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Neurobiology of Disease

Inhibition of Prolyl Oligopeptidase Restores Spontaneous
Motor Behavior in the a-Synuclein Virus Vector-Based
Parkinson’s Disease Mouse Model by Decreasing
a-Synuclein Oligomeric Species in Mouse Brain

Reinis Svarcbahs,* ©Ulrika H. Julku,* and “Timo T. My6hénen
Division of Pharmacology and Pharmacotherapy, University of Helsinki, FI-00014 Helsinki, Finland

Decreased clearance of a-synuclein (aSyn) and aSyn protein misfolding and aggregation are seen as major factors in the pathogenesis of
Parkinson’s disease (PD) and other synucleinopathies that leads to disruption in neuronal function and eventually to cell death. Prolyl
oligopeptidase (PREP) can accelerate the aSyn aggregation process, while inhibition of PREP by a small molecule inhibitor decreases aSyn
oligomer formation and enhances its clearance via autophagy in different aSyn overexpressing cell types and in transgenic PD animal
models. In this study, we investigated the impact of chronic PREP inhibition by a small molecule inhibitor, 4-phenylbutanoyl-I-prolyl-
2(S)-cyanopyrrolidine (KYP-2047), on aSyn oligomerization, clearance, and underlying spontaneous motor behavior in a virus vector-
based aSyn overexpression mouse model 4 weeks after aSyn microinjections and after the onset of symptomatic forepaw bias. Following
4 weeks of PREP inhibition, we saw an improved spontaneous forelimb use in mice that correlated with a decreased immunoreactivity
against oligomer-specific forms of aSyn. Additionally, KYP-2047 had a trend to enhance dopaminergic systems activity. Our results
suggest that PREP inhibition exhibits a beneficial effect on the aSyn clearance and aggregation in a virus mediated aSyn overexpression
PD mouse model and that PREP inhibitors could be a novel therapeutic strategy for synucleinopathies.
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Alpha-synuclein (aSyn) has been implicated in Parkinson’s disease, with aSyn aggregates believed to exert toxic effects on neurons, while
prolyl oligopeptidase (PREP) has been shown to interact with aSyn both in cells and cell free conditions, thus enhancing its aggregation.
We demonstrate the possibility to abolish motor imbalance caused by aSyn viral vector injection with chronic 4 week PREP inhibition by
a potent small-molecule PREP inhibitor, 4-phenylbutanoyl-I-prolyl-2( S)-cyanopyrrolidine (KYP-2047). Treatment was initiated posts-
ymptomatically, 4 weeks after aSyn injection. KYP-2047-treated animals had a significantly decreased amount of oligomeric aSyn parti-
cles and improved dopamine system activity compared to control animals. To our knowledge, this is the first time viral overexpression of
aSyn has been countered and movement impairments abolished after their onset. /

ignificance Statement

Introduction
Parkinson’s disease (PD) is a neurodegenerative movement dis-
order that involves multiple neuronal systems and is character-

Received July 21, 2016; revised Oct. 19, 2016; accepted Oct. 21, 2016.

Author contributions: R.S., U.H.J., and T.T.M. designed research; R.S. and U.H.J. performed research; R.S. and
U.H.J. analyzed data; R.S. and T.T.M. wrote the paper.

This work was supported by Academy of Finland Grants 267788 and 2737991, University of Helsinki research
grants, and grants from the Jane and Aatos Erkko Foundation and the Sigrid Juselius Foundation to T.T.M. Authors
would like to thank Susanna Norrbacka for excellent technical assistance.

*R.S. and U.H.J contributed equally to this work.

The authors declare no competing financial interests.

Correspondence should be addressed to T. Myghénen, Division of Pharmacology and Pharmacotherapy, Univer-
sity of Helsinki, FI-00014 Helsinki, Finland. E-mail: timo.myohanen@helsinki.fi.

ized by dopaminergic (DAergic) neuron loss in the substantia
nigra (SN) preceded by the formation of Lewy bodies (LBs)
(Braak and Braak, 2000; Spillantini and Goedert, 2000). LBs are
used as the neuropathological hallmarks of PD (Baba et al., 1998;
Kahle, 2008). The main component of these inclusions is mis-
folded and aggregated forms of a-synuclein (aSyn) (Spillantini et
al., 1997). Moreover, familial SNCA gene point mutations, dupli-
cations and triplications, correlate with severity and onset of PD
(Singleton et al., 2003; Ibdnez et al., 2004; Fuchs et al., 2007;
Langston et al., 2015).
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aSyn is an intrinsically disordered protein (Uversky, 2011)
and, in contrast to many proteins involved in neurodegeneration
that are distributed throughout the neuron, localizes specifically
to the nerve terminals, with relatively little in the cell body, den-
drites, or extrasynaptic sites along the axon (Bendor et al., 2013).
Under physiological conditions, it is predominantly found in the
presynaptic nerve terminals in high concentrations close to the
synaptic vesicles (Iwai et al., 1995; Vekrellis et al., 2011), where it
is thought to participate in vesicle trafficking, release, and recy-
cling, thus directly modulating synaptic plasticity and function
(Bellani et al., 2010). Various factors can initiate the misfolding
and aggregation process of aSyn (Uversky, 2007), and aberrant
aSyn negatively affects subcellular distribution of synaptic com-
ponents (Bellucci et al., 2012) and alters synaptic dopamine (DA)
vesicle recycling that results in decreased DA release. Increased
levels of aSyn in idiopathic PD and sporadic synucleinopathies
could be caused by regional dysregulation of aSyn processing or
increased levels of aSyn expression. Consequently, strategies that
are aimed at decreasing aSyn expression levels or increasing aSyn
turnover serve as compelling approaches for new PD drug devel-
opment (Farrer et al., 2004).

aSyn binds to many synaptosomal proteins that enhance its
aggregation (Betzer et al., 2015). Previous studies have described
direct protein—protein interactions between aSyn and prolyl oli-
gopeptidase (PREP; also abbreviated “POP” or “PO”; Enzyme
Commission number 3.4.21.26) that leads to increase in aSyn
aggregation (Brandt et al., 2008; Lambeir, 2011; Savolainen et al.,
2015). PREP is a highly conserved serine protease and can be
found in the brain and peripheral tissues (Myohénen et al., 2009).
In vitro, PREP has been shown to digest peptides smaller than
3000 Da (Moriyama et al., 1988); nevertheless, in vivo evidence of
PREP’s role in peptide hydrolysis is inconclusive (Nolte et al.,
2009; Tenorio-Laranga et al., 2012). Interestingly, during aging, a
robust increase in PREP expression has been detected in mouse
brain (Jiang et al., 2001), and in postmortem PD patient brains,
where PREP is also colocalized with aSyn (Hannula et al., 2013).

