern cells, each tuned to a different
preferred horizontal and vertical speed,
responds to unikinetic noise plaids (left column) and flicker
plaids (right column). In the top row, we show simulations ob-
tained using the model parameters that have been found to be
necessary to best reproduce the response of MT cells to natural
movies (Nishimoto and Gallant, 2011). Clearly, the model re-
sponds in a similar manner to unikinetic and flicker plaids, and a
pattern motion velocity signal could be easily read out from this
population of neurons for both stimuli.

To gain insights into why this model behaves differently from
the IOC mechanism on which it is based (Fig. 3), we altered the
model in two ways. First, we eliminated the excitatory contribu-
tions to the MT pattern cells from the region of Fourier space
around zero TF (by setting K = 1 in Eq. 1). The results of this
manipulation are shown in Figure 5 (middle row): the model
now is incapable of extracting a pattern motion signal from either
unikinetic or flicker plaids. In both cases, it only responds to the
motion of the drifting RLS. Thus, the responses of the S&H model
to our stimuli depend on excitatory inputs carrying information
about the orientation of static stimuli (in a more neuromimetic
implementation of our model, this information would be carried
by V1 neurons tuned to zero TF; below, we will use the shorthand
“V1 form cells” to refer to such neurons and “V1 motion cells” to
describe directionally selective neurons tuned to nonzero TF).
Next, with all the excitatory connections back in place, we re-
moved the compressive nonlinearity. The result of this manipu-
lation (Fig. 5, bottom row) is that the model now loses its ability
to extract a pattern motion signal from the flicker plaids but not
from the unikinetic plaids. The explanation is quite simple. In a
unikinetic plaid, the Fourier energy of the oblique static RLS,
which is broadband in SF and narrowband in TF, is concentrated
around a line on the zero-TF plane, and the excitatory connec-
tions from that region activate model MT pattern cells according
to the IOC rule. With a flicker plaid, energy from the oblique
grating, which is broadband in both SF and TF, is likewise present
in this zero-TF region, but it is also scattered in the plane orthog-
onal to the zero-TF plane that includes it. The Fourier energy
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Figure 5. Model responses to noise plaids. RLS unikinetic plaids (left column) and flicker
plaids (right column) were fed to ourimplementation of a well established model of MT pattern
cells. In each plot, we show the response of a population of model MT pattern cells, each tuned
to a different preferred speed (horizontal speed on the x-axis, vertical speed on the y-axis). The
activity of the cells is described using a grayscale (brighter for stronger activity). The dashed
white lines indicate zero horizontal and vertical preferred speed. In all simulations, one noise
grating is vertical and drifts to the right, and the other is oblique and is either static or different
on each frame. Each row represents a different set of model parameters. In the top row, we used
a standard set of parameters, determined on the basis of MT responses to natural movies. Cells
that prefer motion up and to the right were activated in both cases. In the middle row, connec-
tions to the MT pattern cells from the region of Fourier space around zero TF were removed. The
model responded to neither stimulus, only weakly indicating the direction of motion of the
drifting grating. In the bottom row, the contribution of the zero-TF region was reintroduced, but
the output compressive nonlinearity was removed. The model responded to unikinetic plaids
but not to flicker plaids.

around zero TF is thus much smaller with a flicker plaid than with
a unikinetic plaid. A strong output compressive nonlinearity re-
duces the difference between large and small energies, enabling
this region of Fourier space to contribute, through its excitatory
effect on model pattern cells, even with a flicker plaid.

To summarize, the model responds to unikinetic and flicker
plaids because it receives input from the zero TF region, which
carries form signals. The strong compressive nonlinearity follow-
ing the extraction of Fourier energy is important for the response
to flicker plaids, because it allows strong responses to weak stim-
ulus energy at zero TF. Form information and tuned normaliza-
tion are thus necessary and sufficient to extract pattern motion
signals from our stimuli. Note that, although we have imple-
mented only a version of the S&H model, other models based on
the IOC (embedding a motion-from-form mechanism), such as
the one developed by Perrone and colleagues (Perrone, 2004;
Perrone and Krauzlis, 2008a,b, 2014), might work just as well.

In an effort to further characterize these mechanisms, which
will aid in identifying the underlying neuronal circuits, we now
describe OFRs to several additional manipulations of the stimuli
described above.

