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Involves Inhibitory Mechanisms in the Primary
Somatosensory Area

Lorenzo Rocchi,'2 Elias Casula,'> Pierluigi Tocco,'* “Alfredo Berardelli,>* and John Rothwell'

1Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, WCIN 3BG, London, United
Kingdom, 2Department of Neurology and Psychiatry, Sapienza University of Rome, 00185 Rome, Italy, *Non-Invasive Brain Stimulation Unit, Clinical and
Behavioral Neurology Department, Institute for Inpatient Treatment and Scientific Studies Santa Lucia Foundation, 00142 Rome, Italy, “Department of
Neurological and Movement Sciences, University of Verona, 37134 Verona, Italy, and *Institute for Inpatient Treatment and Scientific Studies Neuromed
Institute, 86077 Pozzilli, Italy

Somatosensory temporal discrimination threshold (STDT) is defined as the shortest time interval necessary for a pair of tactile stimuli to
be perceived as separate. Although STDT is altered in several neurological disorders, its neural bases are not entirely clear. We used
continuous theta burst stimulation (cTBS) to condition the excitability of the primary somatosensory cortex in healthy humans to
examine its possible contribution to STDT. Excitability was assessed using the recovery cycle of the N20 component of somatosensory
evoked potentials (SEP) and the area of high-frequency oscillations (HFO). cTBS increased STDT and reduced inhibition in the N20
recovery cycle at an interstimulus interval of 5 ms. It also reduced the amplitude of late HFO. All three effects were correlated. There was
no effect of cTBS over the secondary somatosensory cortex on STDT, although it reduced the N120 component of the SEP. STDT is
assessed conventionally with a simple ascending method. To increase insight into the effect of cTBS, we measured temporal discrimina-
tion with a psychophysical method. cTBS reduced the slope of the discrimination curve, consistent with a reduction of the quality of
sensory information caused by an increase in noise. We hypothesize that cTBS reduces the effectiveness of inhibitory interactions
normally used to sharpen temporal processing of sensory inputs. This reduction in discriminability of sensory input is equivalent to
adding neural noise to the signal.

Key words: high-frequency oscillations; somatosensory evoked potentials; somatosensory temporal discrimination threshold; transcra-
nial magnetic stimulation
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Precise timing of sensory information is crucial for nearly every aspect of human perception and behavior. One way to assess the
ability to analyze temporal information in the somatosensory domain is to measure the somatosensory temporal discrimination
threshold (STDT), defined as the shortest time interval necessary for a pair of tactile stimuli to be perceived as separate. In this
study, we found that STDT depends on inhibitory mechanisms within the primary somatosensory area (S1). This finding helps
interpret the sensory processing deficits in neurological diseases, such as focal dystonia and Parkinson’s disease, and possibly
prompts future studies using neurostimulation techniques over S1 for therapeutic purposes in dystonic patients. j
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ease (Artieda et al., 1992; Conte et al., 2010, 2013), and multiple
system atrophy (Rocchi et al., 2013). Work on healthy subjects
(Pastor et al., 2004; Conte et al., 2012) and on patients with focal
cerebral lesions (Lacruz et al., 1991) has shown that several brain
regions are involved in STDT, such as the primary somatosensory
area (S1), the presupplementary motor area, and the basal gan-
glia. However, the precise contribution of each area to the task is
unknown. In the present study, we ask whether S1 or the second-
ary somatosensory cortex (S2) act purely to transmit the sensory
information to other centers or whether they are involved in
some form of active processing of the signal that contributes to
STDT. Conte et al. (2012) have shown that continuous theta
burst (cTBS) transcranial magnetic stimulation (TMS), a tech-
nique that can interfere with the function of cortical areas, in-
creases STDT in healthy subjects (Conte et al., 2012). Therefore,
we applied it to S1 and S2 to test whether changes in STDT were
correlated with changes in physiological processing in each area.

Because cTBS is known to reduce the excitability of inhibitory
systems in primary motor cortex (M1), we tested whether this
might also be the case in S1 (Conte et al., 2012). The activity of
inhibitory interneurons in S1 can be probed by measuring
high-frequency oscillations (HFO), which are low-amplitude,
high-frequency wavelets superimposed on the N20 wave of so-
matosensory evoked potentials (SEP) and represent, at least in
their late component, the activity of S1 inhibitory interneurons
(Curio, 2000; Ozaki and Hashimoto, 2011). Another marker of
S1 inhibition is thought to be the recovery cycle of SEP. Using
paired-pulse stimulation (PP-SEP), the amplitude of the SEP
evoked by the second stimulus is suppressed depending on the
interstimulus interval (ISI; Valeriani et al., 2005; Vollono et al.,
2010).

The role of higher-order somatosensory areas in STDT has
not been investigated. In particular, neurons in S2 show spiking
rate modulation based on the frequency of tactile stimuli (Salinas
et al., 2000). S2 has also been showed to be involved in a vibrot-
actile sequential discrimination task (Romo et al., 2002; Romo
and Salinas, 2003); thus, a role of S2 in STDT may be hypothe-
sized, although it has not yet been verified experimentally. In S2,
we recorded late components of the SEP.

