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On the Structure of Neuronal Population Activity under
Fluctuations in Attentional State
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Attention is commonly thought to improve behavioral performance by increasing response gain and suppressing shared variability in
neuronal populations. However, both the focus and the strength of attention are likely to vary from one experimental trial to the next,
thereby inducing response variability unknown to the experimenter. Here we study analytically how fluctuations in attentional state
affect the structure of population responses in a simple model of spatial and feature attention. In our model, attention acts on the neural
response exclusively by modulating each neuron’s gain. Neurons are conditionally independent given the stimulus and the attentional
gain, and correlated activity arises only from trial-to-trial fluctuations of the attentional state, which are unknown to the experimenter.
We find that this simple model can readily explain many aspects of neural response modulation under attention, such as increased
response gain, reduced individual and shared variability, increased correlations with firing rates, limited range correlations, and differ-
ential correlations. We therefore suggest that attention may act primarily by increasing response gain of individual neurons without
affecting their correlation structure. The experimentally observed reduction in correlations may instead result from reduced variability
of the attentional gain when a stimulus is attended. Moreover, we show that attentional gain fluctuations, even if unknown to a down-
stream readout, do not impair the readout accuracy despite inducing limited-range correlations, whereas fluctuations of the attended
feature can in principle limit behavioral performance.
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Covert attention is one of the most widely studied examples of top-down modulation of neural activity in the visual system. Recent
studies argue that attention improves behavioral performance by shaping of the noise distribution to suppress shared variability
rather than by increasing response gain. Our work shows, however, that latent, trial-to-trial fluctuations of the focus and strength
of attention lead to shared variability that is highly consistent with known experimental observations. Interestingly, fluctuations
in the strength of attention do not affect coding performance. As a consequence, the experimentally observed changes in response
variability may not be a mechanism of attention, but rather a side effect of attentional allocation strategies in different behavioral

contexts.
J

ignificance Statement

Introduction
Attention was traditionally thought of as acting by increasing the
response gain of a relevant population of neurons (Reynolds and
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Chelazzi, 2004; Maunsell and Treue, 2006). More recent studies
found that attention also reduces pairwise correlations between
neurons (Cohen and Maunsell, 2009; Mitchell et al., 2009; Her-
rero et al., 2013). Based on a simple pooling model (Zohary et al.,
1994), these authors argued that the benefits of increased gain
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are dwarfed by the effects of reduced correlations; therefore,
attention is more appropriately viewed as shaping the noise
distribution.

However, in an experiment, the subject’s state of attention can
be controlled only indirectly and is bound to vary from one trial
to the next. As a consequence, measuring neuronal variability or
correlations under attention has a fundamental caveat: it is un-
clear to what extent the observed neuronal covariability reflects
interesting aspects of information processing in the neuronal
population or simply trial-to-trial fluctuations in the subject’s
state of attention, which is unknown to the experimenter. Despite
ample evidence that attention fluctuates from trial to trial (Cohen
and Maunsell, 2010, 2011), the effects of such fluctuations on
neuronal population activity have so far not been investigated.

Here we analyze a simple neural population model, where
neurons with overlapping receptive fields encode the direction of
motion of a stimulus (see Fig. 1A). We assume that neurons
produce spikes independently according to a Poisson process
with rate A; and treat attention as a process that modulates the
neurons’ gain (see Fig. 1B). The firing rate of neuron i is given by

A =g fi(0), (1)

where g; is the attentional gain (a combination of spatial and
feature attention) and f;(6) is the direction tuning curve. We
assume that there is always a stimulus in the neurons’ receptive
field, but this stimulus is not necessarily attended. Crucially, in
our model, the subject’s attentional state is not constant across
trials, even within the same attentional condition. Thus, g; is a
random variable that varies from trial to trial (see Fig. 1C), and its
precise value is unknown to the experimenter. As a consequence,
the correlations in g; across neurons will induce correlations be-
tween the observed neural responses.

In the following, we analyze this correlation structure in
detail. We find that the correlations induced by attentional fluc-
tuations resemble many experimentally observed aspects of cor-
related variability, such as correlations that increase with firing
rates, limited range correlations, and differential correlations. In
addition, we investigate the consequences of correlations in-
duced by fluctuating attentional gain for reading out the direc-
tion of motion of the stimulus from the population response. We
show that such correlations do not impair readout, even if the
decoder does not have access to the attentional state. Finally,
we show that our model can account for a number of nontrivial
experimental findings on correlated variability in attention
paradigms.

A preliminary account of these findings has been presented
previously at the Cosyne Meeting 2012 (Ecker et al., 2012). Re-
lated ideas have been developed independently by another group,
whose results have been published recently (Rabinowitz et al.,
2015).

Materials and Methods

This section contains a detailed description of the model and the deriva-
tions of the main results. In an effort to make the paper as accessible as
possible, the Results section is self-contained. Readers not interested in
the detailed derivations can skip ahead directly to Results.

Notation

We use uppercase italic letters to denote matrices, lowercase italic letters
for scalar values, and lowercase boldface letters for vectors. Thus, M is a
matrix and v; is the i element of vector v. We write the expectation of a
random variable x as (x) and the conditional expectation of x given y as
(x| y). By defining 8x = x — (x), we can write the variance of x compactly
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as (8x2). All probabilities, expectations, etc. used herein are conditioned
on the stimulus 0, which we sometimes omit to simplify the notation.

Model setup

We model a population of direction-selective neurons with identical
receptive field locations and a diverse range of preferred directions ¢;,.
We use a simple model of spatial and feature attention, where A;, the
firing rate of neuron , is the product of a gain g;(¢) and a tuning function

10):
Ai(0,4) = () £.(0) (2)

Here, s is the attended direction of motion and 6 the direction of the
stimulus that is shown. We assume bell-shaped tuning curves of the form

fi(8) = exp(k cos(6 — &) + vy), (3)

where k controls the tuning width, ¢, is the preferred direction of neuron
i, and 7y; controls its mean firing rate. Although this choice of tuning
curve simplifies the mathematical treatment considerably, the results do
not depend on it qualitatively. Indeed, all results on fluctuations of the
attentional gain hold for arbitrary tuning curves.

Neurons are assumed to produce spikes independently according to a
Poisson process with rate A,. Thus, the only source for noise correlations
in our model is the fluctuating attentional state, which comodulates the
firing rates through the gain g;.

The gain depends on whether attention is directed to the neurons’
receptive field and on the attended direction of motion. For spatial at-
tention, we use ¢ = exp(a), which is the same for all neurons because they
all have identical receptive field locations; we refer to « as the spatial gain
(see Fig. 1). For feature attention, we use g;({y) = exp(Bh,({)), where Bis
the feature gain and h;({) the gain profile (see Fig. 3). We follow the
feature similarity gain model (Treue and Martinez Trujillo, 1999), where
aneuron’s gain is enhanced if the attended feature matches the neuron’s
preference and suppressed otherwise. We use a cosine gain profile:
h(ih) = cos(f — ;).

From the perspective of the model, there is no fundamental difference
between spatial and feature attention. However, because we consider a
local population with identical receptive field locations, spatial attention
is a special case with a constant gain profile h; = 1 and, consequently, a
single common gain ¢ = exp(a). Thus, whenever we refer to spatial
attention, our results apply to a situation where all neurons in the pop-
ulation under consideration share the same preferred feature (i.e., recep-
tive field location in our case). Likewise, when we refer to feature
attention, our results apply to any situation where the neurons in the
population span a large range of preferred features (i.e., preferred direc-
tion in our case). We chose this somewhat arbitrary distinction because it
reflects the typical situation encountered in experiments in areas such as
V1 or MT, where neurons with similar retinotopic locations are re-
corded, which typically span a large range of preferred orientations or
directions of motion.