Previously, a possibility to reduce the aSyn aggregation process
by small molecule PREP inhibitors in cells and in vivo was shown,
raising the pharmacological interest in PREP (Brandt et al., 2008;
Myohinen etal., 2012; Savolainen et al., 2014). Moreover, PREP was
identified as a negative regulator of the PI3K class III autophagy
pathway, and inhibition of PREP by 4-phenylbutanoyl-l-prolyl-
2(S)-cyanopyrrolidine (KYP-2047) led to increased autophago-
some formation via increased beclinl expression levels. Thus, PREP
inhibition exerts dual effects on aSyn aggregation, first, by blocking
the PREP mediated seeding (Savolainen et al., 2015), and second, by
inducing autophagic flux (Savolainen et al., 2014).

Here we have used a mouse PD model with aSyn overexpres-
sion based on aSyn delivery by adenoassociated virus (AAV) vec-
tors into SN to demonstrate that aSyn mediated toxicity and
ensuing spontaneous motor imbalance can be reversed after
chronic intracranial PREP inhibitor administration. This effect is
mediated by a decreased number of aSyn oligomer-specific spe-
cies, presumably through previously described PREP inhibitor
effects on autophagy induction and decrease in aSyn dimeriza-
tion (Myohénen et al., 2012; Savolainen et al., 2014, 2015). These
data add further evidence of PREP causality in aSyn-modulated
neurotoxicity and justifies investigation of PREP inhibitors as
potential pharmacological candidates for PD therapy.

Materials and Methods

Reagents. Reagents used in experiments were purchased from Sigma-
Aldrich if not specified otherwise. Ethanol was purchased from Altia. The
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PREP inhibitor KYP-2047 was synthesized at the School of Pharmacy,
University of Eastern Finland, as described previously by Jarho et al.
(2004). KYP-2047 has been extensively characterized, and its pharmaco-
logical and pharmacokinetic profile indicates that KYP-2047 is highly
selective, potent, and crosses the blood—brain barrier both in rats and
mice (Venildinen et al., 2006; Jalkanen et al., 2011, 2012, 2014;
Mydéhinen et al., 2012; Savolainen et al., 2014). AAVs driven by chicken
B-actin promoter (CBA) were acquired from the Michael J. Fox Foun-
dation. AAV2-CBA-a-synuclein (AAV-aSyn; 1.5 X 10'* vg/ml) and
AAV2-CBA-eGFP (enhanced green fluorescent protein; AAV-GFP;
8.1 X 10" vg/ml) were constructed, produced, and titered by the Vector
Core at the University of North Carolina (Chapel Hill).

Animals. Male C57BL/6] mice (7-9 weeks old; Envigo) were housed
under standard laboratory conditions (12 h light/dark cycle; room tem-
perature, 23 & 2°C; relative humidity, 50 * 15%) in individually venti-
lated cages (Mouse IVC Green Line, Techniplast) with bedding (aspen
chips, 5 X 5 X 1 mm; 4HP, Tapvei), nesting material (aspen strips;
PM90L, Tapvei), and aspen brick (100 X 20 X 20 mm; Tapvei). Mice had
access to chow food (Teklad 2016,Envigo) and filtered and irradiated
water ad libitum. After surgical procedures, animals were housed indi-
vidually for the durations of experiment. The experiments were per-
formed according to European Communities Council Directive 86/609/
EEC and were approved by the Finnish National Animal Experiment
Board.

Surgical procedures. Mice were anesthetized with isoflurane (4% in-
duction, 1.5-2.0% maintenance), and the recombinant AAV vectors
were injected above mouse SN in a stereotaxic operation. The AAV ex-
pression pattern and impact on behavior had been tested before PREP
inhibition experiment (data not shown). To target the SN, viral vectors
were given as single injection (volume, 1 ul; rate, 0.2 pul/min) into the left
hemisphere, 3.1 mm anterior and 1.2 mm lateral to bregma, and 4.2 mm
below the dura [stereotaxic coordinates according to Paxinos and Frank-
lin (1997)]. Osmotic minipump (Alzet 1004, Durect; flow rate of 0.11
ul/h) implantation was performed 4 weeks after virus vector injections in
a stereotaxic operation. Minipumps were filled with 16 mm KYP-2047
solution [0.2% dimethyl sulfoxide (DMSO) in PBS] and primed accord-
ing to producer’s instructions. A cannula (Alzet Brain Infusion Kit 3,
Durect) was implanted in the left hemisphere at 0.7 mm anterior and 1.4
mm lateral to bregma, and was lowered 2.5 mm deep to lateral ventricle
[stereotaxic coordinates according to Hof et al. (2000)], and the attached
osmotic minipump was implanted subcutaneously in the intercapsular
region. Buprenorphine was given to relieve postoperative pain. Osmotic
minipumps were kept in mice for 28 d for the groups undergoing behav-
ioral tests, while for verification of PREP enzymatic activity inhibition,
osmotic minipumps were kept in mice for 7 d after surgery.

Animals (n = 36) for microdialysis experiments underwent the same
set of virus vector microinjections (described above). KYP-2047 chronic
treatment was administered for 28 d with 10 mg/kg KYP-2047 per day, or
vehicle, using osmotic minipumps (Alzet 1002, Durect; flow rate of 0.25
ul/h) in the peritoneum as the mouse skull surface is too small to be able
to accommodate both the microdialysis probe and cannula. The mini-
pump was replaced after 2 weeks, as the volume was not adequate for a 4
week treatment. The osmotic minipumps were filled with KYP-2047 or
vehicle (50% DMSO) in saline and primed overnight at 37°C as described
previously (Savolainen et al., 2014). The guide cannula for microdialysis
was inserted into striatum at 0.6 mm anterior and 1.8 mm lateral, and 2.7
mm below the dura, 7 weeks after injection of viral vector. The cannula
was fastened to the skull with dental cement (Aqualox, Voco) and two
stainless-steel screws (DIN84, Helsingin Ruuvihankinta).

Brain homogenization and PREP activity assay. For PREP activity assay,
brains were stored at —80°C until dissection. Samples were homogenized
in 10 vol of assay buffer (0.1 M Na/K phosphate buffer, pH 7.0) and
centrifuged at 14,000 X g at 4°C for 20 min. The supernatants were
collected, and 10 ul samples were used for the activity assay as described
previously (Myohanen et al., 2008). Briefly, the brain homogenate was
preincubated with the assay buffer for 30 min at 37°C. Substrate (4 mm
Suc-Gly-Pro-AMC; Bachem) was added to initiate the reaction, and the
incubation continued for 60 min at 37°C. The reaction was stopped
with 1 M sodium acetate buffer, pH 4.2. The formation of 7-amino-4-
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methylcoumarin (AMC; Bachem) was measured using the Wallac 1420
Victor fluorescence plate reader (PerkinElmer). AMC calibration curve
standard concentrations were in range from 0.1 to 5 nm[scap], and at
these concentrations the curve is linear (for kinetics studies, see to
Venildinen et al., 2002). The excitation and emission wavelengths were
360 and 460 nm, respectively. The protein concentration of the brain
homogenate was determined using a BCA protein assay kit (Thermo
Fisher Scientific). The velocity of the reaction was calculated as nano-
moles AMC per minute per microgram protein.