Our hypothesis was that, if cTBS reduced the effectiveness of
inhibitory systems in S1 that were involved in temporal sharpen-
ing of sensory inputs, this would be equivalent to reducing the
discriminability of paired inputs. To test this, in a final experi-
ment, we examined STDT using a psychophysical method with
the prediction that reducing the quality of sensory information
would decrease the slope of the discrimination curve.

Materials and Methods

Subjects

Twenty-two healthy subjects (12 males, 10 females, aged 29.24 * 4.32
years), all right-handed (Oldfield, 1971), were enrolled in the study. Par-
ticipants had no history of any neuropsychiatric disorders, neurosurgery,
or metal or electronic implants and were not taking drugs with actions on
the CNS level at the time of the experiments. All experimental procedures
were approved by the local institutional review board and conducted in
accordance with the Declaration of Helsinki and according to interna-
tional safety guidelines. The same 12 subjects took part in Experiments
1-3, whereas the other 10 subjects participated in Experiments 4 and 5
(see below).

STDT

Ascending method. In Experiments 1-3, STDT was investigated by deliv-
ering paired stimuli starting with an ISI of 0 ms (simultaneous pair) and
progressively increasing the ISI steps by 10 ms, using the experimental
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procedure of Conte et al. (2010, 2012). Paired tactile stimuli consisted of
square-wave electrical pulses delivered with a constant-current stimula-
tor (Digitimer DS7A) through surface skin electrodes with the anode
located 0.5 cm distally to the cathode. The surface skin electrodes were
applied on the distal phalanx of both the left and right index fingers. The
stimulation intensity was defined for each subject by delivering series of
stimuli at an increasing intensity from 2 mA in steps of 0.5 mA; the
intensity used for the STDT was the minimal intensity perceived by
the subject in 10 of 10 consecutive stimuli (Conte et al., 2010, 2012).
Before STDT testing started, subjects familiarized themselves with the
task and achieved a stable performance. Subjects were asked to report
verbally whether they perceived a single stimulus or two temporally sep-
arate stimuli. The first of three consecutive ISI at which participants
recognized the stimuli as temporally separated was considered the STDT.
To keep the subject’s attention level constant during the test and to
minimize the risk of perseverative responses, the STDT testing procedure
included “catch” trials consisting of a single stimulus delivered ran-
domly. Each session comprised four separate blocks. The STDT was
defined as the average of four STDT values (i.e., one for each block) and
was entered in the data analysis.

Psychophysical method. In Experiments 4 and 5, subjects underwent a
choice reaction time (RT) task in which they had to use their right hand
to press a button to indicate that they perceived a single stimulus or
another button when they perceived two stimuli; electrical pulses were
applied on the distal phalanx of the left index finger. Fifteen ISI were
investigated (from 0 to 140 ms), and 15 trials for each ISI were delivered
in a random order. The number of “1” and “2” responses for each ISI
were measured. A psychometric curve was created plotting the percent-
age of “2” responses as a function of the ISI. A logistic function was fitted
to the data. The psychophysical relative threshold (PRT), which is a
measure of the amount of change that a stimulus must have to be de-
tected by the subject, was defined as half of the difference in ISI measured
at0.75p and 0.25p, where p indicates percentage on the Y-axis. The point
of subjective equality (PSE), which is a measure of the internal boundary
used to classify the two examined categories (one or two perceived stim-
uli), was calculated as the ISI corresponding to 0.5p in the psychometric
curve (Mendez et al., 2011). Finally, average RTs were measured for each
IST and analyzed.

SEP recording and analysis

SEP were recorded from scalp Ag—AgCl surface electrodes. In Experi-
ments 1 and 3, the active electrode was placed at CP4 and the reference
electrode at Fz, according to the international 10-20 system of EEG
electrode placement (Klem et al., 1999). The left median nerve was stim-
ulated at the wrist with a constant-current stimulator (Digitimer DS7A),
with the anode placed on the wrist crease and the cathode placed 2 cm
proximal. Monophasic square wave pulses of 200 us duration were de-
livered at 250% of the sensory threshold and at a frequency of 5 Hz.
Recordings were collected at a sampling rate of 5 kHz, beginning 20 ms
before each stimulus and lasting for 100 ms. Data were band-passed
filtered from 3 Hz to 2 kHz (Cruccu et al., 2008). In the first block, 1000
sweeps were averaged, and N20 peak latency and N20—P25 peak-to-peak
amplitude were measured. The recording from this block was also used to
measure HFO, as explained below. Three more recording blocks of 750
frames each were performed to measure the N20—P25 recovery cycle. In
each of them, 750 trials were averaged, and paired pulses at ISI of 5, 20,
and 40 ms were delivered (Meyer-Hardting et al., 1983; Valeriani et al.,
2005; Vollono et al., 2010). In the paired stimuli trials, the responses after
the second stimulus were obtained by subtracting the SEP waveform
obtained by the first stimulus (Meyer-Hardting et al., 1983; Valeriani et
al., 2005; Vollono et al., 2010). R5, R20, and R40 were defined as the ratio
between the second and first responses.

