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The architectonic subdivisions of the brain are believed to be functional modules, each processing parts of global functions. Previously,
we showed that neurons in different regions operate in different firing regimes in monkeys. It is possible that firing regimes reflect
differences in underlying information processing, and consequently the firing regimes in homologous regions across animal species
might be similar. We analyzed neuronal spike trains recorded from behaving mice, rats, cats, and monkeys. The firing regularity differed
systematically, with differences across regions in one species being greater than the differences in similar areas across species. Neuronal
firing was consistently most regular in motor areas, nearly random in visual and prefrontal/medial prefrontal cortical areas, and bursting
in the hippocampus in all animals examined. This suggests that firing regularity (or irregularity) plays a key role in neural computation
in each functional subdivision, depending on the types of information being carried.
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Significance Statement

By analyzing neuronal spike trains recorded from mice, rats, cats, and monkeys, we found that different brain regions have intrinsically
different firing regimes that are more similar in homologous areas across species than across areas in one species. Because different
regions in the brain are specialized for different functions, the present finding suggests that the different activity regimes of neurons are
important for supporting different functions, so that appropriate neuronal codes can be used for different modalities.
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Introduction
Two principles underlie systems neuroscience: first, that neurons
are the principal carriers of information (Ramón y Cajal, 1899;
Bullock et al., 2005; DeFelipe, 2010), and second, that the neu-
rons in different architectonically defined brain regions are spe-
cialized both by their morphology and by the intrinsic circuitry so
that they process information differently than other brain regions
(Brodmann, 1909; Elston, 2003; Toga et al., 2006; Zilles and
Amunts, 2010). Because different types of organization exhibit
different dynamics, these two principles may be combined so that
neuronal firing patterns are dependent specifically on different
types of circuit organization and related to the functions for
which a given brain region is specialized.

If it is true that the specific firing patterns are important for
particular neuronal computations, the firing patterns of neu-
rons in different brain regions ought to be different. Previous
studies support this supposition; there are statistical features
of neuronal firing that vary considerably across cortical re-
gions of monkeys (Shinomoto et al., 2003, 2009; Maimon and
Assad, 2009; Murray et al., 2014). If we postulate that these
intrinsic features of neuronal firing evolved to optimize a par-
ticular type of local neuronal information processing, we
might find that the firing patterns in homologous brain re-
gions in different animal species (Brodmann, 1909; Northcutt
and Kaas, 1995) will be more similar than firing patterns seen
from one region to another within a species.

In this report, we examined neuronal firing from sets of
homologous brain areas of behaving mice, rats, cats, and mon-
keys (macaques) using �2000 spike trains. Ideally, it would be
best to perform these measurements using tasks that are sim-
ilar across species and when recording in a variety of brain
regions. However, such data do not seem to exist. In neuro-
physiology experiments, behavior is generally shaped accord-
ing to the hypothesized specialization of the tissue under study
and the interests of the investigators. In the data analyzed here,
the neuronal activity was recorded while the individual sub-
jects were awake and actively engaged in behavioral tasks. We
characterized these spike trains using the firing rate, firing
regularity, and serial correlation of interspike intervals (ISIs).

Despite the differences in behavior, the firing regularity (de-
fined as the variability of ISIs) differed systematically across
different cortical regions, and was related across species.

Materials and Methods
Neuronal spike data
Spike trains were recorded from motor, visual, and prefrontal corti-
ces, as well as hippocampus from mice, rats, cats, and monkeys of
either sex. To see the degree to which firing characteristics depend on
the recording methods and behavioral tasks, for each brain region, we
grouped spike trains according to the experimental laboratories that
obtained them. This provided 36 data sets: cortical motor areas of
mice (1 data set), rats (2 data sets), and monkeys (11 data sets); visual
areas of cats (1 data set) and monkeys (9 data sets); sensory (barrel)
cortex of rats (1 data set); medial prefrontal cortex (mPFC) of rats (2
data sets) and monkeys (2 data sets); and hippocampus of mice (1
data set), rats (4 data sets), and monkeys (2 data sets; Table 1). For the
data in which spike sorting was involved, we accepted the criteria for
isolating spikes of a single neuron that have been used in respective
experimental groups. We used the initial segment containing 2001
consecutive spikes, i.e., 2000 ISIs, without regard to task trial periods
or intertrial intervals. For some monkey data in which recording had
been suspended during intertrial intervals, we concatenated no more
than 20 spike trains obtained in successive trials by superimposing the
last spike in the preceding trial on the first spike in the succeeding
trial. Spike trains that contained fewer than 2001 spikes or those with
mean firing rates �2 spikes/s were discarded. Our requirement for
spike trains to contain �2000 spikes imposed a priority for neurons of
high firing rate. Ninety-one percent of spike trains exceeded the firing
rate threshold. This yielded 2259 spike trains for firing-pattern
analysis.