Behavioral experiment. The cylinder test (height, 15 cm; diameter, 12
cm) was used to measure motor asymmetry in spontaneous forelimb use
after unilateral microinjections. Baseline paw preference scores were ac-
quired before stereotaxic surgery and every 2 weeks after the surgery.
Shortly, each mouse was filmed for 5 min. However, if the number of
individual rearing episodes that resulted in the mouse touching the cyl-
inder wall were <20, mouse was filmed for an additional 5 min. Data
were analyzed by formula, where “both” paws was defined as touches
where the animal landed both of the forepaws on the cylinder wall at the
same time after the rearing. Nonlesioned control mice should score
~50% in this test. No habituation of the animals to the testing cylinder
was allowed before video recording. One animal from aSyn injected and
vehicle treated group was excluded from behavioral analyses for scoring
too low in three out of five measurement times (<10 touches per record
session).

Tissue processing. At 8 weeks after injection, mice intended for immu-
nohistochemistry (IHC) analysis were deeply anesthetized with sodium
pentobarbital (150 mg/kg) and transcardially perfused with PBS fol-
lowed by 4% paraformaldehyde (PFA) in PBS. Brains were postfixed for
24-72hin 4% PFA at 4°C and transferred to a solution of 10% sucrose in
PBS (pH 7.4; 137 mM NaCl, 2.7 mm KCl, 10 mm Na,HPO,, 1.8 mm
KH,PO,) overnight at 4°C. On the next day, tissue was transferred to
30% sucrose solution in PBS until brains sank. Brains were frozen on dry
ice and were kept at —80°C until sectioning. Frozen brain sections were
sectioned as 30 um free-floating sections on a cryostat (Leica CM3050)
and kept in a cryoprotectant solution (30% ethylene glycol and 30%
glycerol in 0.5 M phosphate buffer). Mice intended for PREP enzymatic
activity assay were transcardially perfused with ice-cold PBS. Thereafter,
brains were frozen in isopentene on dry ice and kept at —80°C until
further analyses.

Immunohistochemistry. Total aSyn IHC was performed as described by
Mydohidnen et al. (2012). In brief, the endogenous peroxidase activity was
inactivated with 10% methanol and 3% hydrogen peroxide (H,0,) so-
lution in PBS, pH 7.4, for 10 min, and nonspecific binding was blocked
with 10% normal donkey serum (catalog #530, Millipore) in PBS con-
taining 0.5% Triton X-100. The sections were incubated overnight at
room temperature with sheep anti-aSyn antibody (1:500 dilution in 1%
normal donkey serum in PBS containing 0.5% Triton X-100; ab6162,
RRID:AB_2192805, Abcam), followed by washing with PBS containing
0.5% Triton X-100. The sections were then incubated with donkey anti-
sheep HRP-conjugated secondary antibody for 2 h (1:500 dilution in 1%
normal serum in PBS containing 0.5% Triton X-100; ab6900, RRID:
AB_955452, Abcam). The antigen—antibody complexes were identified
following incubation with 0.05% 3,3'-diaminobenzidine (DAB) and
0.03% H,O, solution. Finally, the sections were transferred to glass
slides, dehydrated in alcohol series, and mounted with Depex (BDH).

Tyrosine hydroxylase (TH) IHC was modified from the study by Mi-
jatovic et al. (2007). In short, after blocking endogenous peroxidase ac-
tivity (as above) the sections were incubated for 30 min in 10% normal
goat serum to block nonspecific binding, after which the sections were
incubated overnight in rabbit anti-TH primary antibody (1:2000; AB152,
RRID:AB_390204, Millipore). Subsequently, the sections were placed in
goat anti-rabbit biotin-conjugated secondary antibodies (1:500; BA1000,
RRID:AB_2313606, Vector Laboratories). The signal was enhanced with
the avidin—biotin complex method (Standard Vectastain ABC kit, RRID:
AB_2336819, Vector Laboratories) and visualized with DAB.

Oligomer-specific a-synuclein IHC was performed using the Basic
Vector Mouse on Mouse (M.O.M.) Immunodetection Kit (BMK-2202,
RRID:AB_2336833, Vector Laboratories) with an adapted protocol for
mouse primary antibodies on mouse tissue (Brannstrom et al., 2014). In
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short, after blocking endogenous peroxidase activity (as above), the sec-
tions were incubated for 30 min in M.O.M. Mouse Ig Blocking Reagent
to block nonspecific binding and 5 min in M.O.M. diluent, and trans-
ferred overnight in mouse anti-human a synuclein oligomer-specific
primary antibody (1:200 in M.O.M. diluent; AS132718, RRID:
AB_2629502, Agrisera). The sections were then incubated with goat anti-
mouse HRP-conjugated secondary antibody (dilution, 1:300 in M.O.M.
diluent, catalog #31430, RRID:AB_228307, Thermo Fisher Scientific)
and visualized with DAB.

Proteinase K treatment. The proteinase K (PK) protocol was adapted
from the study by Chu and Kordower (2007), with alteration in PK
incubation time for rodent brains suggested by Angot et al. (2012).
Shortly, sections containing SN and striatum were mounted onto
gelatin-coated slides and dried overnight at 55°C. Sections were wetted
with TBS-T and digested with 10 ug/ml PK (#V3021, Promega) in TBS-T
for 10 min at 55°C. The sections were postfixed with 4% PFA for 10 min
and processed for total aSyn or aSyn oligomer-specific immunostaining
with the same primary and secondary antibody concentrations as de-
scribed above.

Microscopy and stereology. The optical densities (ODs) of TH, aSyn, and
oligomer-specific aSyn from ipsilateral and contralateral striatum and SN
were determined. Digital images were scanned at 40X magnification with a
Pannoramic Flash II Scanner (3DHISTECH), and three coronal sections
from each mouse were processed for further analyses with Pannoramic
Viewer (version 1.15.3. RRID:SCR_014424, 3DHISTECH). Images were
converted to grayscale and inverted, and line analysis tools for striatum or
freehand for SN in ImageJ (1.48b; RRID:SCR_003070, NIH) was used to
measure the OD of immunoreactivity. To correct the effect of TH back-
ground staining, correction values were obtained from the corpus callosum
of each section and subtracted from the OD values of the striatum. The data
are presented as percentages of the intact side.

The number of tyrosine hydroxylase-positive (TH+) cells in SN pars
compacta (SNpc) was estimated using the optical fractionator method in
combination with the dissector principle and unbiased counting rules
(Gundersen et al., 1999). The SNpc was analyzed with a Stereo Investi-
gator platform (RRID:SCR_002526, MicroBrightField) attached to an
Olympus BX51 microscope. From each animal, three sections from the
central portion of the SNpc were selected for quantitative analysis. Each
reference space was outlined at low magnification (4X), and cells were
counted using a high-magnification (60X UPlanApo, 1.4 numerical ap-
erture, oil immersion) objective. The grid size was 100 X 80 wm, and the
counting frames were 60 X 60 um. Injected and noninjected SNpc (in-
ternal control) was counted, no cell loss was observed in the noninjected
side. The coefficient of error, calculated according to the procedure of
Schmitz and Hof (2005), was between 0.05 and 0.10. Results are ex-
pressed as the mean cell number per section; all stereological estimations
were blinded.