In Experiment 2, SEP were recorded in a manner similar to Experi-
ment 1, but active electrodes were placed at T3 and T4 with an Fz refer-
ence. A stimulation frequency of 1.2 * 20%/s was used with a sweep
duration of 300 ms, including a 40 ms period before the stimulus artifact.
A single block of 250 frames was recorded, so as to obtain a clear N120
component on the temporal region contralateral to stimulation (T4;
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Garcia-Larrea et al., 1995; Valeriani et al., 2003). N120 latency and am-
plitude baseline to peak were measured.

Analysis of HFO

To extract HFO from the underlying N20, the stimulus artifact was re-
moved manually from —10 to +5 ms to avoid ringing (Katayama et al.,
2010). The SEP wide-band signal was bandpass filtered digitally (400—
800 Hz) and averaged. HFO waveform was divided in two components,
namely early (e-HFO) and late (I-HFO), separated by the latency of
the N20 peak. Onset of e-HFO and offset of I-HFO were defined as the
time point at which their amplitudes exceeded the averaged background
noise level by 3 SDs (Murakami et al., 2008); the signal was then corrected
for DC shift and rectified. e-HFO and I-HFO area under the curve were
measured and analyzed.

TMS and electromyographic recording
EMG activity was recorded through a pair of Ag/AgCl electrodes placed
over the left first dorsal interosseous (FDI) muscle in a belly-tendon
manner. Raw signal, sampled at 5 kHz with a CED 1401 analog-to-digital
laboratory interface (Cambridge Electronic Design), was amplified and
filtered (bandwidth, 20 Hz to 2 kHz) with a Digitimer D360 (Digitimer).
Data were stored on a laboratory computer for online visual display and
additional offline analysis (Signal software; Cambridge Electronic De-
sign). To ensure complete target muscle relaxation throughout the ex-
perimental sessions, we continuously monitored the EMG activity with
audio and high-gain visual feedback.

Single-pulse TMS was performed using a Magstim 200 stimulator with
a 70 mm figure-of-eight coil (Magstim) that produces stimuli with a
monophasic waveform and pulse width ~0.1 ms. Repetitive TMS, re-
quired for cTBS, was delivered with a biphasic Magstim Rapid * stimula-
tor. cTBS was delivered to the right S1 and the right S2 according to the
procedures described in the next paragraph. Three-pulse bursts at 50 Hz
repeated every 200 ms for 40 s were delivered at 80% active motor thresh-
old (AMT; Huang et al., 2005). AMT was calculated during a 10-15%
maximum voluntary contraction of the right FDI as the lowest magnetic
stimulator intensity able to evoke a motor evoked potential (MEP) of at
least 200 wV in 5 of 10 consecutive trials. The motor hotspot was defined
as the M1 site at which TMS evoked the largest MEP in the FDI muscle. In
Experiment 3, as a control condition for Experiment 1, sham c¢TBS was
applied to the right SI, with the coil held perpendicularly to the scalp
surface (Conte et al., 2014).

Localization of cortical areas of interest

To ensure accurate coil positioning during cTBS, we used a neuronavi-
gator Polaris Spectra optical measurement system (Northern Digital)
combined with Brainsight navigation software (Rogue Research). An
estimated individualized MRI scan in the Talairach space was used for all
the participants. Previous studies demonstrated that the mean accuracy
of the estimated MRI scans is comparable with the spatial resolution of
TMS (Herwig et al., 2001; Sandrini et al., 2008). S1 and S2 were located
according to Talairach coordinates reported in previous studies, respec-
tively (x, y, z) = (48, —28, 54) for right S1 (Boakye et al., 2000) and
(%, 9, 2) = (52, —4, 18) for S2 (Lockwood et al., 2013).