All procedures for animal care and experimentation were in accor-
dance with the guidelines of the National Institutes of Health and ap-
proved by the animal experiment committees at the institutions where
the experiments were performed.

Analysis of firing patterns
Characterization of firing patterns
We estimated the firing rate, firing regularity, and ISI correlation for each
spike train to search for firing characteristics that can be related to the
functional regions (Fig. 1). Each spike train consisting of 2000 ISIs was
divided into m � 100 segments of n � 20 ISIs, and each measurement was
made for each segment. The results from these 100 segments were averaged
for each spike train. The firing rate and firing regularity were quantified by
fitting the gamma distribution (Kuffler et al., 1957; Stein, 1965; Reich et al.,
1998; Brown et al., 2002; Shimokawa and Shinomoto, 2009):

g�,��I� � �����I��1e���I/����,

where I is the duration of a given ISI, � and � are the shape and scale
factors, respectively, and �(x) is the gamma function.

Firing rate. The maximum likelihood estimation of the scale factor � of
the gamma distribution gives the firing rate as follows:

� �
n

�i�1

n
Ii

,

where Ii is the duration of the ith ISI. We indicate the firing activity in
terms of the log firing rate averaged over m (� 100) segments, as
follows:

	log �
 �
1

m �j�1

m
log �j,

where �j represents the firing rate in the jth segment. We take the loga-
rithm of the firing rate � as well as the shape parameter �, because the
information distance between different gamma distributions scales ap-
proximately with log � and log � (Miura et al., 2006).
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Firing regularity. The shape factor � of the gamma distribution repre-
sents the firing regularity. This is estimated by maximizing the likelihood,
which is achieved by solving the following equation:

log � � ���� � log�1

n �i�1

n
Ii� �

1

n �i�1

n
log Ii ,

where �(x) is the digamma function (Cox and Lewis, 1966). We repre-
sent the regularity of a given spike train by averaging the logarithm of the
shape factor over m segments:

	log �
 �
1

m �j�1

m
log �j.

Firing regularity log � is expected to take a value of 0 (i.e., � � 1) for a
Poisson spike train and becomes positive or negative if firings are more
regular (� � 1) or bursting (� � 1), respectively (Fig. 1 B, C).

ISI correlation. We estimated the correlation of consecutive ISIs using
Spearman’s rank-order correlation of order one (Kuffler et al., 1957; Fark-
hooi et al., 2009; Fig. 1B). For each segment of a spike train or a sequence of
ISIs {I1, I2, . . . , In}, we indicated their rank order as {r1, r2, . . . , rn}, where ri

denotes the rank of the ith ISI, Ii, in ascending order. When there were sets of
identical ISIs, they were each assigned the average rank. Spearman’s rank-
order correlation of order one is defined as follows:

� �
n

n � 1
�k�1

n�1
�rk � r���rk�1 � r��

�k�1

n
�rk � r��

,

where r� is the average of ranks [�(n � 1)/2]. By averaging the rank order
over m (� 100) segments, we represented the degree of renewality of a
given spike train of 2000 ISIs:

	�
 �
1

m�j�1

m
� j.

Here we used rank-order correlation instead of raw ISI correlation to
minimize the bias in the estimation, because the raw ISI correlation is
sensitively dependent on the shape of the ISI distribution, and, in partic-
ular, it tends to give a bias for an asymmetric distribution, even if ISIs
were derived independently.

Comparison between data sets
To compare firing patterns of sets of spike trains recorded from a partic-
ular cortical area by a particular laboratory, the mean and dispersion (as
represented by the SD among spike trains in a given data set) of the firing
characteristics were estimated for each set of spike trains collected by that
laboratory (Fig. 2). The possible range of fluctuations in the mean and
dispersion of firing characteristics due to sampling of neurons was esti-
mated by a nonparametric bootstrap procedure as follows: (i) Draw 10
spike trains randomly from a data set (duplicated drawing of the same
neuron is allowed), and compute the mean and dispersion of three met-
rics log �, log �, and �. (ii) Repeat process (i) 100 times to compute the
average and covariance of mean and dispersion. (iii) Fit a two-
dimensional Gaussian distribution to the 100 points obtained from pro-
cess (ii) to represent the fluctuations of mean and dispersion of a metric.