Quaia et al. ® Pattern Motion from Form

Temporal properties

The OFRs with flicker plaids and our simulations of the S&H
model reveal that the mechanism that extracts the orientation of
the oblique grating (i.e., form) does not strictly require a static
signal. Therefore, it may be possible to activate this orientation-
selective mechanism even with briefly presented stimuli. To test
this hypothesis, we presented stimuli in which the drifting verti-
cal RLS was present for the entire sequence (24 frames), whereas
the dynamic oblique RLS was presented only at the beginning of
each sequence, for a variable number of frames. Strictly speaking,
we thus briefly presented a flicker plaid, followed by a drifting
RLS (see graphiclegend in Fig. 6, bottom right corner). We found
that (Fig. 6A, bottom row), in all three subjects, presenting the
oblique grating on the first frame only (i.e., for 3 ms given the
persistence of our monitor) was sufficient to elicit an almost max-
imal response (dark red). Three frames (green) were as effective
as a full presentation (magenta). The latencies of the horizontal
and vertical components of the responses were not significantly
affected by this manipulation.

To quantify this phenomenon, in Figure 6B, we plot, for all
subjects and conditions, the mean vertical velocity in a 30 ms
window starting at the onset of the vertical eye deviations (slightly
different latency in the three subjects; see figure legend), normal-
ized relative to the same measure for the 24-frame flicker plaid.
Note that, for clarity of presentation, we have slightly offset
horizontally the data points. For all subjects, in this early time
window, the response is not significantly different (p > 0.05,
unpaired f test) when either 3 or 24 frames of the oblique grating
are presented. Unsurprisingly, later, the sustained presence of the
flickering oblique grating results in a stronger response (Fig. 6A).

Having established that even a very short presentation of the
form signal is sufficient to strongly engage the mechanism, we
next attempted to quantify how large a temporal asynchrony be-
tween the two signals is tolerated. We presented a series of stimuli
in which the oblique grating was presented only for the initial
frame, and the vertical moving grating appeared after a variable
delay (see bottom right corner in Fig. 7). Because the two com-
ponents are separated in time, this is technically not a plaid but a
pseudo-plaid (Kumbhani et al., 2015). In Figure 7A, we show the
OFRs induced by these stimuli, aligned relative to the onset of the
vertical (moving) grating. As the onset delay of the vertical grat-
ing increased, the magnitude of the horizontal component of the
OFRs barely changed (top row). However, the magnitude of the
vertical component (bottom row), the signature of the pattern
motion computation, dropped monotonically, although by quite
different amounts across subjects.

In Figure 7B, we plot the mean vertical velocity in a 45 ms
window starting at the onset of the vertical eye deviations, nor-
malized relative to the simultaneous onset condition, together
with quadratic fits (see figure legend; again, the data points are
slightly offset horizontally for clarity). This measure decreases as
the gap increases; a 33 ms onset delay reduced the response by as
much as 80% and by as little as 30% across subjects. We do not
have a good explanation for such a large intersubject variability,
because OFRs are usually highly reproducible across subjects.
However, we have observed that subjects differ in how sustained
their OFRs are, even in response to simple grating stimuli, and
that, in our three subjects, there is a strong inverse correlation
between how sustained their OFRs are and how quickly the pat-
tern response decreases with the extent of the onset delay in this
experiment.
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Figure 6.  OFRs to flicker plaids with limited presentation of the oblique grating. The stimuli used are represented graphically on the bottom right (actual stimuli were presented in a circular
aperture). Each row represents a different stimulus, and each column represents a frame in the stimulus sequence (frames 6 —23 omitted). 4, The strength of the horizontal component of eye velocity
(top row) was very similar regardless of the number of initial frames during which the oblique grating was present. The vertical component (bottom row) increased but only moderately; a single
frame of the oblique grating was sufficient to induce a strong response. Folded responses are shown. The latency of the responses (both horizontal and vertical components) was not significantly
different in the various conditions. For the three subjects, average latency was 81 ms (B.M.S.), 77 ms (C.Q.), and 78 ms (J.H.) for the horizontal component and 97 ms (B.M.S.), 94 ms (C.Q.), and 96
ms (J.H.) for the vertical component. These latter values are used as starting points for the time windows in which vertical speed is averaged in B. B, Mean vertical speed from the data plotted in A
ina30 ms time window starting at the onset of the vertical component. This short time window is used because late in the movement, after the visual loop has closed, the absence of the oblique RLS
affects the response. The measure is normalized, separately for each subject, relative to the response obtained with a flicker plaid in which the oblique RLS is present for all 24 frames. Note that the
x-axis is categorical, not linear.
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Figure7.  OFRsto flicker plaids with temporal asynchrony between oblique and vertical gratings. The stimuli used are represented graphically on the bottom right. Same format asin Figure 6.4,
The OFR responses are aligned relative to the time at which the vertical grating appeared (time 0). The horizontal component of the eye velocity (top row) is initially only marginally affected by the
delay between the presentation of the oblique grating (present on the first frame only) and the onset of the vertical moving grating. The latency is not affected at all and is thus time-locked to
the onset of motion. However, the vertical component (bottom row) is strongly affected, decreasing in both magnitude and latency (again, relative to motion onset) as the onset delay increased. The
progression is very orderly. Folded responses are shown. B, Mean vertical speed from the data plotted in 4 in a 45 ms time window starting at the onset of the vertical component. The measure is
normalized, separately for each subject, relative to the response obtained when there is no onset delay. Quadratic fits to the data are also indicated.
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Vertical speed