Procedure

In Experiment 1, STDT, PP-SEP, and HFO were measured before cTBS
(TO), 5 min after ¢cTBS (T1), and 30 min after ¢cTBS (T2) on SI. In
Experiment 2, STDT and SEP from S2 were measured before cTBS (T0),
5 min after ¢TBS (T1), and 30 min after cTBS (T2) delivered over S2.
Experiment 3 was conducted similarly to the first session, although sham
¢TBS was used. The same 12 subjects participated in the first three exper-
iments. The three sessions were counterbalanced across subjects, and
STDT and the different blocks of SEP recordings were randomized
within each session. At least 1 week elapsed between each session. In
Experiment 4, we assessed STDT with the psychophysical method, as well
as the ascending method before cTBS (T0) and 5 min after cTBS (T1).
Experiment 5 was similar to Experiment 4, except that sham c¢TBS was
used. The same 10 subjects participated in Experiments 4 and 5.
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Statistical analysis
A three-way repeated-measures ANOVA with session (S1, S2, sham),
time (TO, T1, T2), and side (right, left) as factors of analysis was per-
formed to disclose possible differences of STDT values at baseline and to
evaluate the effect of cTBS on STDT in Experiments 1 to 3. Two separate
two-way repeated-measures ANOVAs with session (S1, sham) and time
(TO0, T1, T2) as factors of analysis were performed to disclose possible
effects of cTBS on N20 amplitude and latency. A three-way repeated-
measures ANOVA with session (S1, sham), time (T0, T1, T2), and ISI
(R5, R20, R40) as factors of analysis was performed to investigate the
effect of cTBS on N20 recovery cycle. Two separate two-way repeated-
measures ANOVAs with session (S1, sham) and time (TO0, T1, T2) as
factors of analysis were performed to investigate the effect of cTBS on
e-HFO and I-HFO area. Pearson’s correlation coefficient was used to
investigate possible correlations between baseline STDT measured on left
hand, e-HFO area, I-HFO, and SEP recovery cycle. The same test was
used to investigate whether the changes induced by ¢TBS on the same
parameters from TO and T1 and from T0 and T2 were correlated. A
two-way repeated-measures ANOVA with time (T0, T1, T2) and elec-
trode (T4, T3) as factors of analysis was performed to disclose a possible
effect of ¢TBS delivered over S2 on the N120 amplitude. Two separate
two-way repeated-measures ANOVAs with session (real, sham) and time
(TO, T1) as factors of analysis were performed to disclose possible
changes induced by ¢TBS on PRT and PSE. A three-way repeated-
measures ANOVA with session (real, sham), time (T0, T1), and ISI (0—
140 ms) as factors of analysis was performed to investigate a possible
effect of cTBS on RT. A three-way repeated-measures ANOVA with ses-
sion (real, sham), time (T0, T1), and side (right, left) as factors of analysis
was performed to disclose possible effects on STDT measured with the
ascending method in Experiments 4 and 5. An additional Pearson’s cor-
relation coefficient was used to investigate a possible correlation between
baseline values of STDT, PSE, and PRT measured in Experiment 4.
Before undergoing ANOVA procedures, normal distribution of data
was assessed by means of Shapiro—Wilks test. All p values <0.05 were
considered significant. Greenhouse— Geisser correction was used when
necessary to correct for nonsphericity (i.e., Mauchly’s test <0.05). Bon-
ferroni’s post hoc test was used for all post hoc analyses. Bonferroni’s
correction for multiple comparisons was applied when needed.

Results

In summary, cTBS over S1 increased STDT in the contralateral
hand (from 50.27 ms at TO, to 75.56 ms at T1 and 60.27 ms at T2).
This was probably attributable to an increase in the noise of the
system, as suggested by the increase in PRT (from 8.96 to 21.26
ms) and RT (see Fig. 3). cTBS over S1 also decreased the ampli-
tude of N20 (from 2.95 wV at TO to 2.18 wV at T1 and 2.61 at T2)
and decreased the effectiveness of inhibition in S1 probed with
the PP-SEP protocol at 5 ms ISI (see Fig. 5), whereas N20 latency
(19.26 ms at T0) was unchanged. I-HFO were decreased in am-
plitude after cTBS over S1 (from 3.22 X 10 ~* uV?at T0 to 2.05 X
10 ~* wV? at T1 and 2.64 wV? at T2), whereas e-HFO were in-
creased (from 2.96 X 10 ~* uVZat TO to 3.73 X 10 * wVZat T1
and 3.22 uV? at T2). Changes in STDT, PP-SEP at 5 ms ISI, and
1-HFO were correlated. cTBS over S2 decreased N120 amplitude
(from 2.31 wV at TO to 1.81 wV at T1 and 2.08 wV at T2), but it
left STDT unchanged.

STDT
Ascending method
As reported previously (Conte et al., 2012), ¢cTBS over S1 tran-
siently increased STDT measured with the ascending method in
the contralateral but not ipsilateral hand (Fig. 1). There was no
effect after cTBS over S2.

This was confirmed in the statistical analysis. The three-way
ANOVA on the STDT data obtained in Experiments 1 to 3 (Fig.
1) showed a significant main effect of session (F,,,) = 7.989;
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Figure 1.

STDT values for the left (left column) and right (right column) index finger before (T0), immediately after (T1), and 30 min after (T2) real (black lines) and sham (gray lines) cTBS over

S1 (top row) and S2 (bottom row). cTBS delivered on S1, in the real condition, produced a significant increase of STDT values from T0 to T1 (p << 0.001) and from T0 to T2 (p = 0.008) (black line,

top left). Error bars indicate standard error. Asterisks indicate significant differences.

p < 0.01), time (F, 5,y = 44.203; p < 0.01), and side (F(, ;;, =
5.144; p = 0.044) and significant interactions of session X time
(F4,40) = 56.713; p < 0.01), session X side (F, 5,y = 37.466; p <
0.01), time X side (F(,,,) = 33.930; p < 0.01), and session X
time X side (F(, 44y = 33,321; p < 0.01). The implication is that
the effect of cTBS on STDT depends on a combination of the
hand tested (left or right), the time after cTBS (T1 or T2 com-
pared with T0), and the cortical site (S1 or S2) that was stimu-
lated. Post hoc analyses showed that STDT values in the left hand
significantly increased from TO to T1 (50.27 % 24.35 vs 75.56 =
26.22; p < 0.001) and from TO to T2 (50.27 = 24.35 vs 60.27 *
25.08; p = 0.008) after cTBS to S1. STDT measured in the right
hand was unaffected. STDT did not show any changes in the 52
(Experiment 2) and sham (Experiment 3) sessions (Fig. 1). Base-
line values of STDT did not show any differences among the three
experiments (all p values > 0.05). The three-way ANOVA on
STDT data obtained in Experiments 4 and 5 confirmed the find-
ings of the first set of experiments, i.e., STDT increased only in the
“real” condition and in the left index finger. There was a signifi-
cant main effect of session (F(, 4 = 9.906; p = 0.012), time
(F1.0) = 154.57; p < 0.001), and side (F, 5, = 6.832; p = 0.028)
and significant interactions of session X time (F(, oy = 102.26;
p < 0.001), session X side (F(, oy = 48.303; p < 0.001), time X