Table 1. List of the animals, cortical areas, number of neurons, firing metrics, and principal researchers

No. Animal
Functional
category

Cortical
area

No. of
neurons

Firing metrics (left, mean; right, dispersion)
Principal
researcherlog � log � � Lv

1 Rat Motor M1 30 0.72 0.59 2.19 0.73 0.08 0.06 0.58 0.27 Furuta
2 Rat Motor M1/CFA 114 0.47 0.53 1.52 0.61 0.04 0.07 0.71 0.25 Isomura
3 Rat PF mPFC 23 0.03 0.28 1.48 0.46 0.01 0.06 0.97 0.19 Sakurai
4 Rat PF mPFC 40 �0.07 0.31 1.71 0.78 0.08 0.05 0.95 0.19 Fujisawa
5 Rat Sensory S1/barrel cortex 32 �0.13 0.34 2.07 0.53 0.09 0.08 0.98 0.24 Furuta
6 Rat Hippocampus Subiculum 81 �0.20 0.46 1.77 0.57 0.07 0.09 1.03 0.24 Jung
7 Rat Hippocampus CA1 28 �0.24 0.45 1.93 0.83 �0.01 0.08 1.15 0.27 Fujisawa
8 Rat Hippocampus CA1 18 �0.43 0.53 1.38 0.77 �0.09 0.12 1.31 0.38 Takahashi
9 Rat Hippocampus CA1 66 �0.47 0.50 1.72 0.67 �0.02 0.11 1.22 0.33 Jung

10 Mouse Motor Motor 26 0.22 0.36 2.09 0.52 0.04 0.06 0.81 0.17 Kitsukawa
11 Mouse Hippocampus CA1 32 �0.40 0.56 1.82 0.60 �0.09 0.15 1.27 0.40 Jung
12 Cat Visual V1 26 �0.14 0.27 3.01 0.56 �0.02 0.09 1.03 0.24 Maldonado
13 Monkey Motor M1 29 1.22 1.08 3.03 0.60 0.18 0.12 0.40 0.25 Kurata
14 Monkey Motor SMA 83 1.20 0.68 3.03 0.49 0.06 0.15 0.43 0.21 Kurata
15 Monkey Motor PMv 30 1.11 0.71 3.27 0.55 0.00 0.19 0.49 0.21 Kurata
16 Monkey Motor PMd 192 1.00 0.75 3.00 0.55 0.09 0.17 0.51 0.29 Kurata
17 Monkey Motor SEF 103 0.67 0.50 2.72 0.41 0.13 0.12 0.55 0.24 Fukushima
18 Monkey Motor CMAr 27 0.65 0.44 2.73 0.53 0.05 0.07 0.63 0.23 Tanji
19 Monkey Motor SMA 27 0.57 0.48 2.92 0.58 0.06 0.10 0.66 0.24 Tanji
20 Monkey Motor M1 40 0.50 0.36 2.93 0.62 0.04 0.11 0.69 0.19 Hatsopoulos
21 Monkey Motor preSMA 125 0.47 0.42 2.59 0.57 0.08 0.09 0.68 0.24 Tanji
22 Monkey Motor FEF 45 0.46 0.33 3.03 0.40 0.15 0.11 0.60 0.16 Fukushima
23 Monkey Visual MST 77 0.36 0.43 2.89 0.49 0.11 0.11 0.71 0.25 Kawano
24 Monkey Visual V1 35 0.35 0.38 3.55 0.42 0.11 0.08 0.67 0.22 Komatsu
25 Monkey Motor M1/PMd 142 0.32 0.46 2.29 0.70 0.11 0.11 0.73 0.23 Riehle
26 Monkey PF PF 22 0.30 0.14 3.30 0.62 0.03 0.08 0.79 0.11 Tanji
27 Monkey Visual TE 97 0.15 0.41 2.05 0.75 0.03 0.08 0.87 0.24 Fujita
28 Monkey Visual TE 103 0.15 0.47 2.49 0.65 0.16 0.13 0.73 0.28 Komatsu
29 Monkey Visual CIP 158 0.10 0.43 2.85 0.55 0.03 0.11 0.92 0.27 Tsutsui
30 Monkey Visual MST 100 0.10 0.38 2.81 0.59 0.07 0.11 0.85 0.28 Fukushima
31 Monkey Hippocampus Hippocampus 37 0.06 0.53 2.27 0.76 0.09 0.10 0.87 0.27 Nishijo
32 Monkey Hippocampus Parahippocampus 23 0.02 0.50 2.07 0.70 0.12 0.12 0.84 0.26 Nishijo
33 Monkey Visual MT 58 0.02 0.32 3.42 0.54 0.07 0.09 0.86 0.19 Kawano
34 Monkey Visual STS 56 �0.09 0.49 1.47 0.55 0.00 0.09 1.08 0.35 Tamura
35 Monkey PF PF 131 �0.11 0.29 2.41 0.44 0.05 0.07 1.04 0.17 Funahashi
36 Monkey Visual V4 35 �0.19 0.35 2.56 0.81 0.08 0.13 0.94 0.29 Komatsu

PMv, ventral premotor cortex; PMd, dorsal premotor cortex; SEF, supplementary eye field; CMAr, rostral cingulate motor area; FEF, frontal eye fields; MST, medial superior temporal area; TE, visual area TE; CIP, caudal intraparietal area; STS,
superior temporal sulcus. Detailed information is available at http://www.ton.scphys.kyoto-u.ac.jp/~shino/brainmap/.
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Figure 2. The mean and dispersion of firing characteristics. The distribution of firing characteristics of a given data set is represented by the mean and dispersion (defined as the SD of a sampled
population). The ellipses represent the typical statistical fluctuation due to random sampling of neurons (75% confidence regions) estimated by the nonparametric bootstrap.

