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Heteromodal Cortical Areas Encode Sensory-Motor Features
of Word Meaning
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The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how
this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent
debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to
support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive
machine learning on fMRI data to investigate the hypothesis that cortical areas in this “general semantic network” (GSN) encode
multimodal information derived from basic sensory-motor processes, possibly functioning as convergence– divergence zones for
distributed concept representation. An encoding model based on five conceptual attributes directly related to sensory-motor
experience (sound, color, shape, manipulability, and visual motion) was used to predict brain activation patterns associated with
individual lexical concepts in a semantic decision task. When the analysis was restricted to voxels in the GSN, the model was able
to identify the activation patterns corresponding to individual concrete concepts significantly above chance. In contrast, a model
based on five perceptual attributes of the word form performed at chance level. This pattern was reversed when the analysis was
restricted to areas involved in the perceptual analysis of written word forms. These results indicate that heteromodal areas
involved in semantic processing encode information about the relative importance of different sensory-motor attributes of
concepts, possibly by storing particular combinations of sensory and motor features.
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Introduction
The capacity to encode and retrieve conceptual information is
an essential aspect of human cognition, but little is known
about how these processes are implemented in the brain. Neu-
roimaging studies of conceptual processing have implicated

areas at various levels of the cortical hierarchy, including sen-
sory and motor areas (Hauk et al., 2004; Hsu et al., 2012) and
multimodal (Fernandino et al., 2016) and heteromodal re-
gions (Binder et al., 2009). Binder et al. (2009) referred to the
latter as a “general semantic network” (GSN) because it re-
sponds more to meaningful input (words and sentences) than
to meaningless input (nonwords and scrambled sentences)
regardless of the particular sensory-motor content of the
items. The GSN consists of portions of the inferior parietal
lobule (IPL), lateral temporal cortex (LTC), lateral prefrontal
cortex (LPFC), precuneus/posterior cingulate gyrus (Pc/
PCG), parahippocampal gyrus (PHG), and medial prefrontal
cortex (MPFC), all of which are bilaterally activated, with
stronger activations in the left hemisphere. According to em-
bodied models of semantics, lower-level sensory and motor
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Significance Statement

The present study used a predictive encoding model of word semantics to decode conceptual information from neural activity in
heteromodal cortical areas. The model is based on five sensory-motor attributes of word meaning (color, shape, sound, visual
motion, and manipulability) and encodes the relative importance of each attribute to the meaning of a word. This is the first
demonstration that heteromodal areas involved in semantic processing can discriminate between different concepts based on
sensory-motor information alone. This finding indicates that the brain represents concepts as multimodal combinations of
sensory and motor representations.
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areas contribute to concept representation by encoding the
sensory-motor features of phenomenal experience that char-
acterize each concept, presumably derived from the experi-
ences that led to the formation of the concept. However, the
role of the GSN remains obscure. We propose that this net-
work encodes high-level representations of the coactivation
patterns exhibited by lower-level, sensory-motor cortical ar-
eas during concept retrieval, which is consistent with the idea
of convergence– divergence zones originally proposed by
Damasio (1989) and further developed by Simmons and Bar-
salou (2003). Alternatively, it is possible that the GSN encodes
conceptual representations in a qualitatively distinct format
that does not rely on sensory-motor information. The exis-
tence of such a disembodied code for concept representation
has been endorsed by some investigators (Mahon and Cara-
mazza, 2008).

We set out to investigate whether the heteromodal areas
comprising the GSN encode sensory-motor information about
concepts during word-cued concept retrieval. We used a for-
ward-encoding model based on five sensory-motor attributes of
word meaning (sound, color, visual motion, shape, and manip-
ulability) to decode the distributed fMRI activation patterns
associated with the meanings of 300 common nouns. We antici-
pated that this “semantic model” would successfully identify in-
dividual concrete concepts from neural activity in the GSN.
Because sensory-motor attributes are less relevant for abstract
nouns, we expected decoding accuracy to be lower for these
words, if at all above chance. As a control, we predicted that an
alternative model based on five orthographic and phonologic
attributes of the word form (the “word-form model”) would not
decode activation patterns in the GSN above chance levels.

As an additional control, we also evaluated both encoding
models in a different set of cortical regions, namely, those in-
volved in the perceptual analysis of written word forms (the
“word form network” (WFN) (Cohen et al., 2004). Therefore, we
expected the decoding accuracy of the two encoding models in
these areas to show the opposite pattern relative to the GSN; that
is, successful decoding for the word-form model, but not for the
semantic model.