Effect of fluctuating gains on spike count statistics

To study the effect of a fluctuating attentional gain on the spike count
statistics, we treat the more general case of feature attention (see Fig. 4);
the results for spatial attention (see Fig. 2) follow as a special case with
B = aand h; = 1. We assume that the attended feature is fixed and that
the experimenter does not have access to the attentional gain 8 on indi-
vidual trials but can control only its average () over many trials (e.g., by
cuing the subject). We denote the variance of the trial-to-trial fluctua-
tions of B by (§8°2).

To obtain the mean, variance, and covariance of the spike counts y;, we
need mean, variance, and covariance of the gain g. However, due to the
exponential nonlinearity in g, the exact values depend on the distribution
of B. We therefore simply assume that mean and variance of 8 are suffi-
ciently small that we can linearize A; around (B):

A= (1 + 3Bhi())exp((B)hi()) f(6) (4)
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We note that this approximation is not strictly necessary. One could in
principle obtain exact analytical results by, for example, assuming 3 to be
Gaussian. However, because attentional modulations are usually rela-
tively small (8 =~ 0.1), an exact treatment would add only complicated
correction terms that would blur the key results without making any
practical difference. We therefore favored the approximate framework
due to the simplicity of its results.
We obtain for the average spike count:

wi = (y) = exp(B)h()) f(6). (5)

Variances and covariances are obtained by application of the Law of
Total Covariance:

Covly; }’j] = (Cov] y;» Vi | Bl + Cov[{y; | B, <}’j | B (6)
= Sy + (8B hihjpip; (7)

where the outer expectation (covariance) is taken over 8 and the inner
covariance (expectation) over y; and y;, we plugged in the definitions of
\; = {y; | B), and used the assumption of conditionally independent
Poisson spiking, Cov[y, y;| B] = §;A;.

By taking the ratio of the variance divided by the mean, we obtain the
Fano factor as follows:

F=1+ (8B%h ;. (8)

Fluctuations in attended feature induce differential
correlations

Calculating the means and covariances under fluctuations in the at-
tended direction s follows the same approach as above. We start with the
case where the variance (8y%) is small (see Fig. 5). Assuming that the
subject attends to the direction that is shown (i.e., (i) = 0), we linearize
A;around ¢ = 6:

A= (1 + 8¢Bhi(6))exp(Bhi(6)) f(6) 9)

where h; is the derivative with respect to . Using this approximation, we
obtain for the average spike count:

i = exp(Bhi(0)) fi(6).

Again, by applying the Law of Total Covariance, we obtain the spike
count covariance:

(10)

2

Covlyi }’j] = & + (8y7) % R 1 (11)
where p; = dp(6)/d6 and we used the definitions h;(6) = cos
(6 — ¢)and fi(6) = exp(kcos(6 — ¢;) + 7;) to make the substitu-
tion hiw; = pi/k. Thus, fluctuations of the attended direction create
differential correlations (Moreno-Bote et al., 2014), that is, response
variability that is identical to variability induced by changes in the stim-
ulus (sometimes also referred to as input noise).

Next, we treat the case where the attended direction fluctuates between
two discrete alternatives iy, and s,, as would be expected for a two-
alternative forced-choice discrimination task (see Fig. 6). We define Ap
as the difference between the expected spike counts for the two attention
targets:

1
Api =S| ) = (i | 02)) = Lexp(Bhiyn)) — exp(Bhi(y)) 1,
(12)

where we have assumed that there is no net motion in the stimulus and f,
is the neurons’ firing rate for this zero-coherence condition. Again, ap-
plying the Law of Total Covariance, we obtain the covariance:

Covly, yil = 8 + ApAp, (13)
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Derivation of Fisher information for modulated

Poisson distribution

The joint distribution of spike counts P(y | 0) is a compound Poisson
distribution, obtained by marginalizing over the latent gain f3:

P(y|0) = f PB) [ [P(y:| B, 0)dp (14)

We assume that (8 is drawn from a normal distribution with mean (3)
and variance (88%). Approximating as above A; =~ (1 + 8Bh,)u, we
obtain:

5B’ > A

1 i

(15)

_ v ( _
“oaep)[ [ | TP\ 2887
>, (log,; + 8Bh)y, — (1 + 6Bhi>ui>daﬂ (16)

We can solve the integral by collecting the terms related to 63 and com-
pleting the squares:

1 (88%) :
P(y | B)O(W eXP(T <Zhi}’i> )
X eXP(Zyi(logMi - <6BZ>hizthj>) (17)

= ¢(y) exp(n(0)"y).

Thus, P(y | ) is in the exponential family with sufficient statistics
T(y) = y. Therefore, the Fisher information with respect to the stimulus
0 is given by (Beck et al., 2011)

(18)

J=p"C'p. (19)
This expression is sometimes also referred to as the linear Fisher infor-
mation or J, .., because of its close relationship to both the variance of a
locally optimal linear estimator and the linear discriminability of two
nearby stimuli (J = d'?).

Despite the fact that the covariance matrix C depends on the stimulus,
] is the full Fisher information of the population. This is unlike the
Gaussian case, where a stimulus-dependent covariance matrix intro-
duces a second term into the Fisher information (Kay, 1993). This term,
sometimes referred to as ], is absent in the modulated Poisson distri-
bution, which means that (1) fine discrimination can be performed op-
timally using linear methods and (2) the linear Fisher information
defines the Cramér-Rao bound (i.e., the minimum variance of any un-
biased estimator).

Coding accuracy under fluctuations of attentional gain

Here we show that fluctuations of attentional gains do not impair the
coding accuracy of a population of neurons. We start by considering a
population of conditionally independent neurons. The first ingredient to
calculating the Fisher information is the inverse of the covariance matrix,
which we obtain by applying the Sherman-Morrison formula to Equa-
tion 7:

M 'uu'™™!

R
¢ M GpH '+ u'M W

(20)

where M = Diag(m(6)) and u; = h,({)u,(6). Plugging into the formula
for Fisher information, we obtain:
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(Ehiﬂvi’ )
(8B + Dhim

= Jina — O(1). (22)

J = Jina — (21)

The first term J;,4 in the above equation is the Fisher information of an
independent population of neurons:

Jioa = Z(’:’? : (23)

It is therefore O(N), whereas the second term is zero for homogeneous
populations of neurons, where f;(6) = f{6 — ¢,), and nonzero but O(1)
for heterogeneous populations. To show that the second term above is
O(1), we assume that the amplitudes of the neurons’ tuning curves are
independent random variables (Shamir and Sompolinsky, 2006; Ecker et
al., 2011). In this case, the quantity of interest is the expected value with
respect to different realizations of the heterogeneity:

2 2
(Ehim) <(Ehim) >

(887 + Dhiw| (3B + Dhim)

Here the approximation holds because for large N the denominator is

O(N) and its SD becomes narrower relative to its mean. Therefore, the

expected value of the ratio converges to the ratio of the expected values of
numerator and denominator. For the numerator, we simplify:

<( Ehzu£>2> - Var[Ehim] = 2 Varlpi] = O(N),

(25)

=0(1). (24)

which holds because (> h;ui) = 0, both for spatial attention (where
h; = 1) and feature attention when the correct feature is attended (where
h is even and {(p) is odd). Thus, fluctuations in attentional gains do not
impair the coding accuracy of the population with respect to direction of
motion, as they result in only an O(1) reduction of the Fisher informa-
tion, which becomes irrelevant for large populations.