The number of aSyn oligomer-specific particles in SN was estimated
using the optical fractionator method in combination with the dissector
principle and unbiased counting rules (Gundersen et al., 1999). From
each animal, four sections from the central portion of the SN were se-
lected for quantitative analysis. Only mouse brains that were injected
with aSyn virus vector were counted since no aSyn oligomer staining was
seen in GFP control brains (see Fig. 4B). Each reference space was out-
lined at low power (4X), and particles were counted using a high-
magnification (60X, oil immersion) objective. Grid size was 120 X 120
pum, and the counting frames were 60 X 60 um large. The average coef-
ficient of error for each region was in range of 0.05 to 0.1. Results were
expressed as the mean cell number per section, and all stereological esti-
mations were blinded.

Pannoramic Viewer (version 1.15.3. 3DHISTECH) was used for ac-
quisition of low-magnification images. High-magnification images were
acquired with a QImaging 2000R camera attached to an Olympus BX51
microscope with an Olympus UPlanApo 20X/0.5, 100X/1.35 oil iris
microscope objective lens and processed with Adobe Photoshop CS6
(version 13.0 X64, RRID:SCR_014199).

Microdialysis. Microdialysis was performed after 28 d of KYP-2047 or
vehicle treatment. A microdialysis probe (1 mm cuprophan membrane;
outer diameter, 0.2 mm; 6 kDa cutoff; AT4.9.1.Cu, AgnTho's) was in-
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The effect of KYP-2047 on mouse brain PREP activity. A-C, KYP-2047 intraventricular administration significantly reduced PREP activity in mouse striatum and cortex 1 week after

osmotic minipump implantation (A, B), and PREP inhibition was observed after 4 week intraperitoneal KYP-2047 administration in mouse cortex (€) compared to vehicle administration.
Intraventricular VEH, n = 3;intraventricular KYP-2047,n = 5;intraperitoneal VEH, n = 23; intraperitoneal KYP-2047, n = 21). Error bars represent means == SEM. *p << 0.05;**p << 0.01;***p <

0.001 (unpaired Student’s  test).

serted into the guide cannula 2 h before the experiment, and the probe
was perfused with a modified Ringer’s solution [containing (in mm) 147
NaCl, 1.2 CaCl,, 2.7 KCl, 1.0 MgCl,, 0.04 ascorbic acid] at the flow rate of
2.0 pl/min. Samples were collected for 3 h (9 X 20 min, 40 ul/sample) for
high-performance liquid chromatography (HPLC) analysis. Mice were
killed right after the microdialysis experiment by cervical dislocation and
decapitation. The brains were removed and rapidly frozen in isopentane
on dry ice. The concentrations of DA, its metabolites dihydroxy-
phenylacetic acid (DOPAC) and homovanillic acid (HVA), and
5-hydroxyindoleacetic acid (5-HIAA) were measured by HPLC with
electrochemical detection as described previously (Kidenmaki et al.,
2010), with slight modifications, and the concentration of GABA was
measured by HPLC with fluorescence detection as described previously
(Vihavainen et al., 2008), with slight modifications.

The HPLC system for the determination of extracellular concentrations of
DA, its metabolites, and 5-HIAA consisted of a solvent delivery pump
(model PU-2080 Plus, Jasco), a pulse damper (SSI LP-21, Scientific Sys-
tems), an autosampler (SIL-20AC Autosampler, Shimadzu), an analytical
column (Kinetex C-18, 5 wm, 4.60 X 50 mm, Phemomenex) thermostated
by a column heater (CROCO CIL, Cluzeau Info-Labo; LaChrom L-7350,
Merck), an electrochemical detector (Coulochem II detector, ESA Biosci-
ences), and a model 5014B microdialysis cell (ESA Biosciences). The mobile
phase consisted of 0.1 M NaH,PO, buffer (Merck), 8% (v/v) methanol
(Merck), 0.2 M ethylenediaminetetraacetic acid, and 100 mg/L octanesulfo-
nic acid, pH 4.0, and the flow rate was 1.0 ml/min. DA was reduced with an
amperometric detector (potential —120 mV against an Ag/AgCl reference
electrode) after being oxidized with a coulometric detector (+300 mV);
DOPAC and HVA were oxidized with the coulometric detector. The sample
injection volume was 20 ul, and the column temperature was kept at 40°C.
The chromatograms were processed by AZUR chromatography data system
software (Cromatek).

The HPLC system for determination of the extracellular concentration
of GABA consisted of a solvent delivery pump (model PU-1580 HPLC
Pump, Jasco) connected to an online degasser (3-Line Degasser, DG-
980-50, Jasco) and a ternary gradient unit (LG-1580-02, Jasco), a refrig-
erated autosampler (NexeraX2 SIL-30AC Autosampler, Shimadzu), an
analytical column (Kinetex C-18, 5 um, 4.60 X 50 mm, Phemomenex)
protected by a 0.5 mm inlet filter and thermostated by a column heater
(CROCO CIL, Cluzeau Info-Labo), and a fluorescence detector (model
FP-1520 Intelligent Fluorescence Detector, Jasco). The wavelengths of
the fluorescence detector were set to 330 nm (excitation) and 450 nm
(emission). The mobile phase consisted of 0.1 m NaH,PO, buffer
(Merck), pH 4.9 (adjusted with Na,HPO,), 20% (v/v) acetonitrile
(Merck), and the flow rate was 1.2 ml/min. Automated sample derivati-
zation was performed using the autosampler at 8°C. The autosampler
was programmed to add 6 ul of the derivatizing reagent (3 ul of mercap-
toethanol, 1 ml of o-phthaldialdehyde) to 15 ul of a microdialysis sam-
ple, to mix two times, and to inject 20 ul onto the column after a reaction
time of 1 min. The chromatograms were processed by AZUR chroma-
tography data system software (Cromatek).

HPLC tissue analysis. Striatal tissue samples were punched below the
corpus callosum +0.74 mm from bregma by using sample corer (inner

diameter, 2 mm) with a plunger (Stoelting) on a cryostat (Leica
CM3050), and samples from SN were punched —2.8 mm from bregma by
using sample corer (inner diameter, 1 mm) with a plunger (Stoelting).
The concentrations of DA, its metabolites DOPAC and HVA, and
5-HIAA in tissue samples of striatum and SN were analyzed with a HPLC
equipped with an electrochemical detector as described previously (Ai-
ravaara et al., 2006). The tissue concentrations of GABA and glutamate
were analyzed with HPLC equipped with a fluorescence detector. Injec-
tion volume was 10 ul, and the mobile phase consisted of 15% (v/v)
acetonitrile in glutamate. Otherwise the method was similar to GABA
analysis of microdialysis samples (described above). Concentrations
were calculated as nanograms per milligram of brain tissue.