A

B

C

Figure 1. Characterizing neuronal spike trains. A, Mapping spike trains into pseudo-3D plots. Neuronal spike trains recorded from various functional areas are plotted with axes of firing rate,
regularity, and ISI correlation. B, Firing regularity versus ISI correlation. Firing regularity is defined as the logarithm of the shape factor � of the gamma distribution fitted to the ISIs. A spike train is
considered Poisson random if its ISIs are exponentially distributed (�� 1 or log �� 0), whereas it is considered regular if log �� 0 or bursting if log �� 0. The Spearman’s rank-order correlation
computed for sequentially paired ISIs indicates whether consecutive ISIs are positively correlated (� � 0) or negatively correlated (� � 0). C, Spike trains sampled from rat motor cortex, medial
prefrontal cortex, and hippocampus with their corresponding ISI histograms. The dotted lines in ISI histograms show the best fit gamma distributions with the estimated values of � and �. Raster
plots show the first 101 spikes, or 100 ISIs.
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Hierarchical clustering
To compare the degree to which a specific fir-
ing characteristic was correlated with the re-
gion of brain areas, we performed Ward’s
method of hierarchical clustering of the best
fitting two-dimensional Gaussian distribu-
tions for the mean and dispersion of metrics
obtained from the bootstrap procedure de-
scribed above. We defined the distance be-
tween two distributions P(x) and Q(x) to be the
Hellinger distance (Bishop, 2006), whose
square is given by the following:

H2�P, Q� �
1

2� ��P� x� � �Q� x� �2dx.

The Hellinger distance is zero when two distri-
butions are identical, and unity for disjoint
distributions.

Local variation of ISIs
Some of the authors analyzed monkeys’ neuro-
nal spike trains using an index of local variation
of ISIs, Lv (Shinomoto et al., 2003), given as

Lv �
3

n � 1�i�1

n�1� Ii � Ii�1

Ii � Ii�1
�2

,

or its variant LvR (Shinomoto et al., 2009).
However, Lv may be interpreted as either the
firing irregularity or the correlation between
consecutive ISIs. This can be seen by expanding
the summand as follows:

� Ii � Ii�1

Ii � Ii�1
�2

� 1 �
4IiIi�1

�Ii � Ii�1�
2 ,

where the second term on right-hand side is the
rescaled correlation of consecutive ISIs.

Results
Regional specificity of firing
characteristics
Using spike data obtained from rats and
monkeys, we compared the firing charac-
teristics across the first 1000 and last 1000
ISIs. The correlations of the firing rate log
�, firing regularity log �, and ISI correla-
tion � were strong, indicating that all fir-
ing characteristics were stable through the
recordings of these individual neurons;
r � 0.81, 0.95, and 0.83, for rat data (Pear-
son correlation, N � 400, p � 10�4 for all
data), and r � 0.94, 0.95, and 0.86 for
monkey data (Pearson correlation, N �
1775, p � 10�4 for all data).

Figure 3, A and C, presents the distri-
butions for the data sets, with axes repre-
senting the mean and dispersion of firing
rate, regularity, and ISI correlation. Here,
the dispersion of firing characteristics is
represented by the SD of sampled data
(see Materials and Methods; Fig. 2). The
ellipses represent typical fluctuations
(75% confidence regions) in the mean

A

B

C

D

Figure 3. Regionalspecificityofthreefiringcharacteristics(ratsandmonkeys).A,C,Distributionsofthefiringcharacteristicsofdifferentdatasets.
Eachcirclerepresentsthemeananddispersion(asrepresentedbytheSDofthesampledpopulation)ofeachfiringmetric foraneuronalpopulation
collectedbyanindividualexperimentalgroup,andthesurroundingellipserepresentsthetypicalstatisticalfluctuationduetorandomsamplingof10
neurons (75% confidence region). B, D, Hierarchical clustering of the data sets applied to the mean and dispersion of firing characteristics (see
MaterialsandMethods).Thenumbers intheparenthesesrefertothedatasets inTable1.
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and dispersion of metrics due to sampling; each range was ob-
tained by nonparametric bootstrapping, by randomly sampling
10 spike trains from a given data set (see Materials and Methods).
Although the firing characteristics might have depended on indi-
vidual laboratories’ recording methods as well as behavioral
tasks, data sets from the same functional areas were better clus-
tered in terms of the firing regularity log � than in terms of the
firing rate log � or ISI correlation �. Figure 3, B and D, presents
the results of the hierarchical clustering applied to the data points
in panels A and C (Ward’s method based on the Hellinger dis-
tance between distributions obtained from bootstrapping; see
Materials and Methods), indicating the superior regional speci-
ficity of the firing regularity log �. The mean firing regularity was
similar in prefrontal and visual cortices, but its dispersion (SD)
was smaller in the prefrontal cortex than in visual cortices (Fig.
3C). This implies that the prefrontal cortex does not have a vari-

ety of firing patterns, but mostly consists of near-Poisson-firing
neurons, whereas the visual cortices contain a wider variety of
neurons exhibiting regular, random, and bursting firing patterns.