side (F; o) = 31.62; p < 0.001), and session X time X side (F(, o
= 153.581; p < 0.001). Post hoc analyses showed that STDT val-
ues in the left hand significantly increased from TO0 to T1 (46.00 =
14.21vs 63.66 * 16.14; p < 0.001) after cTBS, whereas STDT did
not change in other conditions (all p values >0.05).

Psychophysical method

A standard psychophysical discrimination curve was constructed
in all volunteers. The mean data are shown in Figure 2. cTBS to S1
reduced the slope of the curve, leading to an increase in PRT.
However, there was no shift in the curve along the time (x) axis
and thus no significant change in PSE. RTs to decision onset
were also increased by cTBS (Fig. 3), consistent with the in-
crease in PRT.

Why did cTBS change STDT in the previous experiment yet
had no effect on PSE here? The answer probably lies in method-
ology. In the ascending method, pairs of stimuli are applied with
gradually increasing intervals. STDT is the interval when partic-
ipants have successfully identified three successive pairs as sepa-
rate stimuli. To achieve three successive correct answers,
participants must have a high probability of being correct on each
occasion. The psychophysical curve shows that, at intervals
around STDT, cTBS reduces the probability of detecting two
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Figure2.  Psychometric curve representing the result of the behavioral task (Experiment 4).
The horizontal dotted lines represent the probability of 25% and 75% of “2” responses on the
y-axis (25p and 75p). The black dashed vertical lines represent the interval between 25p and
75p on the x-axis before cTBS, whereas the gray dashed vertical lines represent the interval
between 25p and 75p after cTBS on the x-axis. Because the PRT can be calculated by the formula
(75p — 25p)/2, the vertical dashed lines gives an idea about the effect of cTBS on PRT.

—a— pre-cTBS
1.0 ------ post-cTBS
0,9- A } )
20,8
©
£
|_
0,7 H
0,6
05 r—r+ 1 +~ 1 1 ~ T 1 1T 1
0 20 40 60 80 100 120 140
ISI (ms)
Figure3. RTs.The continuous line represents RT before cTBS, whereas the dotted line shows

RT after cTBS. Difference in RT at ISI between 30 and 90 ms are significant (see Results). Error
bars indicate standard error.

stimuli. Thus, the ascending estimate of STDT will increase even
when PSE of the psychophysical curve remains unchanged.

In the statistical analysis, the two-way ANOVA showed no
significant main effects on PSE; in contrast, for PRT, there was a
significant main effect of session (F, o) = 53.190; p < 0.001) and
time (F; o) = 28.205; p < 0.001) and a significant interaction of
session X time (F; o) = 77.624; p < 0.01; Fig. 2). Post hoc analyses
showed that PRT values significantly increased from T0 to T1 in
the real session (8.96 = 2.07 vs 21.26 = 5.86 ms; p < 0.001),
whereas it was unchanged in the sham session. For RTs, the three-
way ANOVA showed a significant main effect of session (F, o) =
5.621; p = 0.042), time (F,o, = 18.756; p = 0.002), and ISI
(F14126) = 18.551; p < 0.001) and significant interactions of
session X time (Fq) = 15.594; p = 0.003), session X ISI
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(F2387,21.487) = 4.967; p = 0.013), time X ISI (F(y 725 42.505) =
8.628; p < 0.01), and session X time X ISI (F 4 586 38.576) = 7-174;
p < 0.01). Post hoc analyses showed that ¢TBS induced a signifi-
cant increase in RT in ISI ranging from 30 to 90 ms (all p values
<0.05; Fig. 3), whereas RT did not change in the sham session.
Pearson’s correlation coefficient showed a significant baseline
correlation between STDT and PSE (r = 0.779; p = 0.00) and
between STDT and PRT (r = 0.734; p = 0.016).

N20 latency and amplitude

As reported previously (Conte et al., 2012), cTBS reduced the
peak amplitude of the N20. The two-way repeated-measures
ANOVA with time and session as main factors showed no main
or interaction effects of cTBS on the latency of N20 (all p values
>0.1). Baseline values of N20 latency were the same in all exper-
iments (all p values >0.05; Fig. 4). In contrast, cTBS over S1 had
a clear effect on the amplitude of the N20. There was a significant
main effect of session (F; ,,) = 27.191;p < 0.01) and time (F, ,,,
= 64.708; p < 0.01) and a significant session X time interaction
(F(a,22) = 75.437; p < 0.01). Post hoc comparisons showed that
cTBS significantly reduced the N20 from baseline (2.95 * 0.67
wV) to T1 (2.18 = 0.59 wV; p < 0.01), and the decrease was still
significant at T2 (2.61 = 0.58 wV; p < 0.01); there was no change
in the N20 amplitude in the sham session (all p values >0.05;
Fig. 4). Again, baseline values of N20 amplitude were the same in
all experiments (all p values >0.05).