In most previous fMRI decoding studies, several exemplars of
particular categories (e.g., faces, houses, and animals) were pre-
sented and a classifier was trained to discriminate between the
categories. The classifier was then used to predict the category of
a new (untrained) item. Successful decoding, in that context,
indicates that the voxels included in the analysis encode informa-
tion about stimulus category (although the nature of that infor-
mation is often difficult or impossible to characterize). Our
analysis has a different goal: each stimulus is treated as a unique
item, the neural representation of which is hypothesized to rely
on a specific, explicit representational system determined by a set
of sensory-motor features and their relative weights (obtained
from participants’ ratings). What is predicted is not the item’s
category, but rather its unique identity. Successful decoding in-
dicates that the voxels used in the analysis encode information
about the specific attributes hypothesized to underlie the repre-
sentational system.

Materials and Methods
Attribute ratings
The semantic model was based on five semantic attributes directly related
to sensory-motor processes: sound, color, shape, manipulability, and
visual motion. Ratings for these attributes were available for a set of 900
words (for details, see Fernandino et al., 2016). The ratings reflect the

relevance of each attribute to the meaning of the word on a 7-point Likert
scale ranging from “not at all important” to “very important.” Approxi-
mately 30 participants rated each attribute for each word.

Data source
We direct the reader to Fernandino et al. (2016) for details on the stimuli
and data collection procedures, which are summarized below.

Participants. Participants were 21 healthy, right-handed, native speak-
ers of English with no history of neurological or psychiatric disorders
(7 females; mean age 29.9 years, range 20 – 47). All participants gave
informed consent as approved by the Medical College of Wisconsin In-
stitutional Review Board and were compensated for participation.

Stimuli. Stimuli consisted of the 900 nouns for which attribute ratings
were available and 300 pseudowords. Six hundred nouns were relatively
concrete and 300 were relatively abstract, as determined by either
published imageability ratings or consensus judgment of the authors.
Pseudowords were matched to the words on length, orthographic neigh-
borhood density, and bigram and trigram metrics.

Task procedure. The stimuli were back-projected on a screen that was
viewed by the participant through a mirror attached to the head coil.
Participants performed 1200 trials (900 words, 300 pseudowords) dis-
tributed over 10 runs. Each stimulus was presented for 1000 ms and was
followed by a fixation cross for a jittered interval of 1–13 s.

Participants performed a speeded semantic decision task (“can it be
directly experienced with the senses?”) and responded by pressing one of
two response keys with their right hand. They were instructed to press the
button for “no” in the case of pseudowords.

FMRI acquisition and preprocessing. Gradient-echo EPI images were
collected in 10 runs of 196 volumes each on a GE 3T Excite MRI scanner
(TR � 2000 ms, TE � 25 ms, 40 axial slices, 3 � 3 � 3 mm voxels).
T1-weighted anatomical images were obtained using a 3D SPGR se-
quence with voxel dimensions of 1 mm isotropic.

EPI volumes were corrected for slice acquisition time and head mo-
tion. They were aligned to the T1-weighted volume and normalized into
Talairach space (AFNI’s TT_N27 template) using affine transformations
implemented by the AFNI program @auto_tlrc. Images were smoothed
with a 6 mm FWHM Gaussian kernel. Each voxel time series was rescaled
to percentage of mean signal level so that subsequent regression param-
eter estimates reflected percentage signal change.

Forward-encoding models
The semantic model was designed to predict the activation pattern cor-
responding to a given word based on the ratings of the five semantic
attributes for that word (see “Attribute ratings” section above). The
word-form model was designed to predict activation patterns based on
perceptual properties of the word form, regardless of meaning, thus serv-
ing as a control for the semantic model. It was based on five orthographic
and phonologic attributes of the word form: number of letters, number
of syllables, orthographic neighborhood density, phonologic neighbor-
hood density, and bigram frequency.

Decoding algorithm
For the decoding procedure, we split the 900 word stimuli into a model-
ing set, consisting of 850 items, and a test set, consisting of 50 items. The
decoding algorithm was repeated six times, each time with a different set
of test words, for a total of 300 test words. Three test sets consisted of
concrete nouns and the others consisted of abstract nouns. Test words
were selected randomly with the constraint that the concrete and abstract
subsets were matched in word frequency, number of letters, number of
phonemes, number of syllables, orthographic and phonologic neighbor-
hood densities, and bigram frequency (Table 1).

The decoding algorithm consisted of four steps: (1) generating attri-
bute maps (AMs), (2) computing predicted maps (PMs), (3) generating
observed maps (OMs), and (4) testing the PMs against the OMs. The
steps are described below.