To quantify the degree to which a specific firing character-
istic was correlated with the region of the brain, we performed
a one-way ANOVA with Welch’s correction for unequal vari-
ance and evaluated the goodness of the functional grouping in
terms of the F test statistic. For data obtained from rats and
monkeys, the F test statistics for firing regularity turned out to
be considerably greater (rats, F(2,213) � 105.82, p � 10 �15;
monkeys, F(3,238) � 211.96, p � 10 �15) than those for firing
rate (rats, F(2,169) � 0.83, p � 0.44; monkeys, F(3,227) � 19.84,
p � 10 �10) and ISI correlation (rats, F(2,193) � 10.11, p �
10 �4; monkeys, F(3,242) � 15.33, p � 10 �8), indicating that the
firing regularity was the metric most strongly correlated to
functional regions.

A

B

Figure 4. Distribution of firing regularity among various functional areas of mice, rats, cats, and monkeys. A, The mean and dispersion of firing regularity log �. The quarter-filled, half-filled, three-quarter-
filled, and fully filled circles represent average values of individual data sets of mice, rats, cats, and monkeys, respectively. The ellipses represent the range of typical deviation (75% confidence regions) of
respective data sets due to the finite sampling size of neurons. B, The average firing regularity in four functional areas of different animals. The error bars indicate SDs.
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Interspecies similarity of firing regularity across
homologous regions
Neuronal firing was regular in motor areas (log � � 0), nearly
Poisson in visual and prefrontal/medial prefrontal cortical areas
(log � � 0), and bursting (log � � 0) in the hippocampus in all
the animals examined (Fig. 4). The differentiation of functional
areas was also observed when fitting with other families of distri-
bution functions, or when using other metrics of firing irregular-
ity (Fig. 5).

To compare the degree to which the firing regularity depends
on brain regions and species, we computed the F test statistic that
measures the between-group variability relative to within-group
variability and the proportion of variance explained that mea-
sures the sum of squares between groups relative to the sum of
squares in total. The F test statistic across the four brain region
types turned out to be very large (F(3,765) � 308.61), absolutely
greater than the one across the four species (F(3,93) � 68.32). The
variance explained indicated consistent results: 	 2 � 0.30 and
0.06, respectively, for brain regions and species. Therefore, the
firing regularity is better clustered in brain region types than in
species.

We also compared other firing characteristics across brain
regions and species. The firing rate exhibited a result opposite to
the firing regularity; F(3,686) � 106.64 and F(3,88) � 250.54, and
	 2 � 0.11 and 0.24, respectively, for brain regions and species.
This means that the firing rate was better clustered in species than
in brain region types, as is observed in the distribution of firing
rates (Fig. 6, Table 1). The ISI correlation is rather noncommittal
to the factors, compared to the firing regularity and firing rate;
F(3,88) � 41.73 and F(3,761) � 24.61, and 	 2 � 0.03 and 0.05,
respectively, for brain regions and species.

Temporal variation of firing characteristics
So far, we have examined neuronal firing characteristics regard-
less of stimulus or behavioral conditions. Because neuronal firing
may change according to these factors, it is important to grasp the
extent to which the firing characteristics may vary depending on
conditions. To this end, we analyzed spike trains recorded from
both the presupplementary motor area (preSMA; data set 21) and
PF (data set 26) while the same monkeys were performing the
same task (Mita et al., 2009); the monkeys were required to hold
down a key when a visual cue was given for 2 s.

A

B

Figure 5. Distributions of firing regularity estimated by various firing metrics. A, Fitting ISI distribution with three kinds of families of distribution: the gamma distribution (left; Kuffler et al., 1957;
Stein, 1965; Fig. 4A), the log-normal distribution (middle; Burns and Webb, 1976), and the inverse Gaussian distribution (right; Gerstein and Mandelbrot, 1964). B, Various local metrics of firing
irregularity: Lv (top left; Shinomoto et al., 2003), Cv2 (top middle; Holt et al., 1996), IR (top right; Davies et al., 2006), SI (bottom left; Miura et al., 2006), and LvR (bottom right; Shinomoto et al.,
2009). Differences in firing regularity among cortical areas can be seen consistently, regardless of the fitting functions or the choice of the local metric.
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Figure 7A demonstrates the peristimulus histograms of aver-
age firing rate, firing regularity, and ISI correlation in these
areas. In terms of the ensemble firing rates, both the preSMA
and PF exhibited significant response to the cue stimulus

(paired t tests for spikes occurred in two intervals of 1000 ms
before and after cue onset, t(117) � �2.84, p � 0.005 and t(21)

