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Review of Heller, Hamilton et al.

Epigenetics defines a broad class of changes
that occur in the genome without altering
the underlying DNA sequence. These cha-
nges include covalent chemical mod-
ifications to histone terminal tails, direct
chemical modification of DNA, regulation
of RNA content by noncoding RNAs, and
both local and global changes in transcrip-
tion occurring in response to these and
other factors (Jakovcevski and Akbarian,
2012). Research into epigenetics has princi-
pally focused on histone and DNA modifi-
cations that affect transcription of the
underlying DNA either by “opening” the
chromatin complex and increasing tran-
scription, or by “closing” the chromatin and
decreasing transcription (Jakovcevski and
Akbarian, 2012). Histone acetylation, for
example, is usually considered a mark of
“open chromatin” and thus increased tran-
scription of the underlying DNA, whereas
methylation of certain histone lysine resi-
dues, such as histone 3 lysine 9 (H3K9) and
H3K27, is a mark of “closed chromatin”
(Kouzarides, 2007; Krishnan et al., 2014).
Epigenetic enzymes act to add and remove
histone modifications from chromatin in a

dynamic and modifiable manner (Jak-
ovcevski and Akbarian, 2012; Krishnan et
al., 2014).

Much of the early mechanistic research
on epigenetics focused on its role in cancer
and development, but the function of epige-
netic machinery in the brain has attracted
increased attention in recent years (Nestler
et al., 2015). Epigenetic processes are impli-
cated in psychiatric disorders, including de-
pression and drug addiction (Jakovcevski
and Akbarian, 2012; Nestler et al., 2015;
Walker et al., 2015). Additionally, the basic
mechanisms underlying epigenetic pro-
cesses may show subtle but important
differences due to brain-specific splice vari-
ation and differential isoform expression
(e.g., Zibetti et al., 2010). Determining the
causal role of epigenetic modifications and
the resulting effects on neural systems and
behavior requires the use of technologies ca-
pable of experimentally inducing specific
epigenetic marks at discrete genetic loci.
One way to accomplish this involves using
zinc finger protein (ZFP) transcription fac-
tors, DNA-binding proteins engineered to
recognize a specific genetic region, fused
with epigenetic effector domains capable of
adding or removing particular epigenetic
modifications (Maeder et al., 2008). In a re-
cent issue of The Journal of Neuroscience,
Heller, Hamilton et al. (2016) used ZFPs to
epigenetically modulate expression of a par-
ticular gene product involved in stress- and
drug-induced behavior.

As cyclin-dependent kinase 5 (Cdk5)
expression in the nucleus accumbens (NAc)

is implicated in behavioral responses to
both stress and drugs of abuse (Lu et al.,
2003; Zhong et al., 2014), Heller, Hamilton
et al. (2016) investigated the effect of bidi-
rectional epigenetic modulation of Cdk5
expression on cocaine-induced locomo-
tion, cocaine conditioned place preference
(CPP), and social defeat stress. Specifically,
the authors used a ZFP construct fused to
the p65 transcriptional activation domain of
nuclear factor �-light-chain-enhancer of ac-
tivated B cells (NF-�B) (Cdk5-ZFP-p65)
that adds activating acetyl groups to chro-
matin in the Cdk5 promoter, along with a
separate ZFP construct fused to the histone
methyltransferase G9a (Cdk5-ZFP-G9a) to
add restrictive methyl groups to H3K9 at the
Cdk5 promoter. These constructs were then
transfected into the mouse NAc, where the
Cdk5-ZFP-p65 construct increased Cdk5
expression to levels �1.4-fold of controls
presumably by increasing histone H3K9/14
acetylation of the Cdk5 promoter, and the
Cdk5-ZFP-G9a construct decreased Cdk5
expression to levels �0.5-fold of controls
presumably via increased H3K9 dimethyla-
tion (H3K9me2).

Increasing Cdk5 expression in the NAc
with Cdk5-ZFP-p65 led to increased co-
caine-induced locomotion and reduced
susceptibility to social defeat stress while
having no effect on cocaine CPP. Con-
versely, reducing Cdk5 expression in the
NAc with Cdk5-ZFP-G9a resulted in de-
creased cocaine-induced locomotion that
was particularly evident on the third and
fourth day of treatment, and also reduced
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cocaine CPP. Cdk5-ZFP-G9a-transfected
mice did not show any behavioral altera-
tions after social defeat stress compared with
controls.

This research represents a significant
step in molecular neuroscience, as the meth-
ods used allow investigators to both increase
and decrease gene expression within physi-
ologically relevant constraints in discrete
brain regions using tools derived from
native transcriptional and epigenetic ma-
chinery. Although newer technologies are
available for inducing epigenetic modifica-
tions at specific locations (e.g., dCas9 and
CRISPR) (Hsu et al., 2014), Heller, Hamil-
ton et al. (2016) use the older but better
characterized technology of ZFPs (Maeder
et al., 2008) and performed necessary qual-
ity control by measuring mRNA transcripts
of genes adjacent to Cdk5 and genes with
similar motifs to the engineered Cdk5-ZFP
constructs, finding no significant alterations
in mRNA content. This research builds on a
previous finding from the same laboratory
group, which showed that engineered ZFPs
could bidirectionally modify expression of
the FosB gene and subsequently alter behav-
ior (Heller et al., 2014).

