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Although the neural correlates of elemen-
tary movements are now fairly well estab-
lished (Ejaz et al., 2015), understanding
the neural circuits involved in complex
motor skills such as sequential move-
ments remains a challenge. Electrophysi-
ological and lesion studies in monkeys,
along with virtual lesion studies and
neuroimaging data in humans, have
shown that both the primary motor cor-
tex (Lu and Ashe, 2005; Matsuzaka et al.,
2007) and the non-primary motor cortex
(Tanji and Shima, 1994; Wiestler and
Diedrichsen, 2013; Wymbs and Grafton,
2013) are involved in sequential actions.
Similar to other complex skills, move-
ment sequences arise from multifaceted
neural processing (Hardwick et al., 2013)
involving the storage of the sequence in
memory, the preparation of the move-
ment kinematics, and the on-line move-
ment correction. Correlative approaches,
based on neuroimaging or primate elec-
trophysiology, have failed to provide a
clear mapping of these functions onto the
different nodes of the motor network
(Hardwick et al., 2013), a gap that inter-
ferential studies have the potential to fill.
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One such study was recently conducted
by Ohbayashi et al. (2016), who investigated
the role of dorsal premotor cortex (PMd) in
the execution of internally generated and
visually guided sequences. Two monkeys
were trained to execute visually cued
movements, which were either random or
belonged to a set of extensively trained se-
quences. The authors observed that in well
trained sequences the animals started to ex-
hibit anticipatory responses, indicating that
movements within these sequences were
internally generated rather than visually
guided. During task performance, neural
activity was recorded in the arm area of
PMd, which was identified by means
of microstimulation mapping. About half of
the recorded PMd neurons were equally
likely to be tuned to visually guided or inter-
nally generated sequential movements, sug-
gesting the involvement of this area in both
conditions. However, cell specificity was not
determined according to statistical signifi-
cance but following a liberal attribution cri-
terion, making it difficult to determine the
importance of the reported tuning proper-
ties. Therefore, Ohbayashi et al. (2016) used
the GABA agonist muscimol to disrupt
PMd activity to examine whether this brain
region plays a causal role in sequence encod-
ing. Importantly, they found that PMd inac-
tivation led to reductions in the number of
anticipatory movements and to increases in
spatial error only during the execution of
highly practiced sequences, suggesting that
this region is involved in the control of in-
ternally generated sequences, but not visu-
ally guided movements.

These results raise important ques-
tions about the functional role of PMd
in motor task performance. Indeed, the
finding that PMd inactivation did not
impair visually guided sequence perfor-
mance appears to be in stark contrast with
previous accounts of PMd involvement in
controlling basic movement kinematics
(Caminiti et al., 1991; Davare et al., 2015)
and visually guided movements (Johnson
etal., 1996). However, we believe that this
apparent discrepancy may be explained by
the presence of constant visual feedback
during the task used by Ohbayashi et al.
(2016), which, by allowing on-line correc-
tion of movement kinematics, may have
concealed subtle inaccuracies in the initial
movement parameters (Archambault et
al., 2015; Davare et al., 2015). Given that
the task design used in this study allowed
the authors to measure only the accuracy
and timing of the movement end point,
but not of the whole trajectory, these
disruptions of the reaching movement
parameters could have gone unnoticed
(Fig. 1). Conversely, the lack of visual guid-
ance due to movement anticipation during
internally generated sequences made per-
formance more sensitive to disruptions in
movement kinematics (Davare et al., 2015).
This alternative interpretation could thus
potentially account for the specific effect of a
PMd temporary lesion on internally gener-
ated sequence performance.

As discussed by Ohbayashi et al.
(2016), their study provides a new per-
spective on the specific role of PMd in se-
quence encoding by questioning the
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Figure1.  Simulated trial of the arm-reaching task used by
Ohbayashi et al. (2016), in which monkeys were trained to
execute internally generated and visually guided move-
ments. The green line shows the optimal hand trajectory to
reach the target. The authors reported that disrupting PMd
did not result in error and concluded that visually guided
movements do not depend on PMd integrity. An alternative
explanation is that monkeys initiated a movement with a tra-
jectory that would have resulted in missing the target (red
line), but, because the target was constantly present, the
monkeys were able to correct the trajectory late in the trial
(yellow line).