Pattern motion signal delay nent was not. Notably, the longer the onset delay, the shorter the
A striking aspect of the previous experiment is that, although the  latency of the vertical components (the only exception to this rule
horizontal eye velocity was time-locked to the onset of motion is represented by the condition with the longest onset delay in
(i.e., constant latency as plotted in Fig. 7A), the vertical compo-  subject C.Q.; this is probably attributable to the small magnitude
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of the vertical response in this condition).
To better visualize the extent of this effect,
in Figure 8, we plot the horizontal and
vertical velocity components in the same
panel, for the simultaneous onset and the
33.3 ms onset delay conditions (or 26.7
ms in subject C.Q., for the reason indi-
cated above). In all subjects, in the simul-
taneous onset condition (top row), the
vertical component is delayed relative to }

BMS

0.0 ms

Eye speed
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cQ JH

0.0 ms 0.0 ms

the horizontal one, as noted above. How-
ever, this delay is much smaller (and never
significantly different from zero, p > 0.1
for all subjects; Table 2) in the delayed on-
set condition (bottom row). This suggests
that the delay between component and
pattern responses does not simply reflect
the time required to compute pattern
motion from the components but might

33.3ms

Eye speed

—— Horizontal
Vertical

26.7 ms 33.3ms

instead reflect, or at least be significantly
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affected by, a difference in latency be-
tween the extraction of form and mo-
tion signals.

To confirm this novel finding, we per-
formed two additional experiments. First,
we evaluated the effect of the presence of
blank frames. We did so by replicating (in
two subjects, C.Q. and J.H.) the above ex-
periment, but with the oblique flickering
grating visible up until the moving vertical
grating appeared. The delay between the horizontal and vertical
traces was affected just as in the original configuration (data not
shown). In a second experiment with one subject (C.Q.), we at-
tempted to alter the delay by manipulating contrast rather than
temporal onset. The stimulus was composed of a vertical drifting
sine grating (20 Hz TF, 0.25 cpd SF) and a flickering oblique RLS.
We then varied the Michelson contrast of the sine grating be-
tween 4 and 32%, while keeping the contrast of the oblique grat-
ing constant (32%). These contrast variations were aimed at
altering the response latency of the neurons that respond to the
motion signal without changing the latency of the neurons that
detect the oblique grating. Once again, the large delay (28 = 5.62
ms, p = 0.001) observed when both gratings had 32% contrast
(Fig. 9A) all but disappeared (8 * 8.64 ms, p = 0.164) when the
drifting grating had 4% contrast (Fig. 9B). Both the horizontal
and vertical components are delayed at low compared with high
contrast, but the horizontal more so. Note that lowering the con-
trast of both components in a sine (or noise) plaid would not have
yielded this result, and the delay would have been essentially
unchanged, in agreement with previous studies (Barthélemy et
al., 2008, 2010). Two manipulations were critical for our results.
First, to delay only the moving component, only the contrast of
the moving grating was lowered. Second, to prevent the high
contrast component from suppressing the low contrast compo-
nent ahead of the motion integration stage (Sheliga et al., 2008;
Masson and Perrinet, 2012), a moving sine grating had to be
paired with a flickering RLS, yielding a “hybrid plaid.”

The model described above uses as input the Fourier energy of
the stimulus, a global spatiotemporal measure, and thus cannot
be used to simulate the temporal evolution of the pattern motion
signal. In a more realistic implementation, whose development is
beyond the scope of this study, the presence of the delay with the
standard plaids, and its dependence on the contrast and temporal

Figure8.