While Heller, Hamilton et al. (2016) suc-
ceed in demonstrating that targeted bidirec-
tional epigenetic modification of Cdk5 can
regulate drug- and stress-related behavior,
this paper and potential follow-up studies
would be strengthened by measures of ei-
ther epigenetic modifications (H3K9/14
acetylation and H3K9me2) or Cdk5 mRNA
expression in the NAc of animals who un-
derwent cocaine administration and/or be-
havioral tests. In the manuscript, the
expression of Cdk5 mRNA, as well as the
occupancy of H3K9/14 acetylation and
H3K9me2 in the Cdk5 promoter, was as-
sayed in animals that were not used for be-
havioral experiments. Complementing
behavioral measures with biochemical mea-
sures in the same animals would serve to
answer two questions. First, does the mag-
nitude of Cdk5 epigenetic modulation by
ZFPs in the NAc correlate with specific be-
havioral changes? Measures of Cdk5 mRNA
expression and/or H3K9/14 acetylation of
the Cdk5 promoter region may have eluci-
dated differences in the ability of the viral
construct to increase Cdk5 promoter acety-
lation, and subsequently increase expres-
sion and possibly influence behavior in
individual animals. Correlations between
behavior and brain gene expression have
proven useful in other research domains.
For example, licking and grooming be-
havior of female rats toward their pups
positively correlates with hippocampal glu-
cocorticoid receptor (GR) mRNA in the

pups in young adulthood (van Hasselt et al.,
2012), and GR expression in the hippocam-
pus is controlled by epigenetic factors, such
as DNA methylation, and responds to
stressful stimuli (Turecki and Meaney,
2016).

Second, and perhaps most importantly,
does the response to cocaine differ between
animals injected with a Cdk5-ZFP construct
in the NAc and control animals? Because
cocaine-induced locomotion was measured
across multiple days and multiple injections
of cocaine (Heller, Hamilton et al., 2016), it
is possible that repeated exposure to cocaine
differentially altered the chromatin in the
Cdk5 promoter of virus-transfected animals
versus controls. This effect can be envi-
sioned as a chromatin � drug interaction,
where the response to cocaine possibly de-
pends on the existing epigenetic state of the
Cdk5 promoter. In a previous study using
ZFPs targeted to FosB, the same laboratory
group performed experiments that ad-
dressed these questions by measuring the
binding of transcription factors to the FosB
promoter after repeated cocaine exposure in
animals injected with FosB-ZFP-G9a in the
NAc and controls, finding that cocaine in-
creased phospo-cAMP response element
binding protein occupancy in the FosB pro-
moter in control animals but not in FosB-
ZFP-G9a rats (Heller et al., 2014).

Notably, animals injected with Cdk5-
ZFP-G9a were given 15 mg/kg of cocaine on
4 consecutive days during the cocaine-
induced locomotion assay (Heller, Hamil-
ton et al., 2016), but the decreased cocaine-
induced locomotion in the Cdk5-ZFP-G9a
group did not become apparent until days 3
and 4 of the assay. Repeated cocaine expo-
sure alters epigenetic architecture in the
Cdk5 promoter by increasing deposition of
activating acetyl groups (Kumar et al.,
2005). One possibility here is that the pres-
ence of H3K9me2 on the chromatin steri-
cally hinders the addition of acetyl groups to
the same residue, or that acetyl groups are
added but rapidly removed and replaced by
repressive methylation via Cdk5-ZFP-G9a.

Interestingly, H3K9me2 occupancy
shows dynamic temporal regulation at
neuronal activity-regulated genes, such as
activity-regulation cytoskeletal-associated
protein (Arc), where this epigenetic mark
is initially decreased by neuronal activity
before undergoing a compensatory increase
that depends on the presence of other chro-
matin modifications (Oey et al., 2015).
H3K9me2 occupancy also displays differen-
tial age-dependent regulation at the
brain-derived neurotrophic factor (Bdnf)
promoter IV in the hippocampus following
early-life stress (Suri et al., 2013), and epige-

netic regulation of this promoter site by
both histone and DNA methylation is im-
plicated in the response to stress and drugs
of abuse (Tsankova et al., 2006; Kyzar et al.,
2016; Tian et al., 2016). Thus, measuring
H3K9me2 and/or H3K9/14ac after cocaine
exposure in animals injected with ZFP con-
structs in the NAc has the potential to in-
crease our overall knowledge of epigenetic
residue interactions and how these epige-
netic marks react to drugs of abuse. Explor-
ing the intricacies of chromatin complex
formation and modification may also lead
to the discovery of novel epigenetic mecha-
nisms in the brain.

The recent paper by Heller, Hamilton et
al. (2016) opens up new and increasingly
important lines of investigation in the field
of neuroepigenetics. Researchers are now
able to modify chromatin at distinct
genomic sites with targeted efficacy and the
ability to change behavioral output. As this
field continues to mature, future work
should continue to pioneer tools, such as
epigenome engineering, to increase our un-
derstanding of the basic molecular function
of neurons and neural circuits.
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