N20 recovery cycle

cTBS reduced the amount of N20 suppression in the recovery
curve but only at the shortest interval of 5 ms (Fig. 5). This was
confirmed statistically using a three-way repeated-measures
ANOVA, which showed a significant main effect of session
(F1,11) = 25.080; p < 0.01), time (F 5 5,y = 32.037; p < 0.01), and
ISI (F (52, = 20.590; p < 0.01), with significant interactions of
session X time (F(, ,,, = 36.636; p < 0.01), session X ISI (F, ,,,
=10.079; p = 0.01), time X ISI (F y4q) = 27.584; p < 0.01), and
session X time X ISI (F4 44) = 26.926; p < 0.01). The implication
is that the effect of cTBS depended on a combination of the time
after cTBS (T1 or T2 compared with T0), the ISI of the recovery
cycle (5, 20, 40 ms), and whether real or sham stimulation was
applied. Post hoc comparisons showed that, at R5, real ¢TBS sig-
nificantly reduced the amount by which the second SEP was sup-
pressed by the first SEP at an ISI of 5 ms (R5) from baseline to T1
(0.51 £0.22vs0.69 = 0.21; p < 0.01), and this reduction was still
significant at T2 (0.51 % 0.22 vs 0.59 * 0.21; p = 0.01); in con-
trast, R5 did not change significantly in the sham session (all p
values >0.05). R20 and R40 were unaffected by real or sham cTBS
(all p values >0.05).

e-HFO and I-HFO
cTBS had opposite effects on e-HFO and 1-HFO, i.e., it in-
creased e-HFO and reduced I-HFO. In the statistics, a two-way
repeated-measures ANOVA on e-HFO area showed a signifi-
cant main effect of session (F(, ;;, = 30.852; p < 0.01) and
time (F(,,,) = 47.270; p < 0.01) and a significant session X
time interaction (F, ,,) = 44.924; p < 0.01). Post hoc compar-
isons showed that ¢TBS significantly increased e-HFO from
baseline to T1 (2.95 = 1.20 vs 3.72 = 1.36; p < 0.01; Fig. 6),
and the increase was still significant at T2 (2.95 = 1.20 vs
3.22 £ 1.25; p < 0.01), whereas e-HFO did not change in the
sham session (all p values <0.05).

For 1-HFO, there was a significant main effect of session
(Fi,11) = 17.276; p < 0.05) and time (F, 5,y = 17.715; p < 0.01)
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CTBS over S1. cTBS delivered on S1, in the real condition, produced a significant increase of R5 from T0 to T1 (p << 0.01) and from T0 to T2 (p << 0.01) (black line, left). Error bars indicate standard

error. Asterisks indicate significant differences.

and a significant session X time interaction (F, ,,, = 15.035; p <
0.01). Post hoc comparisons showed that ¢TBS significantly de-
creased I-HFO from baseline to T1 (3.22 * 1.34 vs 2.05 = 0.54;
p = 0.003), and the decrease was still significant at T2 (3.22 *
1.34 vs 2.64 = 1.01; p = 0.01; Fig. 6, right column), whereas
1-HFO did not change in the sham session (all p values >0.05).

Correlation between the effect of cTBS on STDT, N20
recovery cycle, and HFO

At baseline (i.e., T0), there was a significant correlation between
STDT and R5 (r = 0.824; p < 0.01), between STDT and I-HFO
area (r = —0.835; p < 0.01), and between R5 and I-HFO area
(r = —0.654; p = 0.021; data not illustrated). There was no sig-
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Figure6. Leftcolumn, Awide-band SEP showing the N20 —P25 complex (4) and the same recording bandpass filtered between 400 and 800 Hz showing HFO (B) in one of the subjects. As shown,

e-HFO and I-HFO can be divided by the N20 peak. The average starts 5 ms after the stimulation artifact, which was removed manually. Right column, e-HFO (€) and I-HFO (D) area before (T0),
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T1(p < 0.01) and from T0to T2 (p << 0.01) (black line, left) and a decrease in I-HFO area from T0to T1 (p = 0.003) and from T0 to T2 (p = 0.01) (black line, right). HFO area is expressed in .V 2

X 10 ~*. Error bars indicate standard error. Asterisks indicate significant differences.

nificant baseline correlation between STDT, R20, R40, and
e-HFO (all p values >0.05). In addition, the changes induced by
cTBS in STDT were significantly correlated with the changes in-
duced by cTBS in R5, and this was true at T1 (r = 0.745; p < 0.01)
and T2 (r = 0.660; p < 0.05; Fig. 7, top row). There was also a
significant correlation with the changes induced by ¢TBS in
I-HFO area, at both T1 (r = —0.895; p < 0.01) and T2 (r =
—0.886; p < 0.01; Fig. 7, bottom row), and between the changes
induced in R5 and those in I-HFO at T1 (r = —0.762; p = 0.004)
and T2 (r = —0.681; p = 0.015; data not shown).