0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
Time (s)

Time (s) Time (s)

Pattern motion extraction delay for different onset delay conditions. Subset of the traces plotted in Figure 7, displayed
in a different format to highlight the changing delay between the horizontal and vertical OFR components (associated with the
extraction of component and pattern motion, respectively). In the top row, OFRs under the simultaneous onset condition are
shown. In all cases, the vertical component (black) is significantly (Table 2) delayed relative to the horizontal one (gray). In the
bottom row, OFRs under the 33.3 ms (B.M.S. and J.H.) or 26.7 ms (C.Q.) onset delay conditions are shown. The delay between the
onset of the two components is smaller and not statistically significant.

Table 2. Latency of OFRs to flicker noise plaids with asynchronous components
(Fig. 8)

Stimulus Horizontal Vertical Delay p (delay = 0)
B.MS.
0.0ms 79 (1.26) 93 (3.29) 14(3.56 0.010
333ms 75.67 (2.20) 81.67 (3.75) 6 (4.37) 0.146
cQ
0.0ms 77 (1.71) 93 (1.56) 16 (2.31) 0.002
26.7 ms 69.33 (5.26) 76.33 (3.69) 7(6.48) 0.110
JH.
0.0ms 77 (1.43) 94 (1.47) 17 (2.02) 0.001
333 ms 75.67 (1.91) 73.67 (8.91) —2(9.05) 0.664

The latencies of the horizontal and vertical components of the OFRs and the delay of the latter relative to the former
are listed for each subject and for two gap conditions. The values are expressed in milliseconds. SEM estimates for
each value are also indicated (in parentheses). The p values for the test that the delay is significantly different from
zero based on hootstrapping techniques (see Materials and Methods) is indicated in the last column.

offset of the two gratings, could be reproduced if the output of V1
form cells was delayed (or had a longer latency) relative to that of
V1 motion cells. Manipulations that selectively delay the output
of motion cells relative to that of form cells would then be ex-
pected to reduce, and eventually abolish, this delay, as we ob-
served. Itis worth noting that similar delays have been reported in
most studies of pattern motion computations (Yo and Wilson,
1992; Bowns, 1996; Pack and Born, 2001; Masson and Castet,
2002; Barthélemy et al., 2008; Smith et al., 2010; Tlapale et al.,
2010; Beck and Neumann, 2011; Perrone and Krauzlis, 2014).
Obviously, our variable delays are specific to our stimuli and to
the modality (reflexive eye movements) we investigated. Never-
theless, our findings highlight the need to more carefully investi-
gate the nature of such delays and, in particular, to verify how
robust they are to various stimulus manipulations.
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Figure9.  Pattern motion extraction delay is affected by the contrast of the moving grating.
Here, one subject (C.Q.) is presented with the sum of a vertical drifting sinusoidal grating and an
oblique flickering RLS. A, Both gratings have a Michelson contrast of 32%, and the vertical
component is significantly delayed relative to the horizontal one. B, The contrast of the sine
grating has been lowered to 4%, whereas that of the oblique grating s still 32%. As a result,
both components are weaker and delayed. However, the horizontal component is delayed
much more, so that the two components have now essentially the same latency. Folded re-
sponses are shown.

Spatial properties

When Masson and Castet (2002), in their seminal work on OFRs
to unikinetic sine plaids, paired a drifting grating (6 Hz TF, 0.25
cpd SF) with static oblique gratings of different SFs, they found
that the strongest pattern motion response was observed when
the static oblique grating had an SF that was two to three times
higher than that of the moving grating. Given the low TF used in
their experiments, pattern motion extraction might have been
based on feature-tracking mechanisms, an explanation that they
favored. We were interested in verifying whether a similar tuning
also applies to the IOC-based pattern motion mechanism that
appears to underlie the OFRs to our noise plaids and whether it
varies with the SF of the drifting grating. In an effort to minimize
the potential effect of mechanisms that track features, zero cross-
ings/mean luminance and/or contrast modulations, we used uni-
kinetic sine plaids in which the drifting grating (and thus all the
potential features) has a high TF (20 Hz). Because no tracking
mechanism has been ever reported to operate above 10 Hz (Lu
and Sperling, 2001), this stimulus should not engage any such
mechanism.

In Figure 10, we plot, for each pair of SFs tested, the mean
vertical component of the OFR in a 50 ms time window starting
80 ms after stimulus onset, together with log-Gaussian fits for
each SF of the moving grating tested (parameters for the fits are
listed in Table 3). We replicated Masson and Castet’s original
finding with the 0.25 cpd drifting grating (blue line), but we
additionally discovered that the strength of the pattern motion
signal is barely affected by the SF of the moving grating and is
instead mostly determined by the SF of the oblique grating. The
most effective SF of the static grating is thus approximately con-
stant (mean and SEM for the location of the fit peak are plotted
above each graph, color-coded for each SF of the moving grat-
ing), not a constant multiple of the SF of the moving grating. It is
also obviously not equal to the SF of the moving grating (which
varies much more; see bars at the bottom of each graph), as would
have been expected on the basis of perceptual coherence ex-
periments (Adelson and Movshon, 1982; Movshon et al., 1985;
Clifford and Vaina, 1999).