� �2.86, p � 0.009). The intraneuronal differences in firing
regularity caused by the stimulus were relatively small; we
observed a certain change only in preSMA (t(114) � �2.68, p �
0.009), but not in PF (t(21) � �1.32, p � 0.2). The increase of
firing regularity that occurred with the increase in firing rate is
likely to be due at least partially to the influence of the refrac-
tory period (Werner and Mountcastle, 1963; Softky and Koch,
1993; Holt et al., 1996). There was a small change in ISI cor-
relation in PF (t(21) � 2.28, p � 0.03), and no significant
change in preSMA (t(114) � 0.21, p � 0.83). Also, the firing
regularity expressed a significant interregional difference be-
tween the higher-order motor area (preSMA) and the PF com-
pared to within-group variability (t test, t(61) � 4.88, p �
10 �5). This difference is much more prominent than firing
rate (t(29) � �4.38, p � 10 �3) or ISI correlation (t(54) �
�1.17, p � 0.25; Fig. 7B). Thus, the firing regularity is robustly
specific to brain region types.

Possible origin of the difference in
firing regularity across brain regions
The fast-spiking interneurons are known
to exhibit high firing rate rather regularly
(Connors and Gutnick, 1990), and the
difference in firing patterns across brain
regions might be due to the difference in
the population of the cell types. However,
pyramidal neurons, the majority type in
the cortex (Hendry et al., 1987; Abeles,
1991), can also exhibit different firing pat-
terns due to underlying network proper-
ties. Here we attempt to explore the origin
of the difference in firing regularity across
brain regions.

To see the difference in firing charac-
teristics between different cell types, we
analyzed spike trains recorded from the
hippocampus of rats (data set 7). In this
data set, neurons were classified into pu-
tative interneurons and pyramidal neu-
rons according to whether the duration of
action potential is short or long (Sirota et
al., 2008). It is observed from Figure 8A
that the putative interneurons exhibit the
higher firing rate and regularity than
those of putative pyramidal neurons, and
the firing characteristics of pyramidal
neurons (solid ellipse for 75% confidence
region) were shifted when putative
interneurons were included (dashed
ellipse).

Many distributions of the mean and
dispersion of the firing regularity in Fig-
ure 4A are positively tilted (24 of 35 data
sets). This may be caused by a skewed dis-
tribution of the firing regularity, because the
covariance between sample mean and sam-
ple variance or dispersion is proportional to

the skewness (Zhang, 2007). Positively skewed distributions of the
firing regularity may be obtained if a small number of interneurons
exhibit the more regular firing than a larger number of pyramidal
neurons.

Figure 6. Interspeciescomparisonofthefiringrate.Theaveragefiringrateisplottedforfourfunctional
areasofdifferentanimals.Errorbars indicateSDs.

A

B

Figure 7. Temporal variation of firing characteristics. A, Population histograms of firing rates, firing regularity, and ISI correla-
tion of neurons in preSMA and PF of monkeys aligned at cue onset. The shaded regions represent SEs. B, Distributions of the firing
characteristics estimated before (solid ellipses representing 75% confidence regions) and after (dashed ellipses) cue onset for
neuronal populations.
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Nevertheless, pyramidal neurons
alone may exhibit different firing patterns
in different cortical areas; we analyzed
spike trains recorded from rat motor cor-
tex (data set 1) and somatosensory (bar-
rel) cortex (data set 5) recorded using a
juxtacellular labeling technique, with
which the recorded cells can be identified
as pyramidal with morphological infor-
mation. Firing regularity turned out to be
significantly different between these cor-
tical areas (t test, t(60) � 7.03, p � 10�8;
Fig. 8B,C). Firing patterns of pyramidal
neurons in hippocampus, somatosensory
cortex, and motor cortex are compared in
Figure 8D, exhibiting systematic differ-
ence in firing regularity. This implies that
the mean firing regularity in each brain
region is mainly due to pyramidal
neurons.

Discussion
Our study raised three points that merit
consideration: first, as shown before, the
regimes in which neuronal firing occurs
exhibit systematic differences across dif-
ferent functional regions of the brain
(Shinomoto et al., 2009); second, the fir-
ing regimes are similar across homolo-
gous regions in different species; and
third, the parameter of the firing regimes
strongly correlated to the functional re-
gions is firing regularity.