To study the physiologically more realistic situation where the amount
of information entering the brain is finite, we model input noise by
treating the stimulus direction 6 itself as a random variable with variance
(862). In this case, the covariance of the spike counts is given by

C=Cy+ (86 p'", (26)

where C, is the covariance matrix in the absence of input noise. The
Fisher information is then (Moreno-Bote et al., 2014)

To

=TT Gy

(27)

where ], is the Fisher information in the absence of input noise. Because
Jo is O(N), ] — 1/{(86?). Thus, in the presence of input noise, the O(1)
correction term from above vanishes for large N'and the Fisher informa-
tion converges to the limit imposed by the input noise.

Coding accuracy under fluctuations of attended feature

We have shown above (Eq. 11) that fluctuations of the attended feature
have the same effect as input noise. Including input noise with variance
(86?) as in the previous section, the covariance of the spike counts is
therefore given by

2

C=M+ ((592> + B <5¢2>)M’M’T, (28)

K2

where M = Diag(p) as before. Analogous to above, the Fisher informa-
tion is
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]in
J= 5 (29)
L+ <<692> +a <6¢2>>de
and for large N, it converges to
1
(56°) + Lz (642)

Simulation of experimental results

To simulate the results of Cohen and Maunsell (2011) (see Fig. 8), we
used populations of N2 neurons, tuned to both orientation and spatial
frequency, with the preferred stimuli spaced regularly on an N X N grid.
For the illustration of the correlation matrices, we used N = 50 and
homogeneous tuning curves as in all other figures showing covariance or
correlation matrices. For computing the relationship between firing rate
changes and correlation changes, we used N = 64 and heterogeneous
tuning curves. For convenience and symmetry, we modeled both vari-
ables as periodic (although not strictly correct, this simplification does
not affect the results qualitatively). We defined the overall attentional
gaing; = a,hi(Y) + a,hi(y,). The neuronal gain g; = exp(g;). Assum-
ing attention gains ;. and features i, are independent random variables,
mean and covariance of § are given by:

(&) = (a)(hi(Pn)) + (ar)(hi(yn)) (31)
Cov[g, g1 = kgz«sab + () B () — (o (b)),
(32)

where we estimated the expectations over i, via numerical integra-
tion. Without loss of generality, we assumed the first feature to be
attended and set (@) = 0.1, (8a?) = 0.05 and ¢ Gaussian
with (8¢1) = (10°)% For model I (see Fig. 8C,D), we used (a,)
= 0, (8a3) = 0.1and ¢, as for the attended feature, Gaussian with
(8y3) = (10°)% For model II (see Fig. 8E,F), we used {(a,)
= 0.1, (8a3) = 0.05 as for the attended feature but chose s, as
uniformly distributed. To obtain the spike count covariances, we
linearized A; around (g;) as above and obtained

i = exp((g) fi(6) (33)

COV[% )’j] = Sij“'i + COV[gh gj]“*il-"j' (34)

For the illustrations of the correlation matrices, we normalized the cova-
riance matrices to correlation coefficients and marginalized over the ir-
relevant feature (i.e., for the attended condition [orientation], we
averaged over all neurons with the same preferred orientation but differ-
ent preferred spatial frequencies).

To simulate the results of Ruff and Cohen (2014) (see Fig. 9), we used
apopulation of N neurons with receptive field locations arranged linearly
in the range [0, 1]. We assumed that receptive fields have a Gaussian
shape with SD 0.5 and a peak firing rate of 20 spikes/s. We placed the two
stimuli at 0.35 and 0.65. For simplicity, we assumed that the firing rate in
response to the two stimuli presented simultaneously is equal to the
average firing rate elicited by the two stimuli presented individually.
Because the receptive field locations vary within the population, we treat
spatial location as a feature. For the gain profile, we used a Mexican hat:

hi() = 2exp(=2(¢ — ¢))*) — exp(=(p — $)*/2),  (35)

which corresponds to an excitatory center with an SD of 0.5 and a sup-
pressive surround with an SD of 1. We set the distribution of the atten-
tional gain to (B) = 0.2 (reasoning that attentional effects are typically
stronger when multiple stimuli compete in the receptive field; Treue and
Maunsell, 1996) and (§82%) = 0.05 for both attended and unattended
conditions. The difference between the two conditions is only the distri-
bution of attended locations . We assumed the attentional focus to be
centered on 0.5 on average, but with a smaller SD for the attended con-



Ecker et al. @ Structure of Neuronal Population Activity

B C..
= =
3 2 02
=8 Jol <>
o (6a?)
0
-180 0 180 @
Direction 6 Gain a
1+@
] — Attended
% B N — Sensory
Y response
©
(=)
£
P
=
5
[5]
oo TN
0 -
T T T T 1
-180 -90 0 90 180
Preferred direction ¢;
Figure 1. Model of spatial attention. A, Example stimulus. Neurons’ receptive fields are

assumed to be at the same location (circle). B, Tuning curve under sensory stimulation (dashed
line) and with spatial attention directed to the stimulus in the receptive field (solid line). C,
Distribution of attentional gain (c). D, Population response of a homogeneous population of
neurons under sensory stimulation (dashed line) and with attention directed to the stimulus in
the receptive fields (solid line).

dition (0.2) than for the unattended condition (0.5). As before, we ob-
tained the covariance of the gain by numerical integration over the
distribution of s and the covariance matrix by application of the Law of
Total Covariance (see Eq. 34). We used a homogeneous population of 50
neurons for all illustrations and a heterogeneous population of 512 neu-
rons for simulating the relationship between task tuning similarity (TTS)
and correlations. TTS was computed as in Ruff and Cohen (2014) as the
d’ between the responses to the two individual stimuli, assuming Poisson
statistics (i.e., variance equal to the average spike count).

Generalized linear population model
Our population model can be recast as a GLM by a simple reparameter-
ization of the stimulus. Consider the log firing rate

log \; = a + B cos(y — &) + kcos(6 — &) + v,

where aand 3 are the spatial and feature gains as before. By representing
angles as two-dimensional vectors of unit length (e.g., x = [cos#), sinf] D,
we can rewrite the log firing rate as a linear function of the attentional
state and the stimulus:

(36)

logA; = a+k'b+k'x+vy,. (37)

Here, @ and b = f/k - [cosis, sins] T represent the state of spatial and
feature attention, respectively, x is the stimulus, and k; = « -
[cosd,, sing;] T is the neuron’s preferred direction. This model is a GLM
with Poisson observations and log(x) as the link function.

Results

Fluctuations in spatial attention

Our goal is to characterize the effect of fluctuating attentional
signals on the population response in sensory areas. To simplify
the exposition of the basic concepts and results, we start with the
simplest possible case: that of spatial attention in a population of
neurons with identical receptive field locations (Fig. 1A). We
assume that neurons encode the direction of motion of a stimulus
through bell-shaped tuning curves f;(0) (Fig. 1B, dotted line) and
that their firing rates are modulated by a common gain e:
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A = e“f(0). (38)

We assume that « fluctuates from trial to trial and is drawn from
a normal distribution with mean (@) and variance (§a*) (Fig.
1C). Using this parameterization (@) = 0 corresponds to no at-
tentional allocation and a neuronal gain of 1; we refer to this as
the sensory response (Fig. 1D, dotted line). In contrast, when the
stimulus is attended, (@) > 0 (Fig. 1D, solid line). Under this
model, the average spike count of a neuron is approximately

iy = pmi= (1 + () fi(6).

Although we use homogeneous neural populations in the figures
(all neurons have the same tuning curve up to a preferred direc-
tion ¢, i.e., fi(6) = {6 — ¢b,)), all results in this section hold more
generally for arbitrary tuning curves.