To account for this type of behavior, the model described
above would have to be modified by restricting the near-zero TF
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region projecting to MT cells to a limited band of SFs, excluding
the lowest SFs. This would require the MT cells to sample energy
in the 3D Fourier space not across the entire velocity plane but
rather in a toroiodal (i.e., doughnut-like) region coplanar with
the velocity plane. At least some MT cells do in fact appear to
sample inputs in exactly this way (Nishimoto and Gallant, 2011).

Another question regarding the spatial properties of this
mechanism is whether the two gratings in the plaid must occupy
the same region of the visual field. Recent results in anesthetized
monkeys revealed that, with type I plaids, pattern neurons in area
MT integrate the motion signals from the two gratings only if
they are physically superimposed or separated by a small distance
(comparable with the size of V1 receptive fields): falling within
the receptive field of the MT pattern cell being recorded is not
sufficient (Majaj et al., 2007; Kumbhani et al., 2015). Based on
these results, Movshon and colleagues proposed that a pattern
motion signal is computed only for gratings that are overlapping,
or nearly so.

To verify whether this hypothesis holds for unikinetic plaids,
we spatially separated the drifting and static gratings. Once again,
a question such as this is better addressed using stimuli localized
in SF, because it is well known that the size of early cortical filters
is directly related to their preferred SF (De Valois et al., 1982; De
Valois and De Valois, 1988). Thus, we presented a center-
surround configuration, in which a vertical sine grating (0.5 cpd)
drifted (at 20 Hz) within a central square aperture (7.5° side),
whereas a static oblique sine grating (1.0 cpd) was presented in a
surrounding square frame. The frame was 8.4° thick, and a blank
(at mean luminance) gap of variable width (between 0.08° and
2.7°) was added between the edges of the central drifting grating
and the frame’s inner border. Because the two gratings are phys-
ically separated in space, these are pseudoplaids.

We found that the magnitude of the horizontal component of
the OFRs was only marginally affected by the width of the gap; the
magnitude of the vertical component was instead strongly af-
fected. In Figure 11, we plot the mean vertical eye velocity in a 40
ms window starting 90 ms after stimulus onset (the approximate
latency in all three subjects in this experiment) as a function of the
gap between the central moving grating and the surrounding
static grating. Small horizontal offsets have been introduced to
avoid overlapping of data points. The measures have been nor-
malized to the value of the same measure obtained when both
gratings are superimposed centrally. In all three subjects, the
response decreased as the gap increased. In two subjects, the re-
sponse was very small once the gap was wider than 2° (one wave-
length of the moving grating), but in one it was sizeable, albeit
small, even then. We fit a line through the data points, with the
gap expressed on a logarithmic scale. For each doubling of the
gap, the response decreased by 4.8% (B.M.S.), 6.1% (C.Q.), and
8.9% (J.H.). Note that this drop cannot be imputed to a lower
effectiveness of the periphery: when we presented both gratings
superimposed in the periphery (with the stimulus covering the
same area as the static grating did in the largest gap condition), a
robust pattern response was induced in all three subjects (data
not shown).

Although a physical overlap between the moving and static
stimuli in a unikinetic plaid is thus not necessary to compute a
pattern motion signal, the separation tolerated is relatively
small and compatible with the idea that the detectors of the
two gratings must have overlapping receptive fields in early
visual cortex (as opposed to area MT).
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Binocular properties
Previous evidence with type I sinusoidal
plaids (Tailby et al., 2010) indicates that
pattern motion computations are par-
tially disrupted when the two gratings in
the plaid are presented separately to each
eye (dichoptic viewing). More precisely,
in anesthetized monkeys, the vast majority
of cells in area MT that are pattern selective
with monocular plaids lose their selectivity
with dichoptic plaids. Similarly, human
subjects perceive pattern motion only 30%
of the time with dichoptic plaids.