Statistical analyses. Statistical analyses were performed using either
GraphPad Prism (version 6.02, RRID:SCR_002798) or SPSS Statistics
(version 22.0.0.1, RRID:SCR_002865, IBM) tools. The statistical tests
used were one- and two-way ANOVAs with Tukey’s post hoc comparison
and Student’s ¢ test. Data are presented as mean = SEM, and differences
were considered statistically significant at p < 0.05.

Results

PREP activity in vivo

PREP activity was measured after 1 week of osmotic minipump
implantation to verify the proper placement of the osmotic mi-
nipumps, as PREP enzymatic activity cannot be verified from
PFA-perfused animal tissue. In this study, PREP inhibition in
cortex samples was ~50% (Fig. 1A), and in striatum ~70% (Fig.
1B). PREP enzymatic activity (nanomoles AMC per minute per
microgram protein) was significantly different in cortex samples
for vehicle-treated (mean, 1.696; SD, 0.1673) and KYP-2047-
treated animals (mean, 0.9834; SD, 0.4345; t, = 2.654, p =
0.0378, unpaired Student’s ¢ test). Higher PREP inhibition levels
were observed in striatum than in cortex for vehicle-treated ani-
mals (mean, 1.644; SD, 0.1985) and KYP-2047-treated animals
(mean, 0.5524; SD, 0.1649; t5, = 7.978, p = 0.0005, unpaired
Student’s ¢ test). KYP-2047 has been shown to remain stable in
osmotic minipumps for 1 month with ~50% inhibition of PREP
activity (Savolainen et al., 2014). PREP activity for HPLC and
microdialysis studies were verified after tissue collection (week
8), with PREP activity significantly different between vehicle-
treated (mean, 0.9960; SD, 0.08805) and KYP-2047-treated ani-
mals (mean, 0.6590; SD, 0.04474; t.,,, = 3.316, p = 0.0019,
unpaired Student’s ¢ test; Fig. 1C).

KYP-2047 restores aSyn-induced behavioral deficits in the
cylinder test

In the cylinder test, animals with nigrostriatal overexpression of
aSyn showed a significantly reduced use of the forepaw contralat-
eral to the injected hemisphere, and a statistically significant dif-
ference between aSyn and GFP groups was seen at weeks 2 and 4



Svarcbahs, Julku et al. @ KYP-2047 Abolishes aSyn Induced Toxicity In Vivo

Cylinder test

80- :
* [}
1 §§
]
]
70- [
2
@
[7]
3
2 60-
Qo
o
2
&
)
o
50-
]
[}
40-
KYP-2047 treatm ent
I >

J. Neurosci., December 7, 2016 - 36(49):12485-12497 « 12489
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Figure 2.

KYP, GFP-VEH, and GFP-KYP (two-way ANOVA with Tukey's post hoc comparison).

after injection [F(,;, = 16,873, p = 0.000271, repeated-
measures two-way ANOVA; p < 0.05 for aSyn vehicle-treated
(aSyn-VEH) or KYP-2047-treated (aSyn-KYP) vs GFP-VEH an-
imals; p < 0.01 for aSyn-VEH or aSyn-KYP vs GFP-KYP animals;
Tukey’s post hoc test). After osmotic minipump implantation,
when behavioral deficit was seen (week 4), the significant differ-
ence in the paw use was lost in 2 weeks (week 6) between GFP
groups and the aSyn-KYP group, but significance was retained
between GFP groups and aSyn-VEH animals (main effect for
treatment, F(, 5y = 5.575, p = 0.025; combined treatment by
virus F ratio, F(, 5oy = 6.802, p = 0.014, repeated-measures two-
way ANOVAs; difference between GFP groups and aSyn-VEH
animals, p < 0.05, Tukey’s post hoc test). Importantly, at the 6
week time point, aSyn-VEH and aSyn-KYP groups had a signifi-
cant difference (p = 0.006, Tukey’s post hoc test) in their paw use,
pointing to decreased toxic impact of aSyn on the nigrostriatal
system after KYP-2047 treatment compared to week 4 after
injections.

After aSyn virus vector injection, we observed motor asym-
metry in spontaneous behavior characterized by the cylinder
test, which developed over a period of 2 months following
virus injections. In Figure 2, we present an 8 week time period
(with 4 weeks of KYP-2047 treatment). Statistical analyses for
the 8 week time point were performed with a reduced number
of animals (n = 4-7). Nevertheless, the KYP-2047 effect ex-
tended past the 6 week time point for the remaining animals
(main effect for virus, F(, ;,; = 10.539, p = 0.005; treatment,
F( 17y = 5.048, p = 0.038; combined treatment by virus F
ratio, F(, ;7y = 4.521, p = 0.048, repeated-measures two-way
ANOVAs; difference between GFP groups and aSyn-VEH an-

Unilateral AAV-aSyn virus vector—injected mouse on the cylinder test. Unilateral AAV-aSyn virus vector injection
above mouse SN caused increased ipsilateral paw use starting 2 weeks after injection [aSyn-VEH, 0.29% DMSO; aSyn-KYP-2047, 16
m), while AAV-GFP injection did not cause any changes in paw use. Chronic KYP-2047 administration (aSyn-KYP) started 4 weeks
after injection rescued spontaneous forepaw, while vehicle treatment (aSyn-VEH) had no effect. The dashed line separates the
numbers of animals per group (left, n = 7-9; right, n = 4 7). Error bars represent means == SEM. *p << 0.05, aSyn-VEH versus
GFP-VEH; ""p < 0.01, aSyn-KYP versus GFP-KYP; *p << 0.01, aSyn-VEH versus aSyn-KYP; S5p << 0.01, aSyn-VEH versus aSyn-

both for behavioral changes and THC as
virus vector characterization (see Materi-
als and Methods) was described previ-
ously in rats (Kirik et al., 2002; Kirik and
Bjorklund, 2003). Four weeks postinjec-
tion was selected as a time window for mi-
nipump implantations as at the 4 week
point behavioral deficits were fully devel-
oped in preliminary testing (our unpub-
lished observation).