Because the attentional state fluctuates from trial to trial, the
underlying firing rate also fluctuates. These fluctuations are rep-
resented in the model by the variance of the gain term. By apply-
ing the Law of Total Covariance, we obtain the spike count
variance (Fig. 2A):

(39)

(8y7) = i + (da)ui, (40)
where (8a?) is the variance of the attentional gain. The first
term is equal to the average spike count and results from the
Poisson process assumption, whereas the second term is
quadratic in the firing rate, which results from the multiplica-
tive nature of the fluctuating gain « (Goris et al., 2014), cau-
sing the spike count variance to grow more quickly than the
mean. Such an expanding mean variance relation has been
observed in many experimental studies (Dean, 1981; Tolhurst
et al., 1983; Britten et al., 1993; Goris et al., 2014). If the
attentional gain does not fluctuate, we recover the Poisson
process.

As the neurons’ firing rates are comodulated by a common
gain, the gain fluctuations induce correlations between the neu-
rons. We find that the resulting covariance matrix C has a simple
form. It can be expressed as the sum of a diagonal matrix M and
a rank-one matrix (Fig. 2C):

C=M+ (8a*)puT, (41)

where M = Diag (m) contains the independent variances result-
ing from the Poisson noise and the second term results from the
gain fluctuations. (The assumption of conditional independence
could be relaxed without affecting any of the major results qual-
itatively: the diagonal matrix in the equation above would simply
be replaced by an alternative, nondiagonal covariance matrix.)
Hence, the covariance between two neurons is proportional to
the product of the firing rates, with the constant of proportion-
ality given by the variance of the attentional gain (Fig. 2B). There
is no such simple expression for the correlation coefficient, which
is more typically quantified in experimental studies. We find that
spike count correlations induced by a fluctuating attentional gain
increase with firing rates (Fig. 2D), as observed in numerous
experimental studies (Cohen and Maunsell, 2009; Mitchell et al.,
2009; Smith and Sommer, 2013; Ecker et al., 2014). This effect
arises because the independent (Poisson) variability is linear in
the firing rate, whereas the covariance induced by gain fluctua-
tions is quadratic and therefore dominates for large firing rates.
However, although correlations increase with the geometric
mean firing rate, there is no simple one-to-one mapping between
the two quantities: it also depends on the ratio of the firing rates
(Fig. 2C). Thus, our analysis suggests that in the presence of gain
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Figure 2.

Effect of fluctuations in attentional state on spike count statistics. Solid lines indicate analytical solutions (Eqs. 4—8). Parameter values used here

were{a) = 0.1, (8a*) € {0.05%, 0.1%, 0.15%} (dark tolight red). A, Spike count variance as a function of mean spike count. Dashed line indicates identity (Poisson process). B, Covariance
as a function of product of spike counts. Colors as in A. €, Covariance matrix for & = 0°and (Sc:%) = 0.12. Neurons are ordered by preferred directions. Tuning curves: £(0) = exp(x cos(6— ¢
+ 1), k = 2,y chosen so that the average firing rate across all §is 10 spikes/s. D, Correlation coefficient as function of geometric mean firing rate. The three groups of lines correspond to different
levels of (Scr %) asin A, B. Darker colors within a group indicate increasing ratios ./ - E, Average correlation coefficient (over all directions of motion 6) as a function of difference of the preferred
directions of the two neurons. Despite a common gain for all neurons, correlations decay with tuning difference. Tuning parameters as in D. F, Same as in E, but for different tuning widths (« €{0.5,
1,2,4, 8}, inset, top). The decay of the correlations with the difference of the preferred directions is stronger for narrow tuning curves. Red line corresponds to D, E. Mean firing rate: 10 spikes/s for

all tuning widths.

fluctuations covariances are more appropriate to consider when
analyzing experimental data than correlation coefficients. Alter-
natively, it would be appropriate to normalize the covariance by
the product of the firing rates u;u, if some kind of normalization
is desired.

In addition, the correlation structure induced by gain fluctu-
ations is nontrivial even if all neurons share the same gain (Fig.
2E,F) (see also Ecker et al., 2014). Because of the nonlinear shape
of the tuning function and the nonlinear way the neurons’ tuning
functions affect spike count correlations, the correlations de-
crease with increased difference in two neurons’ preferred direc-
tions (Fig. 2E). The slope of the decay depends mainly on the
dynamic range of the tuning curve (Fig. 2F). If neurons have a
high baseline firing rate compared with their peak firing rate,
correlations decrease only marginally with preferred direction. In
contrast, sharply tuned neurons with close to zero baseline firing
rates exhibit strong limited-range structure. This limited-range
correlation structure has been observed in numerous experimen-
tal studies (Zohary et al., 1994; Bair et al., 2001; Smith and Kohn,
2008; Cohen and Maunsell, 2009; Ecker et al., 2010) and has been
hypothesized to reflect shared input among similarly tuned neu-
rons. However, our simple model shows that these seemingly
structured correlations can arise from a very simple, nonspecific
mechanism: a common fluctuating gain that drives all neurons
equally, regardless of their tuning properties.

Fluctuations of feature attention

Feature attention is different from spatial attention in that the
sign of the modulation depends on the similarity of the at-
tended direction to the neuron’s preferred direction of motion

(Fig. 3). Following the feature-similarity gain model (Treue
and Martinez Trujillo, 1999), we model feature attention by

A= P £(0), (42)

where we refer to 3 as the feature gain that controls how strongly
the feature s (in this case, direction of motion) is attended on the
given trial and h;(if) is the gain profile that determines the sign
and relative strength of modulation for each neuron depending
on the similarity of its preferred direction to the attended direc-
tion (Fig. 3B).

In this model, we can think of feature attention as a prior on
the direction of motion. The attentional term ¢ is a population
hill centered on the attended direction of motion. The gain 3
controls its width and amplitude (the strength of the prior),
whereas the profile /() controls its location. Thus, feature at-
tention biases the population response toward the attended di-
rection by enhancing the response of neurons with preferred
directions close to the attended direction and suppressing those
with opposite preferred directions (Fig. 3B). As a result, unlike in
the case of spatial attention, the shape of the population response
is no longer identical to that of the individual neurons’ tuning
curve (Fig. 3D).

We start by assuming that the subject always attends the same
direction (i.e., ¢ is constant) and consider the effect of fluctua-
tions in the strength of attention, that is the gain 3. We will come
back to fluctuations in the attended direction below.

Similar to spatial attention, fluctuations in feature attention
lead to overdispersion of the spike counts relative to a Poisson
process. This means that the ratio of variance to mean (the Fano
factor) is >1. The degree of overdispersion not only increases
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Figure3. Thefeature similarity gain model for feature attention. 4, Tuning curve of a single

neuron under sensory stimulation (black dotted) and with feature attention directed to differ-
ent directions ranging from preferred (red) to null (blue). The entire tuning curve of the neuron
is gain-modulated, and the modulation does not depend on the stimulus 6. B, The gain of a
neuron depends on which direction of motion isis attended relative to the neuron’s preferred
direction ¢,. €, Distribution of gain () fluctuations with mean () and variance (82). D,
Population response of ahomogeneous population of neurons under sensory stimulation (black
dotted) and with attention directed to different directions of motion ranging from 0° (red) to
180° (blue). The stimulus is & = 0. Curves represent the average response of the neurons as a
function of their preferred direction. Attending to a direction of motion biases the population
response toward this attended stimulus. Although each neuron’s tuning curve is gain-
modulated asa whole (4), the population response is no longer equal to the individual neurons’
tuning curves but instead sharpened/broadened and its peak is moved.

with the neuron’s firing rate but also depends on the neuron’s
preferred direction relative to the attended direction (Fig. 4A).
Spike counts are most overdispersed at the preferred and the null
directions (Fig. 4A, red and blue). Moreover, the feature similar-
ity gain model predicts that neurons with preferred directions
close to orthogonal to the attended direction should be the least
overdispersed (Fig. 4A, purple).