Because OFRs to pattern motion arise

BMS

Mean vertical eye speed
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even when stimuli do not cohere, they
might be a sensitive tool to study pattern
motion extraction under dichoptic view-
ing. Therefore, we presented flicker plaids
dichoptically to our subjects and mea-
sured their version eye velocity (i.e., mean
of left and right eye velocity). We com-
pared two viewing conditions: monocular
(one eye sees a flicker plaid and the other
eye sees a blank screen, at mean lumi-
nance) and dichoptic (one eye sees the
drifting vertical RLS and the other eye sees the flickering oblique
RLS). Because we found no significant differences in OFRs de-
pending on which eye was seeing what, we averaged the response
obtained under the two monocular conditions and separately
under the two dichoptic conditions. We found (Fig. 12) a clear
horizontal and vertical eye deviation under both conditions, in all
three subjects. Initially the OFR was identical in the two condi-
tions; starting ~110 ms (listed as split time in Table 4) after
stimulus onset, the OFRs observed under dichoptic and monoc-
ular viewing diverged, with the former becoming weaker. This
was true for both components but more extensively for the ver-
tical one. In all subjects, the split time was not significantly dif-
ferent for the horizontal and vertical components (p > 0.1),
although the absolute latencies of the horizontal and vertical
components were significantly different (p < 0.01) under both
viewing conditions. We repeated these experiments with uniki-
netic noise plaids (in two subjects, C.Q. and B.M.S.) and with
unikinetic sine plaids (in all three subjects). The results were
identical: initially, the OFR was the same in the monocular and
dichoptic conditions, but, in the dichoptic condition, an attenu-
ation quickly ensued (data not shown).

We do not have a simple explanation for the delayed weak-
ening under dichoptic viewing. The most obvious explanation
would be that it is the result of binocular rivalry. The delay
could be explained if rivalry takes time to ensue. Indeed, this
seems to be the case, but previous estimates of rivalry onset
delay (150—450 ms) are much longer than the delay we ob-
serve (Wolfe, 1983; Blake, 1989). We believe that a more nu-
anced explanation, requiring additional experimentation, will
be needed.

Figure 10.

Discussion

The rules by which the brain extracts pattern motion from plaids
have been studied previously using sinusoidal plaids. Here we
introduced plaids obtained by summing two RLS, which offer
distinct advantages. In particular, they do not engage several
higher-order mechanisms, thus highlighting the role of more
narrowly defined mechanisms.

0.1 1.0
SF static grating (cpd)

SF tuning of the pattern motion response. Mean vertical speed in a 50 ms time window starting 80 ms after stimulus
onset. The stimuli are unikinetic sinusoidal plaids, in which the SF of each grating is varied. The SF of the static oblique grating is
indicated on the abscissa, and a separate log-Gaussian fit is plotted for different values of the SF of the drifting grating (indicated
by the colored bars at the bottom of the graph). Fits and data are normalized relative to the fit peak to highlight the minimal
changes in peak location and bandwidth of the three curves. Values of the (un-normalized) fit parameters are listed in Table 3. The
SF (mean and SEM bars) of the static grating associated with peak vertical OFR, for each SF of the moving grating, is indicated using
color-coded dots at the top of the graph.

Table 3. Spatial frequency tuning of pattern motion response (Fig. 10)

SF moving Peak response SF at Peak Bandwidth
B.M.S.
0.125 0.73 (0.03) 0.79 (0.73-0.88) 4.28(0.38)
0.25 0.97 (0.04) 0.75(0.70-0.79) 4.09 (0.25)
0.5 0.97 (0.04) 0.80 (0.77-0.85) 3.82(0.21)
cQ.
0.125 0.65 (0.03) 0.65 (0.61-0.70) 3.94(0.26)
0.25 0.96 (0.03) 0.68 (0.66—0.71) 3.60 (0.15)
0.5 0.94 (0.03) 0.85 (0.82—-0.88) 3.74(0.16)
JH.
0.125 0.59 (0.03) 0.89 (0.73-1.17) 5.75(0.79)
0.25 0.83 (0.04) 0.70 (0.65—-0.78) 470 (0.36)
0.5 0.87 (0.04) 0.85 (0.78-0.95) 4.21(0.36)

Parameters for the log-Gaussian fits shown in Figure 10 are listed here. For the peak value of the log-Gaussian
function and the bandwidth (full-width at half-height, expressed in octaves) SEM estimates are also listed (in
parentheses). For the SF corresponding to the peak, an SEM cannot be indicated (the distribution is symmetricin log
space and hence skewed in linear space), and the 68% confidence interval is listed instead.
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Figure11.  Pattern motion response varies with the spatial separation between oblique and
vertical gratings. Mean vertical speed in a 40 ms time window starting 90 ms after stimulus
onset (the approximate latency of the response). The measure is normalized, separately for each
subject, relative to the response obtained when both gratings are centrally located and fully
overlapping. Note that the abscissa is logarithmic. Log-linear fits to the data are also indicated.
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In agreement with recordings from MT
pattern cells in monkeys tested with type I
plaids (Majaj et al., 2007; Kumbhani et al.,
2015), we found that moderate temporal
(Fig. 7) and/or spatial (Fig. 11) separation
of the gratings are the manipulations most
effective at impairing the computation of
pattern motion. In contrast, even short
presentations of the oblique grating,
barely perceived, are sufficient to support