Optical density of total aSyn staining in
striatum, SNpc, and substantia nigra
pars reticulata

OD analyses revealed significant differ-
ences in total aSyn immunoreactivity in
striatum between aSyn- and GFP-injected
animals (Fig. 3B; F350 = 19.12, p <
0.0001, one-way ANOVA with Tukey’s
post hoc comparison). The total aSyn dis-
tribution pattern was similar in vehicle-
and KYP-2047-treated animal groups.
Similar correlation was observed in SNpc
and substantia nigra pars reticulata
(SNpr) between GFP- and aSyn-injected
animals [Fig. 3C,D; SNpc, F; 50, = 44.66,
p < 0.0001; SNpr, Fi;59, = 20.72, p <
0.0001; one-way ANOVA with Tukey’s
post hoc comparison with Fratio F; 55y = 44.66, p < 0.0001 (Fig.
3C)] and in SNpr between GFP-VEH (mean, 101.3%; SD, 1.245),
GFP-KYP (mean, 101.1; SD, 1.801), aSyn-VEH (mean, 150.2; SD,
24.76), and aSyn-KYP (mean, 140.1; SD, 19.87) groups (F; 30) =
20.72, p < 0.0001; Fig. 3D). Similar to striatum, there were no
differences between vehicle- and KYP-2047-treated groups.

aSyn oligomer-specific staining distribution in SN is
decreased after KYP-2047 administration

To determine whether KYP-2047 decreases the amount of aSyn
oligomers, as shown previously by Myohinen et al. (2012),
Dokleja et al. (2014), and Savolainen et al. (2014), an oligomer-
specific aSyn staining was performed (Fig. 4B-D). KYP-2047
caused a significant decrease in the number of aSyn oligomer-
specific particles (mean, 11,388; SD, 4144) compared to vehicle
(mean, 28,055; SD, 8549) treatment in the groups that, before
drug treatment, received AAV-aSyn injection (Fig. 4A,C,D; p <
0.0001 vehicle vs KYP-2047, Student’s ¢ test), while aSyn
oligomer-specific staining was not detected in AAV-GFP-
injected controls (Fig. 4B). In addition, no statistical differences
were observed in OD of oligomer-specific staining in striatum
(data not shown).

aSyn virus vector injection produces proteinase K
treatment-resistant aSyn oligomers

PK treatment was used to verify PK-resistant aSyn oligomer spe-
cies. After the PK treatment, we saw reduced diffuse staining in
total aSyn, indicating increased PK-resistant forms of aSyn (Fig.
4G,I). PK treatment also dissolved part of the aSyn oligomer-
specific staining, particularly smaller particles (Fig. 4K, M), but
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Figure 3. Total aSynimmunoreactivity in striatum (STR) and SN after AAV-GFP and AAV-aSyn injections. A, aSyn immunoreactivity showed a robust increase 8 weeks after unilateral AAV-aSyn

injection but not in AAV-GFP control groups (GFP-VEH and GFP-KYP). B—D, Significant increase in total aSyn OD was observed in STR, SNpc, and SNpr in 0D analyses of AAV-aSyn-injected brain.
KYP-2047 treatment (aSyn-KYP) did not have an effect on total aSyn amounts (4-D). 0D of total aSyn staining is shown as a fraction of the control side. n = 7-9 in each group. Error bars represent
means = SEM. ***p <C0.001; ****p < 0.0001 (one-way ANOVA with Tukey’s post hoc comparison).

revealed intracellular PK-resistant particles (Fig. 4K,M). Sec-
tions with KYP-2047 treatment had visually less bright inclusions
and staining in general (Fig. 4 H,I,L-M ), and aSyn distribution in
SNpr was less pronounced (Fig. 4 H,I,L-M).

To investigate in detail the effect that PK treatment had on
aSyn oligomer-specific particle count, the stereological method
was applied for vehicle- or KYP-2047-treated AAV-aSyn-injected
brains. The number of aSyn oligomer-specific particles in the
KYP-2047-treated group (mean, 1251; SD, 529) compared to the
vehicle-treated group (mean, 1884; SD, 566) was not statistically
significant (Fig. 4E,K,M; p = 0.0736 vehicle vs KYP-2047, Stu-
dent’s ¢ test). Nevertheless, the aSyn oligomer-specific particle
count in Figure 4E presents an ~10-fold decrease in aSyn
oligomer-specific particle numbers after PK treatment as op-
posed to PK-nontreated aSyn oligomer-specific particle numbers
(Fig. 4A).

aSyn virus vector causes mild loss for nigrostriatal

tyrosine hydroxylase

To study whether 8 week overexpression of aSyn causes DAergic
neuron loss in mice, we identified TH+ neurons in SNpc and
their fibers in striatum by IHC (Fig. 5A-D). Although the effect of
aSyn overexpression was mild for striatal TH, OD analyses re-
vealed significant differences in the OD of the TH immunoreac-
tivity in striatum, where the most significant decrease was seen in
the vehicle-treated aSyn-injected group compared to GFP-VEH
control group (Fig. 3A,C; F3 59, = 4.229; p = 0.0135, one-way
ANOVA; p < 0.05, aSyn-VEH vs GFP-VEH, Tukey’s post hoc
test). More pronounced differences were seen in SNpc (Fig.
5A,D), where the vehicle-treated aSyn group was significantly
different from both GFP groups (F; 5,y = 7.366; p = 0.0008,
one-way ANOVA; p < 0.01, aSyn-VEH vs GFP-VEH and GFP-
KYP, Tukey’s post hoc test). Interestingly, no statistical difference
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aSyn oligomerimmunoreactivity 8 weeks postinjection in AAV-aSyn-injected mouse SN. 4, aSyn oligomer-specific particle stereological count was decreased in AAV-aSyn-injected SN

after chronic KYP-2047 administration (aSyn-KYP) compared to vehicle treatment (aSyn-VEH). B, No aSyn oligomer staining was observed in AAV-GFP-injected animal SN. €, D, Robust immuno-
staining of aSyn oligomers was seen in the SNs of vehicle-treated AAV-aSyn-injected animals, while KYP-2047 clearly reduced aSyn oligomer-stained particles (n = 9 in both groups). E, aSyn
oligomer-specific particle stereological count after PK treatment did not show significant differences between AAV-aSyn-injected SN after either chronic KYP-2047 administration (aSyn-KYP) or
vehicle treatment (aSyn-VEH). G, I, K, M, PK treatment (+ PK) only partially cleared total aSyn (G, /) and oligomer-specific aSyn staining (K, M) in AAV-aSyn-treated mouse SN. F-1, Total aSyn
staining shows reduced staining after +PK (G, I) compared to staining without proteinase K (—PK; F, H). J-M, A similar effect by PK is seen in oligomer-specific aSyn staining. Less PK-resistant
staining, particularly in oligomericimmunohistochemistry, is visually seen in KYP-2047-treated brains (/, M). Error bars represent means = SEM. ****p <C0.0001 (unpaired Student’s  test). Scale

bars: 100 wm; insets, 15 wm.

was observed for the aSyn-KYP group compared to GFP control
groups in striatum or SN.

To investigate this issue in a more quantitative way, we applied
the stereological counting method for TH+ neuron estimation in
injected and uninjected hemispheres of SNpc (Fig. 5B). One-way
ANOVAs did not reveal statistical significance between the
groups (F;,g) = 2.784, p = 0.0593). However there was mild
TH+ cell loss, particularly in the vehicle-treated aSyn group
(mean, 82.57; SD, 10.53). This is in accordance with preliminary
observations by our group and other groups (Dong et al., 2002; St
Martin et al., 2007) and might highlight that longer expression
times are required for TH+ cell loss in SNpc (Kirik et al., 2002).
Indeed, our results from preliminary studies showed that TH+
OD is decreased by 30% in striatum and 50% in SNpc 16 weeks
after AAV-aSyn vector injections compared to AAV-GFP-
injected animals (data not shown).