Generating AMs. AMs for each attribute in the encoding model were
generated for each participant based exclusively on the words in the
modeling set (Fig. 1). This was done by including the z-transformed
attribute values (sensory-motor ratings in the case of the semantic model,
orthographic and phonologic measures in the case of the word-form
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model) as simultaneous predictor variables in a generalized least-squares
(GLS) regression. For the semantic model, nuisance regressors included
lexical variables unrelated to word meaning (word length, number of
phonemes, number of syllables, printed word frequency, bigram fre-
quency, and orthographic and phonological neighborhood density) and
the participant’s reaction time (RT) for each trial (all z-transformed). For
the word-form model, nuisance regressors included the five sensory-
motor ratings of word meaning and the participant’s RT for each trial
(all z-transformed). Two binary regressors, one coding for “word” events
and the other for “pseudoword” events, were included to account for
residual activity associated with early visual processing of the stimulus, as
well as the subsequent motor response. Signal drift was modeled with
linear, second-order, and third-order trends and residual movement ar-
tifacts were modeled with the estimates of the motion parameters. A
group-level AM for each attribute was created by averaging the individ-
ual AMs (� values) across participants.

Computing PMs. For each of the 50 words in the test set, PMs were
computed as linear combinations of the group-level AMs, whereby each
AM was weighted by the test word’s corresponding attribute value (Fig.
2A). In the case of the semantic model, the PM for a given test word
corresponded to the hypothetical activation pattern that would be
associated with the meaning of that word if the word’s meaning were
completely captured by the five attribute ratings (i.e., sound, color, ma-
nipulation, visual motion, and shape). For the word-form model, it cor-
responds to hypothetical activation associated with the orthographic and
phonological properties of the written word.

Generating OMs. From the imaging data, we extracted the unique
activation pattern induced by each word in the test set (OMs). For each
participant, a separate GLS regression was conducted for each word in
the test set, with the following explanatory variables: a binary regressor
coding for the presentation of the selected test word; a binary regressor
coding for presentation of all the nonselected words (i.e., the other 899
words in the stimulus set); a binary regressor coding for presentation of
the pseudowords; five continuous regressors coding for each of the five
attribute values for all nonselected words; and a continuous regressor
coding the response time for each trial. The OM was obtained from the
contrast “selected word � pseudowords.” We chose the pseudoword
condition (instead of “rest”) as the baseline to make the activation maps
more comparable across participants because “rest” is an unspecified
condition that likely varies within and across participants. For each test
word, a group-level OM was obtained by averaging the individual OMs
(� values) across participants.

Testing the PMs against the OMs. The decoding accuracy of the model
was evaluated separately for each word based on the similarity between
the PM and its corresponding OM relative to the similarity between the
PM and all the other OMs in the test set (Fig. 2B). Similarity was defined
as the voxel-by-voxel pairwise correlation between maps, and accuracy
was defined as the percentile rank of the correlation strength between the
PM and the corresponding OM. This percentile rank, scaled to a 0 –1

range, was assigned to the PM as its accuracy score. Therefore, each
PM received an accuracy score corresponding to how similar it was to its
respective OM relative to the other 49 OMs, with 0 corresponding to least
similar and 1 corresponding to most similar. For example, if the OM for
the word “tomato” were the most highly correlated to the PM for the
same word, then that PM would receive an accuracy score of 49/49 � 1.
If, instead, it were the second most highly correlated to its respective PM,
then the accuracy score would be 48/49 � 0.98. The Shapiro–Wilk nor-
mality test showed that the model’s accuracy scores for the test words
were not normally distributed, so we used nonparametric binomial tests
to verify whether model performance (i.e., decoding accuracy across the
50 test words) was significantly higher than chance (0.5).

Voxel selection masks
Our hypothesis concerned the role of the GSN in representing sen-
sory-motor information about concepts. Therefore, we created a
voxel-selection mask based on the activation-likelihood estimation
(ALE) meta-analysis by Binder et al. (2009), encompassing the corti-
cal areas that were reliably associated with “general” semantic pro-
cessing (Fig. 3A). The map from Binder et al. (2009) was thresholded
at p � 0.05 and converted into a binary mask. To investigate which
portions of the GSN contributed the most to decoding accuracy, we
performed the analysis separately on each of its five regions: lateral
temporoparietal, medial parietal, medial temporal, lateral prefrontal,
and medial prefrontal.

As a control, the models were also evaluated in a mask corresponding
to the WFN obtained from the contrast pseudowords � rest in the pres-
ent dataset, thresholded at p � 0.05 (corrected). This mask included
visual, somatosensory, and motor/premotor areas, as well as the thala-
mus, and had minimal overlap with the GSN mask (Fig. 3A). Because
these regions are more strongly activated during bottom-up perceptual
processing than during top-down processing (Goebel et al., 1998;
O’Craven and Kanwisher, 2000), we expected their activation patterns to
encode information primarily about word form rather than semantic
content. Voxels displaying a low temporal signal-to-noise ratio (�200)
were excluded from both masks.