SEP N120 component

The two-way repeated-measures ANOVA of the effect of cTBS on
N120 showed a significant main effect of time (F, ,,) = 67.399;
P <0.01) and electrode (T3, T4; F(, ;,, = 49.336; p < 0.01) and a
significant time X electrode interaction (F, ,,) = 41.433; p <
0.01). Post hoc comparisons showed that ¢TBS significantly re-
duced N120 amplitude at the right temporal electrode (T4) from
baseline to T1 (2.31 = 0.66 vs 1.81 * 0.56; p < 0.01), and the
decrease was still significantat T2 (2.31 = 0.66 vs 2.07 = 0.59; p <
0.01; Fig. 8), whereas N120 did not change significantly at the left
temporal electrode (T3; p > 0.05).

Discussion

The present data confirm that cTBS over S1 increases STDT mea-
sured by an ascending method. The change correlates with re-
duced paired-pulse N20 suppression and reduced I-HFO area.
Both of these are putative markers of S1 inhibition, which we
argue can sharpen temporal information processing. Thus, re-

duced inhibition after cTBS will lead to greater temporal uncer-
tainty. As expected, thisleads to increased uncertainty in decision
making, reflected as both a reduction in slope of the psychophys-
ical discrimination curve and an increased RT. We conclude that
cTBS over S1 has an effect similar to adding noise to neural
processing and that this is caused by reduced excitability of in-
trinsic inhibitory systems. cTBS delivered over S2 had no effect
on STDT, suggesting that it plays a minimal role in this task.

Our procedures avoided some possible confounding factors.
Similar baseline STDT values over the three sessions excludes a
possible learning effect. Bias attributable to a lack of attention was
excluded using catch trials (Conte et al., 2010, 2012). The neuro-
navigation system minimized errors in coil positioning attribut-
able to individual anatomical variations (Conte et al., 2012).
However, given the lack of spatial specificity of TMS, it is not
possible to determine which subareas within S1 and S2 were the
likely sites of action. Cutaneous afferents project to areas 3b and
1 within S1 (Ozaki and Hashimoto, 2011). Because area 3b is
located deep in the posterior bank of the central sulcus, it is likely
that the observed effects are mostly attributable to stimulation of
the more superficial area 1. In humans, S2 contains at least three
distinct somatosensory fields, called OP1, OP3, and OP4 (Fick-
hoffet al., 2007). Based on previously published coordinates, it is
likely that our TMS protocol targeted an area between OP1 and
OP4 (Eickhoff et al., 2007).

Previous work has shown that both single-pulse TMS (Han-
nula et al., 2008; Bolognini et al., 2010) and offline cTBS (present
data; Conte et al., 2012, 2014) could both increase STDT. The
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question we ask here is whether this behavioral effect is related to
effects on neural processing in S1. Three lines of evidence suggest
that it was.

As described by others (Conte et al., 2012), ¢cTBS reduced the
amplitude of the unconditioned N20. Because the N20 is thought
to be generated by EPSPs in the apical dendrites of somatosensory
pyramidal neurons, caused by excitatory input from the thalamus
(Hashimoto et al., 1996), then ¢TBS presumably reduced the
excitability of these neurons or presynaptically suppressed the
input fibers.

The PP-SEP findings were new. cITBS reduced the amount by
which the second SEP of a pair was suppressed by the first. This
was significant at ISI of 5 ms but not at 20 or 40 ms. The effect is
unlikely to be a consequence of the smaller unconditioned N20
because previous studies showed that N20 amplitude did not
significantly influence PP-SEP suppression (Gatica Tossi et al.,
2013; Hoffken et al., 2013). Several mechanisms can contribute to
PP-SEP suppression. Work on healthy subjects (Schwartz and
Shagass, 1964; Emori et al., 1991) and on neurological patients
with cortical hyperexcitability (Ugawa et al., 1996; Frasson et al.,
2001; Mochizuki et al., 2001; Valeriani et al., 2005) suggested that

N20 suppression, particularly at short ISI, mainly takes place in
S1. In contrast, inhibition at longer ISI may involve the dorsal
column nuclei (Liiders et al., 1984) or thalamus (Hoffken et al.,
2010). This could explain why cTBS only affected paired-pulse
suppression at 5 ms ISI because suppression at later intervals
could involve non-cortical mechanisms that were unaffected by
cTBS.

Although not directly tested, there is some evidence that
paired-pulse inhibition in the cortex may rely on GABAergic
transmission (Deisz and Prince, 1989; Mennerick and Zorumski,
1995; Huttunen et al., 2008). In the motor cortex, cTBS is known
to reduce the excitability of GABAergic inhibition (in the para-
digm of short-interval intracortical inhibition; Huang et al.,
2005). Thus, if cTBS had the same effect in S1, it might explain
why it reduced PP-SEP suppression.