Ideally, to investigate whether neurons
in homologous functional brain regions
have similar firing statistics across species,
it would be desirable to have data from a
single laboratory recording in different
species under similar conditions. It is gen-
erally difficult to obtain data on physio-
logical recordings from different species
under the same conditions with the same
behavior. However, we were able to com-
pare neuronal firings recorded from two
brain regions of the same monkeys performing the same task.
Overall, however, we collected data obtained under a variety of
conditions from several different laboratories. Our single re-
quirement was that the data be recordings taken from experi-
mental groups using awake animals. There is long-standing
evidence that there are systematic patterns of activity that char-
acterize the waking state (Klimesch, 1999). There is a concern
that data taken from different laboratories might differ because of
systematic differences in techniques across laboratories. These
differences include the criteria for isolating spikes from single
neurons and biases in the sampling of neurons, e.g., sampling
large (likely) versus small (less likely) neurons. Because of the
differences in neurophysiological technique and sampling, there
might have been a large enough amount of random scatter in our
measurements that we would not have seen the systematic group-
ings that we did identify. However, despite these potential or even
probable differences, the data we examined here group nicely for
our measures. Thus, even though the tasks were different across
species and brain regions, it is noteworthy, perhaps even remark-

able, that we see the statistical commonalities across species that
we do see.

Functional differentiation of firing patterns
The differences in firing regimes across functional regions may be
seen as a natural consequence of the functional subdivisions co-
inciding with architectonic subdivisions. It seems like different
cellular and connectional organization represented by different
architectonics ought to exhibit different dynamics. We have
shown that putative pyramidal neurons and interneurons exhib-
ited different firing patterns in a single brain region, whereas the
pyramidal neurons themselves exhibited systematic differences
in firing regularity across different brain regions.

The presence of systematic difference in firing patterns sug-
gests that it might be possible to distinguish brain regions accord-
ing to their mean and dispersion of firing regularity of sampled
neurons, much as we identify cytoarchitectonic divisions by the
functional tuning properties. When we used a Bayes’ discrimina-
tion analysis, we found a systematic trend of grouping according
to anatomical substrate (Fig. 9). When the mean and the disper-

A B C

D

Figure 8. Distributions of firing patterns across different cell types as well as different brain regions. A, Firing rate and regularity
of neurons in rat hippocampus. Putative interneurons and pyramidal neurons are depicted as circles and triangles. Solid and dashed
ellipses represent 75% confidence regions of putative pyramidal cells and the entire data set, respectively. B, C, Firing rate and
regularity of pyramidal neurons in rat somatosensory and motor cortices, identified by juxtacellular labeling. Solid ellipses repre-
sent 75% confidence regions. D, Comparison of the firing patterns of pyramidal neurons across three brain regions.
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sion of firing regularity were computed from 10 spike trains sam-
pled from a single data set, the brain region was inferred correctly
in 97 and 75% of cases taken from rat and monkey, respectively.
With 20 spike trains, the percentages increased to 99 and 82%.

It seems unsurprising that the functional divisions based on
cytoarchitectonics would have different dynamics. Neurons in
each functional division send and receive unique interareal ax-
onal projections (Felleman and Van Essen, 1991; Passingham et
al., 2002) and possess specific intrinsic laminar or horizontal con-
nections (Kritzer et al., 1992; Amir et al., 1993; Lund et al., 1993;
Defelipe et al., 1999; Hooks et al., 2011). In addition, dendritic
morphology and spine densities of pyramidal neurons systemat-
ically vary across the cortical areas (Elston and Rosa, 1998;
Benavides-Piccione et al., 2002; Elston, 2002, 2003; Ballesteros-
Yáñez et al., 2006). Diversity in the distribution and connectivity
of inhibitory interneurons across cortical regions has been re-
ported (Kritzer et al., 1992; Defelipe et al., 1999). This variety of
mechanisms could underlie the observed systematic variations in
firing patterns across brain regions. We speculate that future
studies that identify key mechanisms to control regularity of neu-
ronal firing will inform us as to which organization makes coding
efficient, depending on the type of information they receive.

Similarity of firing patterns across animal species
The fact that firing regimes were similar across different ani-
mal species indicates strong similarity in neuronal circuitries
between homologous regions across different animals, regard-
less of an overwhelming difference in the brain size (Fig. 4).
Our examination of interspecies similarity in the firing re-
gimes across brain regions revealed that the mPFC of rats and
the PF of monkeys were similar with respect to neuronal firing
regularity, despite the controversy regarding their cytoarchi-
tectonic homology (Uylings et al., 2003).

Functional significance of firing regularity
We searched for the firing characteristics that are essentially cor-
related to the functional area. In our previous study, we used an
index of local variation, Lv (Shinomoto et al., 2003), or its variant,
LvR (Shinomoto et al., 2009), which are relatively independent of
the firing rate that fluctuates widely according to animals’ tasks.
However, Lv or LvR can be interpreted either as the ISI variability
(firing regularity) or as ISI correlation (see Materials and Meth-
ods). Here, we estimated firing regularity and ISI correlation sep-
arately for each spike train and found that firing regularity was
more closely related to brain region than either ISI correlation or
firing rate.