—— Monocular
— Dichoptic

Vertical speed

| | | | | |

the computation (Fig. 6). We also found
that the earliest 30 ms of the OFRs elicited
by our plaids are just as strong under
monocular and dichoptic presentation of
the gratings (Fig. 12). The mechanism
thus operates binocularly, and motion
and orientation signals are combined re-
gardless of eye of origin. Later, responses
are attenuated in the dichoptic case, in
agreement with previous physiological
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Figure 12.

Timing statistics are reported in Table 4.

Table 4. Latencies under different viewing conditions (Fig. 12)

Latency Split time

Viewing Horizontal Vertical Horizontal Vertical
B.M.S.

Monocular 87 (3.65) 103 (1.71)

Dichoptic 85(3.16) 100 (1.78) 117 (4.84) 110 (1.56)
cQ

Monocular 77 (3.36) 98 (2.16)

Dichoptic 79 (2.57) 99 (3.01) 107 (3.24) 108 (2.52)
JH.

Monocular 83 (1.86) 97 (2.50)

Dichoptic 82(3.02) 97 (3.05) 108 (10.94) 109 (4.12)

The latencies of the horizontal and vertical components of the OFRs, separately for each subject and for two viewing
conditions, are listed. The time at which the horizontal and vertical conditions first differ significantly across the two
viewing conditions are also shown. All values are expressed in milliseconds. SEM estimates for each value are
indicated (in parentheses).

We found that unikinetic RLS plaids induce robust reflexive
OFRs in a direction that reveals the operation of a mechanism for
computing pattern motion (Fig. 4). Similar responses were also
observed with flicker plaids, implying the operation of a motion-
from-form mechanism. Although none of the many feature-
tracking mechanisms proposed can account for this type of
behavior, we showed that a model based on the IOC mechanism
can. Our simulations (Fig. 5) reveal that its ability to do so de-
pends on nonlinear processing of Fourier energy, mediated by a
compressive nonlinearity (or by tuned normalization), and on
the explicit use of information about the orientation of compo-
nents at zero TF (motion-from-form). What makes this mecha-
nism compelling is that it correctly predicts responses even for
stimuli, such as flicker plaids, that do not contain true pattern
motion.

We performed several additional experiments to further char-
acterize the neural mechanism responsible for this computation.

OFRs to monocular and dichoptic flicker noise plaids. Even dichoptically presented flicker plaids induce sizeable
pattern motion responses, indicating that the combination of the signals representing the two gratings occurs at a cortical level. For
thefirst 110 ms, the OFRs were identical in the monocular and dichoptic conditions, in both their horizontal (top row) and vertical
(bottom row) components. Afterward, the dichoptic viewing condition resulted in weaker responses. Folded responses are shown.

and perceptual findings that pattern mo-
tion signals are disrupted under these
conditions (Tailby et al., 2010). This find-
ing highlights the sensitivity of eye
movement recordings to neural processes
that produce short-lived responses, often
hard to capture with other techniques.

Next, we found that the latency differ-
ence between component and pattern re-
sponses is sensitive to the relative timing
(Fig. 8) or contrast (Fig. 9) of the two components. This obser-
vation is very important, because it demonstrates that the delay is
not simply attributable to the time required to compute the pat-
tern motion signal. Furthermore, it implies that form and motion
information are treated differently. This idea is reinforced by our
results with sinusoidal plaids in which the static and moving
components had different SFs. We found that it is the absolute SF
of each component, not the relative SF, that determines the
strength of the pattern response (Fig. 10). The motion and form
pathways that cooperate to compute pattern motion, at least for
the eye movements measured here, have thus distinct SF tuning
properties. For the reflexive eye movements we studied, motion
information is most effective at SFs ~0.25 cpd (Sheliga et al.,
2005; Miura et al., 2006), whereas the sensitivity to form infor-
mation peaks at ~0.8 cpd (Table 3).