AAV-aSyn decreases extracellular DA and its metabolites and
tissue DA in the nigrostriatal pathway

Overexpression of aSyn significantly decreased the extracellular
levels of the main metabolites of DA, DOPAC and HVA, in stria-
tum (Fig. 6B; F(, 55, = 4.164, p = 0.049, two-way ANOVA), and
there was a similar trend in DA (Fig. 6A; F(, 35y = 3.758, p =
0.061, two-way ANOVA) in the microdialysis study. Extracellular
concentration of GABA was not changed significantly (Fig. 6D;
F(1 32 = 1.786, p = 0.191, two-way ANOVA), but as a GABA
reuptake inhibitor was not used, the method was probably not

sensitive enough to detect changes in GABA. Overexpression of
aSyn also decreased DA in striatal tissue (Fig. 7A; F(; 4,) = 13.049,
p = 0.001, two-way ANOVA) and the metabolites of DA in nigral
tissue (Fig. 7H; F(, 4,y = 6.502, p = 0.015, two-way ANOVA).
There was a similar trend in the metabolites of DA in striatal
tissue (Fig. 7B; F(; 41y = 3.611, p = 0.064, two-way ANOVA), but
the concentration of DA was not changed in nigral tissue (Fig.
7G). Additionally, serotonin (5-HT) was decreased in nigral tis-
sue (Fig. 7L; F(, 41, = 6.219, p = 0.017, two-way ANOVA), and
there was a similar trend in the main metabolite of 5-HT in stri-
atal tissue (Fig. 7D; F(, 4, = 3.731, p = 0.060, two-way ANOVA).
Concentrations of GABA and glutamate were unchanged in both
striatum and SN (Figs. 6D, 7E,F,K, L). KYP-2047 treatment had
abeneficial trend particularly on extracellular DA (Fig. 6A), but it
did not reach statistical significance for extracellular concentra-
tion or tissue concentration of DA, 5-HT, their metabolites, glu-
tamate, or GABA, although it had a neuroprotective effect on
TH+ neurons and behavior.

Discussion

In this study, inhibition of PREP by a small molecule inhibitor,
KYP-2047, in a virus vector—based unilateral aSyn overexpres-
sion mouse model, restored the behavioral deficit by reducing
aSyn oligomer-specific immunoreactivity and protecting TH+
neurons in the SN. Notably, KYP-2047 treatment was started
postsymptomatically, when behavioral deficit was already seen in
the cylinder test. To our knowledge, this is the first time a behav-
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TH+ cell amount and TH+ immunoreactivity in striatum (STR) and SN showed mild loss of TH+ staining. A, Representative images of TH-+ immunoreactivity in STR and SN brain

samples 8 weeks after AAV-GFP and AAV-aSyninjections. B, TH+ cell stereology did not yield statistical significance between groups (F; g, = 2.784, p = 0.0593). C, D, TH+ optical density in STR
and SN shows significantly decreased TH+ immunoreactivity in the vehicle-treated aSyn injection group in both areas (aSyn-VEH) compared to the GFP-injection control groups (GFP-KYP and
GFP-VEH), while a similar decrease was not seen in the aSyn-injected KYP-2047-treated group (aSyn-KYP). n = 7-9 mice/group. Error bars represent means == SEM. *p << 0.05; **p << 0.01

(one-way ANOVA with Tukey’s post hoc comparison).

ioral deficit has been restored by a treatment in a virus vector—
based aSyn rodent model. Even though animal numbers had to
be reduced before the 8 week time point because of delivery
method-related skin lesions, motor behavior results remained
significant after the 6 week time point. The current study sup-
ports our previous observations where inhibition of PREP in a
transgenic mouse model was followed by decreased aSyn aggre-
gate amount and increased aggregate clearance via enhanced au-
tophagy (Myohinen et al., 2012; Savolainen et al., 2014), and
further emphasizes the possibilities of small-molecule PREP in-
hibitors as drug candidates for PD and other synucleinopathies.

Neuronal aSyn inclusions and Lewy neurite-like formations
in SNpr were visible 8 weeks after virus vector delivery, which
correlated with the spontaneous forelimb bias. Although, we
used undiluted high-titer aSyn viral injections above the SNpc,
which might explain our motor and neurochemical results at an

early stage after the aSyn virus vector injections. Previous studies
have seen mixed results with mild DAergic cell loss or insignifi-
cant changes in spontaneous forelimb use (St Martin et al., 2007;
Oliveras-Salva et al., 2013; Fischer et al., 2016). Most of the trans-
genic aSyn mouse models have not showed evidence of signifi-
cant loss of DA neurons in SN, but still report motor behavior
disturbances (for details, see Eschbach and Danzer, 2014). Addi-
tionally, we saw a robust increase in aSyn oligomeric species in
our mouse model after AAV-aSyn injections that correlated with
DAergic and behavioral deficits. Interestingly, when treated with
PK, aSyn oligomer-specific staining was partially retained, sug-
gesting PK-resistant species in mouse brain already at 2 months
after AAV-aSyn injections. Nevertheless, the amount of PK-
resistant oligomers represented in the brain was 10-fold smaller
compared to the non-PK-treated brains in both vehicle- and
KYP-2047-treated groups. This suggests that KYP-2047 mainly
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Overexpression of aSyn decreases extracellular DA and its metabolites in striatum in mice. A-D, After AAV-GFP (n = 19) or AAV-aSyn (n = 18) injection above the SNpc and 4 weeks

of treatment with KYP-2047 or vehicle started 4 weeks postinjection, extracellular concentrations of DA (A), its metabolites DOPACand HVA (B), 5-HIAA (C), and GABA (D) were measured by striatal
microdialysis. Overexpression of aSyn decreased extracellular concentrations of DOPACand HVA (B), and there was a similar trend for DA (4). Although KYP-2047 elevated the levels of extracellular
DA, treatment did not have a statistically significant effect on DA or its metabolites. Virus injection or treatments did not have a statistically significant effect on extracellular 5-HIAA (€) or GABA (D).

Error bars represent means = SEM. *p << 0.05; *p = 0.061 (two-way ANOVA).

has an effect on soluble aSyn aggregates, with the PK-resistant
fraction representing an oligomeric pool acquired before treat-
ment initiation. Cremades et al. (2012) showed that PK-resistant
aSyn oligomers can be generated in initial stages at physiological
concentrations, and PK-resistant species have been observed in
presynaptic terminals in both transgenic animals (Tanji et al.,
20105 Spinelli et al., 2014) and human disease with LBs, and they
propose a mechanism that causes synaptic disturbances that are
preceded by overt TH+ neuron loss (Kramer and Schulz-
Schaeffer, 2007). Our results suggest that AAV-aSyn injection
caused an increase in both soluble and insoluble forms of oligom-
ers, while evidence in the literature points to soluble aggregate
forms being more toxic than insoluble aggregates (Karpinar et al.,
2009; Winner et al., 2011; Rockenstein et al., 2014).