As feature attention induces both increases as well as decreases
in neuronal gain, the induced correlation structure is different
from that induced by spatial attention. However, because each
neuron’s gain is driven by a common feature gain, the covariance
matrix can again be decomposed into a diagonal matrix M plus a
rank-one component:

C=M+ (8f*uu’, (43)

where u; = h;({) ,(6). The sign of the covariance is determined
by the product of h; and h;, which depends on the attended direc-
tion and the preferred directions of the two neurons (Fig. 4B).
The covariance is always positive for two neurons with identical
preferred directions, whereas it is always negative for two neu-
rons with orthogonal preferred directions. For any pair of neu-
rons in between, it can be both positive and negative depending
on the stimulus (Fig. 4B).

As for spatial attention, averaging correlations over multiple
stimulus conditions to represent the correlation structure as a
function of the neurons’ tuning similarity misses much of the
underlying structure (Fig. 4C): spike count correlations are pos-
itively correlated with tuning similarity (Fig. 4D), but the stimu-
lus dependence (Fig. 4C) is again ignored. As before, the exact
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shape of the decay depends on the tuning width: for narrow tun-
ing curves, neurons with opposite preferred directions are only
weakly anticorrelated, whereas for broad tuning curves, those
neurons are strongly anticorrelated (Fig. 4D, blue to yellow lines).

So far, we have assumed that the attended direction of motion
is constant and only the strength of attention fluctuates from trial
to trial. Now we turn to the case where the attended direction
itself fluctuates from trial to trial. Assuming that the subject at-
tends on average the correct direction ({) = 6, but with some
variance (8is°), we find that the covariance matrix can again be
written as diagonal plus rank one (Fig. 5; for the derivation, see
Materials and Methods):

2

C=M+ (54 % 't (44)

Here B is the strength of the attentional modulation, k the tuning
width of the neurons, and p’ the derivative of the average firing
rate with respect to the stimulus. This pattern of correlations is
known as differential correlations (Moreno-Bote et al., 2014), as
the variability resembles that induced by small changes in the
stimulus. This result is indeed expected: as we mentioned above,
feature attention can be thought of as a prior on direction of
motion, therefore biasing the population response toward the
attended direction. If the attended direction changes from trial to
trial, this will perturb the population response in the same direc-
tion in multineuronal space as small changes in the stimulus
itself.

Interestingly, when plotted as a function of tuning similarity,
the correlation structure resembles that induced by gain fluctua-
tions (Fig. 5C), except for very narrow tuning curves. This finding
is quite striking because the correlation matrices look quite dif-
ferent (compare Fig. 4C with Fig. 5B) and, as we will see below,
the two correlation structures have quite dramatically different
effects on the population code. However, the correlations in-
duced by fluctuations in the attended direction are substantially
weaker than those induced by gain fluctuations (Figs. 2, 4), even
if the distribution of attended directions is fairly wide (SD: 10° in
Fig. 5).

A second example with relevance to experimental studies is
the situation where feature attention fluctuates between two dis-
crete alternatives (Fig. 6). Consider the classic random dot mo-
tion discrimination paradigm (Newsome and Paré, 1988), where
the subject has to decide whether the net motion in the display is
rightward or leftward (Fig. 6A). Most interesting to the experi-
menter are the trials where the net motion is zero (zero coher-
ence). On average, the population response is flat on those trials
(Fig. 6B, dashed line), as there is no net motion signal in the
stimulus. However, on any given trial, the subjects may have
expectations about the stimulus that is to come, for example,
because of the past stimuli they have observed. They may there-
fore decide to attend to one direction of motion or the other. As a
consequence, in trials where the subject attends to leftward mo-
tion, neurons with preferred directions around leftward (right-
ward) motion will be enhanced (suppressed) and vice versa (Fig.
6B, red and blue). That is, the population response will fluctuate
between attend-left and attend-right. The covariance structure
induced by such fluctuations (Fig. 6C) is very similar to that
observed before, except that we have to replace the derivative of
the response p’ by the difference between the responses when
attending left versus right, Au:

C=M+ ApAu”. (45)
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Figure4. Fffect of fluctuations in the feature attention gain on spike count statistics. Parameters here are as follows: s = 0, (8) = 0.1,(53% = 0.1% A, Spike count variance s a function

of mean spike count. Colors represent different attended directions relative to the neurons’ preferred direction (s — ¢b; bottom right, inset, colored triangles). Short blue line segments indicate that
the mean-variance relationships in these conditions are identical to those indicated by the red lines right next to them. B, Covariance matrix for stimulus & = 0. Neurons are ordered by preferred
directions. Mean firing rate across the population: 20 spikes/s. C, Same as in B, but the correlation coefficient matrix is shown. D, Dependence of spike count correlations on tuning similarity
(difference of preferred directions). Fluctuations in feature attention induce limited range correlations regardless of the shape of the tuning curve. The higher the baseline firing rate, the stronger the

negative correlations for neurons with opposite preferred directions. Inset, Different tuning widths used.
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Figure 5.

Effect of fluctuations in the attended direction on correlation structure. Parameters here are as follows: () = 6 = 0, (8@ = (10°)%, B = 0.1, mean firing rate across the

population: 20 spikes/s. A, Covariance matrix. Neurons are ordered by preferred directions. B, Same asin A, but the correlation coefficient matrix is shown. ¢, Dependence of spike count correlations
on tuning similarity (difference of preferred directions). Fluctuations in the attended direction induce limited range correlations, whose shape depends on the width of the tuning curves. Inset,

Different tuning widths used.

An interesting difference to above is that, in this case, the corre-
lation matrix (Fig. 6D) is more or less a scaled version of the
covariance matrix because the population response is flat; there-
fore, the normalization does not affect its shape very much.

Effects of attention-induced correlations on

population coding

How interneuronal correlations affect the representational ac-
curacy of neuronal populations has been a matter of immense
interest (and debate) over the last years, and changes in the
correlation structure have been suggested to underlie the im-
proved behavioral performance under attention (Cohen and
Maunsell, 2009; Mitchell et al., 2009). Thus, we want to briefly
consider how correlations induced by attentional fluctuations
affect the coding accuracy of a population code.

Before doing so, we need to make a choice: does the down-
stream readout have access to the state of attention or not? If it
does, the picture is fairly simple: attentional fluctuations do not
affect the readout accuracy because the attentional state can be
accounted for and there is no additional noise compared with a
scenario without attentional fluctuations. The only downside is a
potentially more complex readout. In contrast, if we assume that
the readout does not have access to the attentional state, the
situation becomes more interesting. In this case, the attentional
fluctuations act like additional (internally generated) noise,
which could impair the readout. In the following, we consider
this latter scenario.

To quantify the accuracy of a population code, we use the
Fisher information (Kay, 1993) with respect to direction of mo-
tion. Fisher information is proportional to the square of d’ (Be-
rens et al., 2011), which quantifies the detectability of small
changes in a stimulus parameter from the resulting changes in the
responses of a population of neurons. For a population of neu-
rons with independent noise, the Fisher information of individ-
ual neurons adds up linearly.