As described in a previous report (Katayama et al., 2010),
cTBS over S1 reduced 1-HFO area and increased e-HFO area.
Several lines of evidence suggest that e-HFO represent high-
frequency activity from thalamocortical fibers projecting mainly
to area 3b and 1 within S1. If so, it is unclear why cTBS would
increase their area. Previous work has shown changes in excitabil-
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T0to T2 (p << 0.01). Error bars indicate standard error. Asterisks indicate significant differences.

ity of areas distant from the site of cortical stimulation (Hubl et
al., 2008; Stefan et al., 2008; Cardenas-Morales et al., 2011). In
this view, assuming a thalamic generator for e-HFO, we speculate
that the increase in e-HFO area is attributable to a reduction in
activity of corticothalamic projections that normally reduce os-
cillatory activity.

1-HFO are thought to represent postsynaptic activity of inhib-
itory interneurons in S1 (Hashimoto et al., 1996; Klostermann et
al., 2001; Curio, 2000; Jones et al., 2000; Ozaki et al., 2001; Ikeda
et al., 2002; Gobbelé et al., 2004; Ozaki and Hashimoto, 2011).
Specifically, human studies suggest that I-HFO might reflect the
activity of inhibitory interneurons that produce feedforward in-
hibition of pyramidal neurons (Ozaki and Hashimoto, 2011).
Our data do not address this point, but they do show a clear
correlation between the baseline and post-cTBS values of -HFO
area, STDT, and the degree of inhibition of PP-SEP at 5 ms IS,
suggesting that the three variables share common mechanisms.
We propose that the inhibitory circuits that generate 1-HFO are
the same that, because of feedforward inhibition, sharpen the
distinction between potentially overlapping excitatory inputs be-
tween the first and second afferent volley in STDT. Moreover,
this inhibitory mechanism may also be responsible for the sup-
pression PP-SEP at 5 ms ISI.

Why is there a correlation between STDT values and PP-SEP
inhibition at 5 ms but not at longer ISI? It seems likely to result
from the fact that feedforward inhibition interacts with both the
initial input that caused it and subsequent inputs. Feedforward
inhibition rapidly terminates initial excitatory action, sharpening
up its temporal profile; in addition, it reduces the amplitude of
other inputs that arrive a short time later. The first effect is im-
portant for STDT because it will prevent prolonged discharge
from the first stimulus from interfering with perception of the
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second. The second effect is measured by the 5 ms PP-SEP, which
examines very short-latency interactions between successive
stimuli. As noted above, SEP suppression at longer PP-SEP inter-
vals is thought to be caused by other mechanisms that do not
interact with the initial input that caused them. Note that STDT
(normally ~60 ms) need not directly reflect the duration of the
short-lasting feedforward inhibitory effect. There are many steps
between initial processing and perception that can distort this
relationship. Finally, it is interesting to note that Tamura et al.
(2008) found that the longer STDT in patients with dystonia was
inversely correlated with PP-SEP suppression of the P27 compo-
nent at IST of 5 ms but not atlonger intervals. We did not measure
P27 in the present study. However, the amplitude of the N20 was
calculated as the peak-to-peak difference between N20 and P25,
which probably captures a similar effect after cTBS on PP-SEP at
ISI of 5 ms.

cTBS applied over S2 did not change STDT, although it re-
duced the amplitude of the N120 component of SEP recorded
contralateral to median nerve stimulation (T4; Garcia-Larrea et
al., 1995). Thus, it seems that, although ¢TBS could reduce the
excitability of S2, it had no effect on STDT, implying that S2 does
not play a critical role in STDT. In a flutter discrimination task,
the firing rate of neurons in S1 varies significantly as a function of
stimulation frequency (Salinas et al., 2000), whereas discharge of
S2 neurons is more related to the difference between frequencies
(Romo et al., 2002; Romo and Salinas, 2003). Therefore, S2 may
play little role in STDT because STDT does not entail a compar-
ison between afferent stimuli but instead requires detection of a
gap between two stimuli.

These arguments suggest that reduced feedforward inhibition
of sensory input to S1 reduces the temporal certainty of incoming
information and that this increases the difficulty of the STDT
task. To examine this in more detail, we explored STDT using a
psychophysical approach. The results showed that the slope of the
discrimination curve was reduced and that the RT to decision
making increased. These effects are compatible with reduced cer-
tainty in signal processing, consistent with our hypothesis. They
are also consistent with previous studies that demonstrated that
TMS can increase neural “noise” within the stimulated area (Ru-
zzoli et al., 2010; Teo et al., 2011). In contrast, PSE was not
changed after cTBS over S1, indicating that the internal bound-
ary, or criterion used by subjects to classify the responses, re-
mained the same.

In summary, the present data show that there is a correlation
between STDT, SEP recovery cycle, and 1-HFO area. These find-
ings strongly suggest that the ability to temporally discriminate
two distinct afferent stimuli relies on inhibitory mechanisms in
S1 and hence that STDT may in fact represent a direct behavioral
correlate of inhibition in S1. These results shed additional light
on human somatosensory physiology and could prompt future
therapeutic approaches in neurological diseases characterized by
impairment of cortical inhibitory mechanisms, such as dystonia
(Tamura et al., 2008; Scontrini et al., 2009; Conte et al., 2014).
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