Concrete versus abstract words
In total, six nonoverlapping test sets were evaluated in cross-validation.
The three concrete and the three abstract sets were matched on all lexical
attributes except for concreteness. As shown in Table 1, the variance of
the sensory-motor attribute ratings was much smaller among abstract
than among concrete words, indicating that abstract word meanings
contained much less information about the sensory-motor features in-
cluded in the semantic model. Therefore, if the accuracy of the semantic
model were indeed driven by the sensory-motor aspects of word mean-
ing, then decoding performance should be high for concrete but low for
abstract words.

Results
Mean RT on the semantic decision task was 942 ms (SD � 98 ms).
Mean accuracy was 0.84 for words and 0.96 for pseudowords,
indicating that participants attended closely to the task. As
expected, RT was negatively correlated with concreteness
(r � �0.66, p � 0.0001) and with each of the five semantic
attributes (sound: r � �0.15; color: r � �0.64; manipulability:
r � �0.41; motion: r � �0.34; shape: r � �0.71; all p � 0.0001).

Model performance in the GSN mask
Decoding accuracy for the two encoding models in the GSN
mask is shown in Figure 3B. Consistent with our hypothesis,
the semantic model was successful in decoding concrete [me-
dian � 0.61; 99% confidence interval (CI) � 0.53– 0.67; p �
0.0004], but not abstract words (median � 0.55; 99% CI �
0.44 – 0.65; p � 0.06), whereas the word-form model failed to
decode both types of words (concrete: median � 0.55; 99%
CI � 0.47– 0.65; p � 0.08; abstract: median � 0.52; 99% CI �
0.39 – 0.61; p � 0.28). The regions that showed the highest

Table 1. Lexical and semantic attributes as means (SD) for concrete and abstract
test words

Concrete Abstract t test ( p)

Number of letters 5.75 (1.97) 5.75 (2.02) 0.70
Number of phonemes 4.47 (1.75) 4.87 (1.9) 0.33
Number of syllables 1.67 (0.8) 2 (1.01) 0.11
Log Frequency 9.86 (1.31) 9.44 (1.5) 0.18
Orth. neighborhood 4.87 (5.51) 4.27 (5.81) 0.64
Phon. neighborhood 9.57 (10.22) 8.72 (11.52) 0.73
Bigram frequency 1722 (842) 1902 (933) 0.37
Concreteness 4.81 (0.19) 2.21 (0.65) �0.0001
Sound rating 2.39 (1.47) 0.96 (0.84) �0.0001
Color rating 3.32 (1.07) 0.60 (0.61) �0.0001
Manipulation rating 2.43 (1.42) 0.78 (0.53) �0.0001
Motion rating 2.42 (1.68) 0.81 (0.77) �0.0001
Shape rating 3.90 (1.27) 0.33 (0.26) �0.0001

Concreteness data are from Brysbaert et al. (2014). All other lexical attributes were obtained from the English
Lexicon Project (http://elexicon.wustl.edu).
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decoding accuracies for concrete nouns in the GSN were the
lateral temporoparietal (median � 0.58) and the lateral pre-
frontal (median � 0.61) regions, although only decoding ac-
curacy in the former remained significant after correction for
multiple tests ( p � 0.005, Bonferroni corrected). Pairwise
comparisons showed no significant differences between GSN
regions (all p � 0.19, uncorrected for multiple comparisons).

Model performance in the WFN mask
Decoding accuracy for the two encoding models in the WFN mask is
shown in Figure 3C. The semantic model failed to decode activation
patterns in this network (concrete: median � 0.55; 99% CI � 0.41–
0.69; p � 0.14; abstract: median � 0.53; 99% CI � 0.41–0.59; p �
0.14), whereas the word-form model was successful for both word
types (concrete: median � 0.73; 99% CI � 0.67–0.78; p � 0.000001;
abstract: median � 0.71; 99% CI � 0.65–0.79; p � 0.000001).