One way to account for these results is to hypothesize that
form information is first encoded by V1 sustained (V1s) neurons
and motion information by V1 transient (V1t) neurons. The dif-
ferent SF tuning we reported could then be explained if V1s neu-
rons are, on average, tuned to higher SFs than V1t neurons, as
reported in cats (Ikeda and Wright, 1975b,a). The temporal de-
pendencies we observed would be reproduced by a model in
which the form signal normally arrives in area M T after (i.e., with
a longer latency than) the motion signal. There are two ways in
which such a delay might arise. First, the V1s neurons might have
longer latencies than the V1t neurons, as shown in cats (Ikeda and
Wright, 1975a). Second, the form and motion signals might reach
MT through different routes, with the one for the form signal
being slower. The currently available evidence (Movshon and
Newsome, 1996) suggests that V1 neurons projecting directly to
area MT tend to be direction selective and thus transient
(Hawken et al., 1996). We tentatively suggest that the motion
signal might be carried mostly by the V1t—-MT pathway. The form
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signal might instead be routed through area V2, in which many
nondirection-selective V1 neurons project (El-Shamayleh et al.,
2013). From there, it might either go to MT directly, as proposed
by others to account for the barber-pole illusion (Lidén and Min-
golla, 1998), or through area V4, as proposed by Ross et al.
(2000). Therefore, the V1s—V2-MT or V1s—V2-V4-MT path-
ways are both potential candidates for carrying the form signal.
This longer routing of the form signal could then contribute to
the latency differences discussed above.

Our interpretation of the data presented here has focused
mainly on a model of MT pattern cells, but neurophysiological
studies describing how they actually respond to unikinetic sinu-
soidal plaids are also becoming available. Only one study has been
published so far, and it has reported that only a small fraction of
MT pattern cells are tuned to the pattern motion direction of
unikinetic plaids and that this fraction increases significantly in
area MST (Khawaja et al., 2013). Thus, it is possible that the
pattern motion signal might take shape only in area MST, in
which the overall fraction of pattern cells is larger than in area MT
(Khawaja et al., 2009). However, another study, which used a
more sensitive measure to test the behavior of MT cells to
unikinetic plaids, found that most pattern cells in area MT are
atleast partially affected by the presence of the static grating in
a way that is compatible with coding of pattern motion direc-
tion (Wallisch and Movshon, 2011). Additional recordings,
ideally with patterns such as those used here, will be needed to
understand the extent to which real MT cells behave like ideal
model MT cells.

The many facets of motion-from-form

The term motion-from-form is used to indicate mechanisms in
which form information, typically orientation, affects motion
processing. The first concrete proposal that this type of mecha-
nism might play a role in human vision is usually considered the
motion streak (or speed lines) mechanism proposed by Geisler
and colleagues (Geisler, 1999; Geisler et al., 2001). The basic idea
behind this mechanism is that, thanks to their finite temporal
integration window, sustained V1 neurons extract the path (i.e.,
unsigned direction) along which 2D features move. Such a mech-
anism would work better at high rather than low speed, a predic-
tion experimentally confirmed by Geisler. Since then, other
motion-from-form mechanisms have been proposed, and exper-
imentally supported, to account for a number of motion percep-
tion phenomena, including the barber-pole illusion (Badcock et
al., 2003), and the motion percept that arises with Glass pat-
terns (Ross et al., 2000; Burr and Ross, 2002; Krekelberg et al.,
2003; Ross, 2004; Badcock and Dickinson, 2009). Therefore,
the presence of motion-from-form mechanisms in the com-
putational repertoire of the visual system is well established
and generally accepted.

Although not widely recognized, the S&H model (Simoncelli
and Heeger, 1998) also includes a motion-from-form compo-
nent. In fact, in the reference implementation of the S&H model,
each MT pattern cell receives excitatory inputs from four V1
complex cells, and one of these is tuned to the orientation parallel
to the preferred direction of the MT cell and to zero TF. This is the
key element of the motion streak mechanism proposed by Gei-
sler. Much like the motion streak model, the S&H model also
extracts form information even when a static orientation signal is
not physically present (e.g., with flicker plaids). This type of be-
havior is also observed in human OFRs: flicker plaids elicit strong
OFRs, and even a single 3 ms flash of the oriented stimulus,
perceptually invisible to some of our subjects, is sufficient to
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produce a strong pattern motion response. However, the role
played by form information in the S&H model had never been
validated experimentally. By ruling out the potential contribu-
tion of mechanisms that track stimulus features, to which previ-
ous results with unikinetic plaids could have (and often have)
been attributed, our study is the first to do so. This demonstrates
that a motion-from-form mechanism plays a role in extracting
pattern motion from complex patterns.
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