importance of the supplementary motor
area (SMA) to this function (Tanji and
Shima, 1994). The authors propose to
frame the functional roles of the two areas
in terms of spatial and temporal sequence
processing for PMd and SMA, respec-
tively (Ohbayashi et al., 2016). This dis-
tinction was based on the observations
that SMA is involved in the processing of
temporally structured sequences (Tanji
and Shima, 1994; Coull et al., 2016), and
that the disruption of primate SMA did
not induce impairments in the execution
of spatially structured sequences (Naka-
mura et al., 1999). Addressing this issue
directly requires comparing, under the
same experimental conditions, the effect
of the disruption of SMA and PMd on se-
quence performance. Following such an
approach, Kennerley et al. (2004) used
transcranial magnetic stimulation (TMS)
to impair either pre-SMA or PMd while
subjects were performing well trained fin-
ger movement sequences. TMS disrup-
tion of the pre-SMA had a marked effect
on sequence performance, but only when
the stimulation was delivered during the
initiation of grouped movement series
(i.e., chunks), suggesting the involvement
of SMA in the retrieval of the sequence
program. In contrast, PMd disruption did
not produce any marked effect on se-
quence performance. In another study on
motor sequence learning, Wymbs and
Grafton (2013) used TMS over PMd and
SMA to probe their roles in sequence re-
trieval, while varying the amount of train-
ing on the sequence-learning task. PMd
disruption led to increased errors only

during the retrieval of moderately trained
sequences, as opposed to minimally or
extensively trained sequences, whereas
the inhibition of SMA increased errors
regardless of the amount of training
(Wymbs and Grafton, 2013). These re-
sults are in conflict with those reported by
Ohbayashi et al. (2016), in which PMd in-
activation affected selectively well trained
movement sequences. However, task dif-
ferences may also explain the discrepancy
between these results, since Wymbs and
Grafton (2013) used a finger sequence
production task, whereas the design of
Ohbayashi et al. (2016) involved arm-
reaching movements, which may possibly
engage PMd to a larger extent.

A possible confound in studying
skilled motor functions, acknowledged by
Ohbayashi et al. (2016), is that the perfor-
mance of internally generated sequences
is faster paced, and could consequently
have been more susceptible to the disrup-
tion of the motor network than visually
guided movements. To address this issue,
they inactivated the shoulder representa-
tion in primary motor cortex (M1), which
led to equivalent impairment of the
visually guided and internally generated
movement sequences. Interestingly, an-
other influential study has investigated
the role of M1 in sequence processing us-
ing a similar approach (Lu and Ashe,
2005). Lu and Ashe (2005) found that M1
neurons show anticipatory activity to
specific memorized movement sequences,
and that muscimol injection in M1 disrupts
long-trained sequences but leaves nonse-
quential motor performance unaltered (Lu
and Ashe, 2005). The study by Lu and Ashe
(2005) as well as other studies (Matsuzaka et
al., 2007) concluded from these findings
that training duration is an essential factor
in forming sequence representation in M1.
Ohbayashi et al. (2016) did not report the
duration of the training on the sequence-
learning task, and probed only a specific part
of M1, which again prevents a direct com-
parison between the studies. Therefore, the
differential function of M1, PMd, and SMA
in encoding movement sequences remains
unsettled. Finally, Ohbayashi et al. (2016)
suggest that other brain structures, such as
the superior colliculus (SC), may be critical
for visually guided movements. However,
despite early descriptions of neural activity
evoked by forelimb movement in SC (Wer-
ner, 1993) and the triggering of forelimb
movements by SC electrical stimulation
(Courjon et al., 2004), later findings have
strongly contradicted the causal implication
of SC in reaching (Stuphorn et al., 2000).
For example, Stuphorn et al. (2000) re-
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ported that SC neurons were not modulated
by any specific path of arm movement, or
any muscle pattern (Stuphorn et al., 2000).
Moreover, a recent study (Courjon et al.,
2015) has shown that forelimb movements
evoked by SC stimulation are systematically
directed backward and downward, regard-
less of the site of the stimulation within the
oculomotor map. These findings indicate
that the SC is unlikely to be responsible for
controlling visually guided movements, but,
instead, is involved in the selection of the
visual target (Krauzlis et al., 2013).

In conclusion, the contentious results re-
ported by Ohbayashi et al. (2016) urge more
in-depth investigation of the neural corre-
lates of complex motor skills. We suggest
that their findings remain compatible with
an alternative interpretation in which PMd
encodes movement kinematics, rather than
being related prominently to encoding in-
ternally generated sequences. Nevertheless,
it is our opinion that a systemic interferen-
tial approach, comparing the effect of the
disruption of the different actors of the mo-
tor network on a unique task, would be ben-
eficial to the field.
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