Moreover, our results show the aSyn-mediated malfunction
of the DAergic system before a significant loss in TH+ neuron
population, as aSyn overexpression models are thought to medi-
ate presynaptic deficits in vesicle genesis and recycling that leads
to reduced DA release (Nemani et al., 2010; Gaugler et al., 2012),
heterogeneity, and enlargement of synaptic vesicles (Scott et al.,
2010). Besides, the aSyn-SNARE-complex assembly and inhibi-
tion of SNARE-mediated vesicle docking by aSyn oligomers
might be one of the reasons for neurodegeneration (Burré et al.,
2010; Choi et al., 2013). Mild TH+ cell loss was consistent with

our groups’ observation in this study, and similar observations in
mice were reported previously (Dong et al., 2002; St Martin et al.,
2007; Theodore et al., 2008; Yasuda et al., 2009; Ulusoy et al.,
2012). Nonetheless, we saw a decrease in extracellular and tissue
DA and its metabolite levels in the nigrostriatal tract of mice, and
changes in 5-HT or 5-HIAA levels were observable in striatal and
nigral tissue. Gaugler et al. (2012) demonstrated that spontane-
ous motor asymmetry in the cylinder test after overexpression of
aSyn is largely caused by impaired DA release with a minor loss of
total striatal DA content in rats and in aged transgenic mice (Lam
et al., 2011). Additionally, detailed analyses of postmortem PD
patient brains have yielded evidence of initial loss of DA that
precedes and overall exceeds DAergic cell loss (Kordower et al.,
2013).

KYP-2047 treatment was started 4 weeks after AAV-aSyn in-
jections, where spontaneous forelimb bias was lost in aSyn-KYP
animals to GFP control group levels, with behavioral changes
correlating with a significant decrease in aSyn oligomer numbers.
It was shown previously that PREP inhibition reduces aSyn ag-
gregation in cell-free conditions, in cells, and in vivo (Brandt et
al., 2008; Myohidnen et al., 2012; Dokleja et al., 2014; Savolainen
et al., 2015). Also, more recently, our group demonstrated a de-
crease in high-molecular-weight aSyn in transgenic mice (Savol-
ainen etal., 2014). When PK treatment was used to establish aSyn
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Figure7.  Overexpression of aSyn decreases neurotransmitters and their metabolites in nigrostriatal tissue. A-L, HPLC analysis was done after the viral vector injections and the treatment, and
the tissue concentrations of DA (4, G), its metabolites DOPACand HVA (B, H), 5-HT (C, 1), its metabolite 5-HIAA (D, J), GABA (E, K), and glutamate (F, L) in striatum (STR) and SN were measured.
Overexpression of aSyn decreased the concentration of DA in striatal tissue (4), and there was a similar trend for the metabolites of DA (B) and 5-HIAA (D) in STR. The concentration of DA was not
changed in SN tissue (G), but metabolites of DA (H) and 5-HT () were decreased. KYP treatment did not have a statistically significant effect on DA, 5-HT, or their metabolites, and virus injection or
treatment did not have a statistically significant effect on tissue concentrations of GABA (E, K) or glutamate (F, L). Error bars represent mean = SEM. *p << 0.05; ***p < 0.001; *p = 0.060 (two-way
ANOVA).
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oligomer species in the mouse brain, PK-resistant aSyn oligomer
formation was seen both in vehicle- and KYP-2047-treated
mouse brains and could account for the fraction of deposits ex-
isting before KYP-2047 treatment. However, the overall distribu-
tion of PK-resistant oligomers was more robust in vehicle-treated
brains, suggesting continued aggregate formation after treatment
initiation in the vehicle group.

The aSyn mouse group that received KYP-2047 treatment had
no significant loss of TH+ staining either in striatum or SN, and
the loss of TH+ cells in SNpc was less pronounced compared to
vehicle-treated aSyn animals. Even though TH+ cell loss was not
significant when stereology method was applied, there was a clear
trend in TH+ cell loss in the vehicle-treated group and less pro-
nounced TH+ cell loss in KYP-2047-treated animals. Although
we did not expect our compound to exert any neurorestorative
properties on the DAergic neuron population, our results indi-
cate that PREP inhibition can attenuate insults caused by aSyn
overexpression after onset of behavioral and DAergic deficit and
halt the progression of DAergic terminal degeneration in stria-
tum and TH+ cell loss in SNpc. This was also observable in DA
microdialysis, where KYP-2047 treatment had a beneficial effect
on DA release, suggesting that reduced oligomerization restored,
at least in part, the aSyn-regulated SNARE complex formation
leading to the improved DA release. Additionally, aSyn regulates
DA transporter (DAT) activity (Butler et al., 2015), and KYP-
2047 decreases DAT immunoreactivity (Savolainen et al., 2014),
indicating that the alteration in DAergic function may also have
DAT-mediated mechanisms.

Rescue of motor behavior and reduction in aSyn oligomers
could be due to PREP’s role as a negative regulator of the PI3K
class I1I autophagy pathway. Particularly, inhibition of PREP by
KYP-2047 results in increased autophagosome formation via al-
terations in beclinl expression levels. Thus, the effect of PREP
inhibition on aSyn aggregation alters the aSyn seeding site on the
PREP surface and induces autophagic flux that decreases high-
molecular-weight aSyn (Savolainen et al., 2014) and total aSyn in
aSyn transgenic mouse brain (Mythinen et al., 2012). Notably,
PREP directly interacts with aSyn, serving as a nucleation point
for aSyn oligomerization, while KYP-2047 inhibition forces the
PREP enzyme into a compact monomeric form that lacks the
ability to form a connection with aSyn (Savolainen et al., 2015).
Moreover, data from transgenic mice suggest that human aSyn is
less efficiently cleared from the neuronal cytosol (Kahle et al.,
2000), partially as a consequence of perturbations in the au-
tophagy pathway (Cuervo et al., 2004; Spencer et al., 2009). Also,
reduction of nonfunctional aSyn in nerve terminals after PREP
inhibition could lift some of the aSyn negative regulatory effects
(Savolainen et al., 2014).

In conclusion, by using a virus vector aSyn overexpression
model in mice that was followed by PREP inhibition after the
onset of motor symptoms, we were able to show that aSyn oli-
gomer numbers in SN were decreased in the KYP-2047 treatment
group. Decreases in oligomer amount had a beneficial effect on
spontaneous motor behavior in cylinder test and on DAergic
systems activity. Our study suggests that PREP inhibitors are
compelling compounds for further characterization for the treat-
ment of PD and other synucleinopathies.
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