Discussion
We evaluated two forward-encoding models on their capacity
to predict fMRI activity patterns for specific words. The se-
mantic model was based on five sensory-motor attributes of
word meaning and the word-form model was based on five
orthographic and phonologic attributes of the word form.
Each model was evaluated in two different sets of cortical
areas: the GSN, a set of highly interconnected heteromodal
areas that has been consistently implicated in semantic pro-
cessing, and the WFN, which is involved in the perceptual
analysis of word forms comprising mainly visual and motor/
somatosensory areas. The semantic model successfully de-
coded fMRI activation patterns elicited by individual words in
the GSN, but not in the WFN. As expected, decoding of GSN
activity was successful for concrete but not for abstract
words when the two sets were analyzed separately. The word-
form model was successful in the WFN for concrete and ab-
stract words alike, but failed to decode activity in the GSN.

This pattern of results strongly indicates that the GSN encodes
information about sensory-motor attributes of concepts.

The GSN was identified by Binder et al. (2009) in an ALE
meta-analysis of 120 neuroimaging studies of semantic word
processing. It overlaps considerably with the “default mode
network,” a set of cortical areas typically deactivated during
attention-demanding tasks relative to rest (Buckner et al.,
2008). Resting-state connectivity and MRI tractography stud-
ies show that the core nodes of the network (IPL, LTC, Pc/
PCG, and MPFC) are strongly interconnected (Greicius et al.,
2009; Horn et al., 2014) and graph theoretical analyses have
identified these regions as central connector hubs for more
specialized, modular cortical networks (Hagmann et al., 2008;
Sepulcre et al., 2012). Based on these findings, we have argued
that the GSN supports multimodal conceptual representa-
tions by encoding patterns of coactivation across lower-level,
modality-specific areas (Fernandino et al., 2016). The present
results show that the GSN can discriminate between in-
dividual concrete concepts based exclusively on sensory-
motor information, thus providing substantial support for
this proposal.

The WFN mask included sensory-motor areas that have
been found previously to encode information about word se-
mantics (Hauk et al., 2004; Hsu et al., 2012; Fernandino et al.,
2016). Why, then, did the semantic model fail to decode neural
activation in this mask? We believe the answer lies in the na-
ture of the task. Because perceptual word processing and con-
cept retrieval took place virtually simultaneously in the
present study (due to the low temporal resolution of the BOLD
signal, the two processes were modeled as a single event in the
GLM estimation of � values), activity in the WFN was driven
much more strongly by the perceptual features of the stimuli
(bottom-up activation) than by their semantic attributes (top-
down activation), thus greatly reducing the signal-to-noise
ratio of the semantic activation patterns in those areas. Future

Figure 1. FMRI data for all words in the modeling set were combined with their corresponding attribute ratings in a least-squares multiple regression model, resulting in five AMs. Words in the
test set were not included in the generation of the AMs.
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studies should investigate this issue by dissociating concept
retrieval from complex sensory stimulation.

It should also be noted that the failure of the semantic model
to decode activation patterns for abstract words does not neces-
sarily imply that concrete and abstract concepts are based on

qualitatively different codes; rather, it could reflect the fact that
the relationship between the meaning of an abstract word and
specific features of sensory-motor experience is much more com-
plex and context dependent than that of concrete words (Badre
and Wagner, 2002; Barsalou and Wiemer-Hastings, 2005; Hoff-

Figure 2. A, For each word in the test set (e.g., “coffee”), a PM was generated by a weighted sum of the five AMs and each map was weighted by its corresponding attribute rating for that word.
B, Voxel-by-voxel correlations between the PM and each of the 50 OMs were computed and the OMs ranked by correlation strength. Decoding accuracy was determined from the percentile rank of
the OM for the corresponding PM.
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man, 2015). Low prediction accuracy was predicted for abstract
words based on the relatively low variance of the sensory-motor
ratings across these words (Table 1). The paradigm used here can
be extended to investigate the cortical representation of abstract
words by incorporating attributes that are more relevant for their
characterization, such as affective, causal, and intentional attri-
butes, and by adopting a task that is more neutral with respect to
particular semantic features.

Finally, we note that our semantic task (“can it be directly
experienced with the senses?”) directs attention to sensory-motor
aspects of the concepts. It is possible that a task lacking this atten-
tional focus (e.g., lexical decision) would induce relatively weaker
activations related to sensory-motor information, thus produc-
ing different results (for further discussion of this issue, see Fer-
nandino et al., 2016).

In sum, our results provide the first demonstration that het-
eromodal areas involved in semantic processing can discriminate
between individual concepts based on sensory-motor informa-
tion alone. They provide strong support for the view that concep-
tual representations are grounded, at least in part, in elementary
sensory-motor attributes of phenomenal experience. Further-
more, they indicate that the neural architecture of these represen-
tations is hierarchically organized, with higher-level heteromodal
areas encoding information about the activation patterns exhib-
ited by lower-level sensory-motor area—patterns that are pre-

sumably established during concept formation and partially
reinstated during retrieval.
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