Our finding that firing regularity varies systematically with
brain region should spur interest in learning how regularity or
irregularity influences neuronal information processing. Because
different regions in the brain are specialized for different func-
tions, it is reasonable to expect different regions are using specific
code structures and that these are enforced by entering into ap-
propriate regimes for processing different kinds of signals. The-
oretical studies have suggested that the quality of information
encoded might be represented by jumps among quasi-stationary
states (Amit, 1989; Abeles et al., 1995; Mazzucato et al., 2015). If
such transitions are mapped into the single neuron level, spike
trains may be seen as bursting or irregular. At the other extreme,
neurons may send real values that vary continuously in time. In
this case, regular firing may be more efficient than irregular firing
in transmitting real values. Considering the functional modular-
ity of the brain, it is reasonable that neurons in different regions
are in different regimes giving rise to appropriate patterns of
firing (Mochizuki and Shinomoto, 2014). The next step would be
to extend the analysis of single unit spike trains to the multivari-
ate analysis of multiunit data.

The visual areas were characterized by near-Poisson statistics
on average. Several authors (Elston, 2003; Maimon and Assad,

A B

Figure 9. Discrimination of the firing regularity in terms of cortical functions. Gaussian discriminant analysis was applied to the firing regularity plane to determine the decision boundaries for
the most likely cortical regions. A, Rat motor cortices, mPFC, and hippocampus. B, Monkey motor cortices, visual cortices, PF, and hippocampus.
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2009; Murray et al., 2014) postulated that the visual areas are
adapted to processing rapidly changing visual scenes because of
smaller capacity for synaptic integration (Amir et al., 1993; Elston
and Rosa, 1998; Elston, 2002, 2003) or shorter integration time
(Murray et al., 2014). It is an interesting theoretical topic to in-
vestigate whether the Poisson statistics are optimal or the wider
variety of firing patterns are needed for processing visual scenes.
We also reported the systematic deviation from the Poisson sta-
tistics in other areas. Theoretical considerations suggest that the
temporal correlations are beneficial to neural coding in two ways.
First, in terms of rate coding, regular firing can be advantageous
because downstream neurons achieve higher signal-to-noise ra-
tio in counting the number of spikes that they receive (Filion and
Tremblay, 1991; Bergman et al., 1994; Davies et al., 2006). The
motor areas seem suitable regions for the regular patterns be-
cause downstream muscle fibers inevitably low-pass filter the
presynaptic inputs from motoneurons (Maimon and Assad,
2009). Second, the temporal correlations may act as a channel of
information (Pillow et al., 2008; Jacobs et al., 2009). Among the
data sets we analyzed, hippocampus showed the most bursting
firing on average. Consistent with the idea that the burst activity
conveys information, studies using rodents showed that hip-
pocampal burst activity appears in a context-dependent manner
(Harris and Mrsic-Flogel, 2013), makes synaptic transmission
reliable (Lisman, 1997), and influences plasticity (Moore et al.,
1993; Takahashi and Magee, 2009).

In summary, we have shown that there are similarities across
neuronal firings in similar or roughly homologous regions that
are robust across the large differences in behavior used to collect
the data in different experiments. The systematic deviation in
firing regularity from Poisson randomness along with the robust-
ness across species should provoke study into learning what dif-
ferences in firing regularity enable different forms of information
to be efficiently encoded.
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Benavides-Piccione R, Ballesteros-Yáñez I, DeFelipe J, Yuste R (2002) Cor-
tical area and species differences in dendritic spine morphology. J Neuro-
cytol 31:337–346. CrossRef Medline

Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate
subthalamic nucleus. II. Neuronal activity in the MPTP model of parkin-
sonism. J Neurophysiol 72:507–520. Medline

Bishop CM (2006) Pattern recognition and machine learning, Ed 1. New
York: Springer.

Brodmann K (1909) Vergleichende lokalisationsiehre der Grosshirnrinde
in ihren Prinzipien Dargestellt auf Grund des Zellenbaues. Leipzig, Ger-
many: Verlag von Johann Ambrosius Barth.

Brown EN, Barbieri R, Ventura V, Kass RE, Frank LM (2002) The time-
rescaling theorem and its application to neural spike train data analysis.
Neural Comput 14:325–346. CrossRef Medline

Bullock TH, Bennett MV, Johnston D, Josephson R, Marder E, Fields RD
(2005) Neuroscience. The neuron doctrine, redux. Science 310:791–793.
CrossRef Medline

Burns BD, Webb AC (1976) The spontaneous activity of neurones in the

cat’s cerebral cortex. Proc R Soc Lond B Biol Sci 194:211–223. CrossRef
Medline

Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocor-
tical neurons. Trends Neurosci 13:99 –104. CrossRef Medline

Cox DR, Lewis PAW (1966) The statistical analysis of series of events. Lon-
don: Methuen.

Davies RM, Gerstein GL, Baker SN (2006) Measurement of time-dependent
changes in the irregularity of neural spiking. J Neurophysiol 96:906 –918.
CrossRef Medline

DeFelipe J (2010) From the connectome to the synaptome: an epic love
story. Science 330:1198 –1201. CrossRef Medline
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