We start by considering spatial attention. Because the gain is
the same for all neurons, gain fluctuations should not affect the
coding accuracy of the population with respect to the direction of
the stimulus, which is encoded in the differential activation pat-
tern of the neurons. This is indeed the case. As shown in Materials
and Methods, the Fisher information of a population of Poisson
neurons whose firing rates are comodulated by a common fluc-
tuating gain is given by

J = Jing — O(1) = Jinas (46)
where J,.4 is the Fisher information of an independent popula-
tion without fluctuating gain (i.e., (§a®) = 0). Thus, unobserved
gain fluctuations reduce the information in the population only
by a constant term, which is negligible for reasonably large pop-
ulations (Fig. 7A, solid blue line vs circles). This result can be
understood intuitively by considering the structure of the cova-
riance matrix (Eq. 41): the dominant eigenvector points in the
direction of the neural response w, which is orthogonal to
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Figure 6.  Fluctuations of feature attention in two-alternative forced-choice discrimination
task. A, lllustration of zero-coherence random dot stimulus. Arrows attached to dots indicate
direction of motion of individual dots. Circle represents neurons’ receptive fields. Big arrows and
question mark indicate the subject’s task: decide whether the net motion is leftward or right-
ward. B, Population response to zero-coherence stimulus. Dashed line indicates sensory re-
sponse. Red represents average response when the subject attends to rightward motion. Blue
represents average response when the subject attends to leftward motion. €, Covariance matrix
if attentional state is unknown to experimenter (as is usually the case in such discrimination
tasks). Neurons are ordered by their preferred directions. D, Same as in (, but for correlation
coefficient.

changes in the response due to changes in the stimulus, u'.
Therefore, gain fluctuations do not impair the readout of the
direction of motion. This result concerns only the fluctuations in
the gain. The increased gain due to attention still leads to a higher
Fisher information in the attended condition compared with the
unattended condition (Fig. 7A, solid vs dashed blue line).

The same result holds for fluctuations in the feature gain,
so long as the attended direction matches the one shown and
does not fluctuate from trial to trial (Fig. 7A, blue pluses). A
fluctuating gain sharpens or broadens the population hill
from trial to trial but leaves its peak unchanged. Again, the
dominant eigenvector (u; = h;u;, Eq. 43) points in a direction
that is orthogonal to changes in the stimulus (for details, see
Materials and Methods).

The situation changes if the focus of attention (i.e., the at-
tended direction) fluctuates from trial to trial. Because feature
attention biases the population response toward the attended
direction of motion (Fig. 3D), such attentional fluctuations in-
duce differential correlations: the dominant eigenvector is the
derivative of the neural response with respect to the stimulus, u'.
Therefore, the Fisher information saturates at a finite value (Fig.
7A, red lines):

KZ

7 Gy
Thus, for sufficiently large populations, the Fisher informa-
tion is determined only by the degree of attentional modula-
tion B and the variance of the attended direction (8ys) relative
to the tuning width « (for derivation, see Materials and Meth-
ods). We call the term (8yr*)B%/k > the effective stimulus vari-
ance, as it has exactly the same effect as unobserved variability
in the stimulus of the same magnitude.

(47)
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Figure7.  Coding accuracy under unknown fluctuations of attentional state. 4, Fisher infor-

mation as a function of population size in the limit of no input noise. Fluctuations of the atten-
tional gain (circles represent spatial gain; pluses indicate feature gain) do not impair coding
accuracy relative to an uncorrelated population without attentional fluctuations (solid blue
line). Fluctuations of the attended feature (solid red line) impose an upper bound on the Fisher
information (dotted red line). Dashed lines indicate unattended condition with the same level
of attentional fluctuations. B, Same as in A, but with input noise. The variance of the input noise
was chosen such that it leads to asymptotic 75% thresholds of 0.5° (left) and 3° (right), respec-
tively, in the absence of attentional fluctuations. Dotted lines indicate asymptotic limit of the
Fisher information with (red) and without (blue) fluctuations in the attended feature. Black
dashed line indicates performance of an uncorrelated population in the absence of input noise
(same asin 4, blue line).

So far, we have assumed that there is no limit on the
amount of information entering the brain. However, in prac-
tice, the amount of information is finite due to sensory noise
(e.g., in the photoreceptors). In some experimental settings,
this sensory noise is likely to be very small (e.g., orientation
discrimination tasks with high-contrast gratings), whereas in
other situations it can be substantial (e.g., random dot motion
paradigms at low coherence). Therefore, we also briefly con-
sidered how input noise with variance (867) affects the Fisher
information in the presence of attentional fluctuations. The
two main results from above also hold in this case: whereas
gain fluctuations (both spatial and feature gain) have a negli-
gible effect on the Fisher information (Fig. 7B, solid blue line,
circles and pluses), fluctuations of the attended direction do
impair the code (Fig. 7B, red lines).

A few observations are noteworthy. First, when the input
noise is small (e.g., 75% threshold of an ideal observer: 0.5°),
the results are qualitatively similar to the approximation of no
input noise (Fig. 7B, left) for population sizes of a few hundred
neurons. Second, if the population response is dominated by
the amount of input noise (threshold: 3°), we can consider the
asymptotic value at which the Fisher information saturates:

KZ

[ = (507 + B(ovy

(48)

This value depends only on the tuning width «, the amount of
input noise (60>), the degree of attentional modulation 3, and the
variance of the attended direction (8s*). Thus, gain fluctuations
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Two possible accounts of the data by Cohen and Maunsell (2011). A, Model population tuned to two feature dimensions: here orientation and spatial frequency. Plots represent the

average sensory response of the population to an orientation of 0° and a spatial frequency of 2 cycles/deg. Without loss of generality, we assume the subject attends to orientation (the model is
entirely symmetric with respect to the two features). B, Distribution of attended orientations (top left), orientation gain (bottom left), and correlation matrix (right). The correlation matrix is
arranged by the neurons’ preferred orientation and averaged over neurons with different preferred spatial frequencies. €, Gain variability model for unattended feature. Analogous to B, the
distribution of attended spatial frequencies (top left) and spatial frequency gains (bottom left) are shown along with the correlation matrix (right) arranged by preferred spatial frequencies. Here we
assume that not attending to spatial frequency reduces the gain and increases its variance (gray box; dashed gray line indicates the distribution of the gain under attention for comparison). D,
Changes in correlations as a function of the two neurons’ changes in firing rates between the two attention conditions (attending to orientation vs attending to spatial frequency) as reported by
Cohen and Maunsell (2011). E, Feature variability model for unattended feature. Same as in C, except that here we assume that not attending to spatial frequency means that a random spatial
frequency is attended on each trial (gray box). F, Same as in D, but for the feature variability model.

(both spatial and feature gain) also have no effect in large popu-
lations when the Fisher information is bounded by the input
noise (Fig. 7B, right); the O(1) correction term from Equation 46
disappears. Moreover, in the absence of fluctuations of the at-
tended direction, the Fisher information reduces to 1/{567), the
inverse variance of the input noise, which is the bound given by
the data processing inequality (Moreno-Bote et al., 2014). Third,
fluctuations of the attended direction further reduce the Fisher
information below the limit imposed by the data processing in-
equality (Fig. 7B, right, red lines).

In summary, attentional gain fluctuations generally do not
impair coding accuracy, but fluctuations of the attended fea-
ture can have a major effect, in particular when the input noise
is small. Importantly, this finding does not apply only to vol-
untary variability in the attended direction. Even if the animal
tries to attend to the same direction on every trial, (Sys*) is
non-zero in any realistic scenario because the attended direc-
tion ¢ is represented by a finite number of neurons in the
brain. Therefore, the very existence of an attentional mecha-
nism places a limit on how accurately a stimulus can be rep-
resented, and this limit can be substantially lower than that
imposed by the information in the feedforward signal (see also
Discussion).

A new view on correlated variability under attention

There is ample experimental evidence that attention fluctuates
from trial to trial (Cohen and Maunsell, 2010, 2011), and we
showed in the previous sections that such fluctuations induce
patterns of (correlated) variability that are highly consistent with
the reported data on attention (Cohen and Maunsell, 2009;
Mitchell et al., 2009; Herrero et al., 2013). Interestingly, in our
model, both the magnitude of overdispersion in single neurons’
spike counts and the average level of correlations depend on the
variance of the attentional gain (§a®), which in the model is
completely independent of the average modulation (). This ob-
servation suggests that the average attentional modulation be-

tween an attended and an unattended condition (which can be
reliably measured based on average responses) may not predict
the level of correlations in either condition because the latter is
controlled by an independent variable.

This dissociation between attention effects on firing rates
and correlations is indeed a central experimental finding for
which our model can account. In many cases, directing spatial
attention to a certain location increases the average responses
of neurons whose receptive fields represent this location, but
reduces their individual and shared variability (Cohen and
Maunsell, 2009; Mitchell et al., 2009; Herrero et al., 2013).
Thus, if our model is correct, then the data suggest that atten-
tion not only increases response gain but also reduces the
trial-to-trial fluctuations of the gain.

Attentional fluctuations can also account for more recent
experimental results on modulation of correlations under at-
tention, two of which (Cohen and Maunsell, 2011; Ruff and
Cohen, 2014) we reproduce with our model in the following.

In the first study, Cohen and Maunsell (2011) investigated
how feature attention modulates firing rates and interneuronal
correlations. In their paradigm, monkeys have to attend to either
the orientation of a grating or its spatial frequency. Their findings
resemble the patterns observed for spatial attention: correlations
are reduced for neurons whose firing rates increase when attend-
ing to orientation compared with attending to spatial frequency,
and vice versa (Fig. 8D).

To reproduce this pattern of results in our model, we consider
a population of neurons that is tuned to both orientation and
spatial frequency (Fig. 8A; see Materials and Methods). We as-
sume, without loss of generality, that the monkey attends to
orientation. Moreover, we assume that he attends to (approxi-
mately) the correct value (0°) and that the gain fluctuates mod-
erately from trial to trial (Fig. 8B). The resulting correlation
structure with respect to the neurons’ preferred orientation re-
sembles what we showed earlier (compare Fig. 4C). Interestingly,
the pattern of results reported by Cohen and Maunsell (2011)
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locations (here arbitrarily between 0 and 1). Within this range, two small stimuli are shown (“Stim 1" and “Stim 2"), both of which
activate all neurons to some extent. Dashed lines indicate sensory population response to individual stimuli (neurons are ordered
by their receptive field location). Solid lines indicate response to both stimuli presented simultaneously in both unattended (blue)
and attended (green) condition. B, Gain profile for spatial attention. In this task, space is a relevant feature and neurons have
different receptive field locations, so we include a gain profile with suppressive surround. C, Distribution of attended locations (top;
blue represents unattended; green represents attended) and attentional gain (bottom). Although the distribution of gains remains
unaltered in the unattended condition (only the attentional focus fluctuates), the average gain of neurons around the stimulus
location increases (see A). D, Correlation matrix for attended (left) and unattended (right) condition. E, Average correlations in
attended (green) and unattended (blue) condition as a function of TTS, as reported by Ruff and Cohen (2014).

(Fig. 8 D, F) can be reproduced by two entirely different scenarios
with respect to the unattended feature, spatial frequency. The
first possibility is to assume that the attentional gain for spatial
frequency fluctuates more strongly from trial to trial, but the
attentional focus remains on the stimulus that is shown (albeit
with a lower average gain). This hypothesis would lead to essen-
tially the same correlation structure as for orientation, but with
higher magnitude (Fig. 8C). The second possibility is not to in-
voke increased gain fluctuations, but instead assume that the
focus of attention fluctuates from trial to trial (Fig. 8E; i.e., a
random spatial frequency is attended). This hypothesis would
lead to a different correlation structure with respect to the neu-
rons’ preferred spatial frequency, but the same pattern of results
(Fig. 8F) when plotted as a function of firing rate changes as in
Cohen and Maunsell (2011). Resolving which of these two hy-
potheses (if any) is correct would advance our understanding of
how attentional resources are allocated in the brain. Unfortu-
nately, how correlation changes relate to firing rate changes is
uninformative in this respect.

This dissociation between attention effects on firing rates and
correlations is further supported by a second recent study show-
ing that attention-induced increases in firing rates can be associ-
ated with either increased or decreased correlations, depending
on how similarly two neurons respond to a pair of nearby gratings
in a contrast discrimination task (Ruff and Cohen, 2014). The
authors’ similarity measure (TTS) depends largely on the degree
to which the neurons’ receptive fields overlap, such that spike
count correlations between neurons with overlapping receptive
fields decrease in attended relative to unattended conditions,
whereas those between neurons with nonoverlapping receptive
fields increase in attended conditions (Fig. 9E).

(2014). Specifically, the interaction of fluc-
tuations in the attended feature with the
gain profile leads to the unique pattern of
correlation changes (Fig. 9E): although all
neurons increase their firing rates under at-
tention (Fig. 9A), pairs with strongly over-
lapping receptive fields have decreased
correlations while pairs with less overlap-
ping receptive fields have increased correla-
tions (Fig. 9D, E).

Notably, this model does not only reproduce the qualitative
changes of correlations, but also a number of more subtle pat-
terns in the results of Ruff and Cohen (2014): the crossing of the
two lines in Figure 9E is shifted slightly to negative values; firing
rates increase much more modestly for neurons with negative
TTS than for those with positive TTS; and the changes in corre-
lation are stronger for neurons with positive TTS. Interestingly,
fluctuations in the focus of spatial attention were the only mech-
anism that we found could account for the observed pattern of
correlation changes as a function of TTS. Increased fluctuations
of the attentional gain (as above) could not account for the pat-
tern of results in this study. However, from the perspective of a
single neuron (or multiple neurons with identical receptive
fields), increased fluctuations of the attended features look iden-
tical to increased gain variability.

Identifying attentional fluctuations in experimental data

We saw above that fluctuations in attentional state can introduce
interesting patterns of correlation in neural activity, which are
consistent with the published literature on attention. However, as
long as one considers only single neurons and pairwise statistics,
any result can be consistent with many hypotheses. For instance,
attentional fluctuations induce correlations that depend on firing
rates (Fig. 2C), but the same result is also predicted by the thresh-
olding nonlinearity of neurons (de la Rocha et al., 2007) and
therefore need not result from attentional fluctuations. Similarly,
all types of attentional fluctuations considered above lead to cor-
relations that decrease with the difference of two neurons’ stim-
ulus preferences (limited range correlations; Figs. 2E, 4D, 5C),
but this correlation structure can also arise from shared sensory
noise (Shadlen et al., 1998). Finally, changes in the correlation
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Figure 10. Identifying attentional fluctuations from variability in neuronal population ac-

tivity. A, The subspace identified by Factor Analysis depends on the stimulus direction. Black
triangles represent stimulus direction (left, & = 0°% right, 6 = 60°). Solid lines indicate basis
functions (attention axes) corresponding to fluctuations in spatial attention gain (red), feature
attention gain (dark blue), and attended direction (light blue); population tuning curve (black)
and its derivative (gray). Vertical dashed line indicates (average) attended direction. B, Principal
components identified by Exponential Family Principal Component Analysis are independent of
the stimulus because the log-link turns a multiplicative modulation into an additive offset,
thereby defining stimulus-independent attention axes. Colors are asin A.

structure between attended and unattended conditions could
either arise from attention-induced changes in effective connec-
tivity between neurons or, as our model suggests, from the fluc-
tuating attentional state unknown to the experimenter.

How would one go about identifying attentional fluctuations
in experimental data? To do so, we have to consider the response
patterns of simultaneously recorded populations of neurons
rather than just pairwise correlations. In the following, we discuss
some predictions our model makes for the structure of the neural
population response.

A first approach is suggested by our analyses above: we
showed that, in all cases we analyzed, the covariance matrix in-
duced by attentional fluctuations is diagonal plus rank one. Thus,
each type of attentional fluctuation is restricted to a one-
dimensional subspace (sometimes referred to as the attention
axis; Cohen and Maunsell, 2010), which could be inferred from
simultaneously recorded neurons by Factor Analysis or perhaps
directly measured by appropriately cuing the animal. However,
because attentional modulation is multiplicative, this subspace
depends on the stimulus: Figure 10A shows how the three atten-
tion axes defined by attentional fluctuations (corresponding to
spatial gain, feature gain, and attended feature) change for differ-
ent stimulus directions (left: 6 = 0° right: 6 = 60°). As these axes
are not simply shifted versions of each other, one cannot pool
data over multiple stimulus conditions. Moreover, if the attended
direction of motion does not match the stimulus direction, the
attention axes related to feature attention do not peak at either
neurons tuned to the stimulus or the attended direction, but
somewhere in between (Fig. 10A, right, blue lines, where ¢y = 0°
and ¢y = 60°). Thus, it is nontrivial to recover the quantities of
interest to the experimenter: the attended feature (direction) and
the degree of attention allocated (the gain).

A model that could directly extract attentional gains (spatial
and feature gain) and the attended feature would be desirable.
Fortunately, it turns out that such models exist and are relatively
straightforward to apply. As shown in Materials and Methods, we
can convert our model into a GLM by a simple reparameteriza-
tion of the stimulus. Essentially, both the stimulus and the atten-
tional modulation affect the log firing rate additively and
independently. As a consequence, we can infer the linear subspace
(attention axes) corresponding to attentional fluctuations from
population activity using methods, such as Exponential Family Prin-
cipal Component Analysis (Collins et al., 2001; Mohamed et al.,
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2009) or Poisson Linear Dynamical Systems (Macke et al., 2011;
Buesing et al., 2012). Moreover, this subspace is independent of the
stimulus (Fig. 10B). Fluctuations of the spatial attention gain corre-
spond to an additive offset common to all neurons (Fig. 10B, red),
whereas the subspace spanned by fluctuations in the attended direc-
tion and its gain is given by [cos¢;, sing,] (Fig. 10B, light and dark
blue).

Discussion

We have presented a simple model of neuronal responses under
attention, which is built on just two key ingredients: that atten-
tion acts as a multiplicative gain factor on neuronal responses
(Maunsell and Treue, 2006) and that the state of attention fluc-
tuates from trial to trial (Cohen and Maunsell, 2010, 2011).
Although both assumptions are fairly uncontroversial, the im-
portance of their combined effects when studying correlations in
neuronal population responses has not been fully appreciated.
We have shown that such a simple model can account for a range
of empirically observed phenomena, such as super-Poisson vari-
ability (Ecker and Tolias, 2014; Goris et al., 2014) as well as pat-
terns of (correlated) variability under attention (Mitchell et al.,
2009; Cohen and Maunsell, 2010, 2011; Herrero et al., 2013; Ruff
and Cohen, 2014).

Our results argue that it is likely that some fraction of variabil-
ity in the neuronal response can be attributed to fluctuations in
behaviorally relevant, internally generated signals, such as atten-
tion, rather than shared sensory noise (Nienborg and Cumming,
2009; Ecker et al., 2010, 2014; Ecker and Tolias, 2014; Goris et al.,
2014; Haefner et al., 2014). However, exactly what fraction of
correlated variability observed in experimental studies can be
attributed to such attentional fluctuations remains an empirical
question that cannot be answered based on the available pub-
lished data. We have suggested ways to address this question by
identifying attentional fluctuations directly from simultaneous
population recordings using latent variable models (Collins et al.,
2001; Mohamed et al., 2009; Macke et al., 2011; Buesing et al.,
2012; Pillow and Scott, 2012).

We stress that our model incorporates a number of simplifi-
cations and therefore cannot capture all aspects of interneuronal
correlations. First, we have deliberately ignored any correlations
arising from common feedforward inputs or recurrent connec-
tivity, mostly because we expect them to be small for the majority
of pairs (Ecker et al., 2010; Renart et al., 2010). However, we
expect our analysis to remain valid at least qualitatively even if
there are substantial correlations in the data that are due to other
sources. Second, by modeling attention on the phenomenologi-
cal level and treating it as a common gain, we have ignored the
question of how such a gain modulation may be implemented in
a neural network (Bejjanki et al., 2011) and reduced attentional
fluctuations to modulations in one-dimensional subspaces.
Although this simplification will miss any changes in the correla-
tion structure that are due to the underlying network mecha-
nisms, we note that there are very few experimental data available
to constrain more mechanistic, network-level models. We there-
fore favored the more simplistic approach, which can already
account for a remarkable variety of nontrivial experimental find-
ings. Third, we have considered each type of attentional fluctua-
tion (spatial gain, feature gain, attended feature) individually.
However, in practice, all types of fluctuations, as well as many
others, are likely to occur at the same time. The combined effects
of different types of attentional fluctuations will depend on the
correlations between different attentional processes. Although
there is some experimental evidence that spatial attention is un-
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correlated between hemispheres (Cohen and Maunsell, 2010)
and that spatial and feature attention are uncorrelated (Cohen
and Maunsell, 2011), the correlations between different atten-
tional processes are likely to depend on the task in general. Be-
cause the variability in the population response that is due to
attentional fluctuations will lie within the subspace spanned by
the individual components, the dependencies within this sub-
space can inform us about the (in)dependence of different atten-
tional processes.

Further, although it is generally accepted that both spatial and
feature attention act as gain-modulating signals (McAdams and
Maunsell, 1999; Maunsell and Treue, 2006), they are not the only
factors capable of modulating neuronal gain. As such, our results
apply more generally to any gain-modulating signal, rather than
exclusively to attention. It should also be cautioned that, in cer-
tain contexts, the effects of attention may extend beyond gain
modulation (e.g., shifting contrast response functions) (Reyn-
olds et al., 2000). Whether such effects can be attributed to dif-
ferences in stimulus parameters and how such differences
interact with attentional and other task strategies that subjects use
(Reynolds and Heeger, 2009) or whether certain paradigms en-
gage internal signals in addition to attention is an important
empirical question in need of conclusive resolution. Our gain
model of attention does not make any assumption about what
mechanisms are causing gain fluctuations. Instead, it serves as a
parsimonious model that is sufficient to reproduce a number of
the main neurophysiological effects described in the attention
literature, and accounts for a number of findings on neuronal
variability as well that have not been sufficiently appreciated
before.

Our model can also be interpreted in the context of the hy-
pothesis that the brain performs probabilistic inference (Mum-
ford, 1991; Lee and Mumford, 2003). In this view, neuronal
populations represent not the sensory stimulus itself, but instead
the subject’s belief about certain features of the stimulus. In other
words, the neural response depends not only on the stimulus, but
also on the subject’s prior, which could be implemented by the
attentional gain. Haefner et al. (2014) further developed this idea
and proposed a model in which the brain implements Bayesian
inference by neural sampling. Their model makes predictions for
the correlation structure during discrimination tasks that are very
similar to those of our model under fluctuations in the attended
feature (Fig. 6). However, the sources of correlation differ be-
tween the two models. In our model, attention is treated as a
prior, and the correlations between neurons arise from trial-to-
trial variability of the prior. In their model, in contrast, differen-
tial correlations arise because neural activity represents samples
from the posterior. The magnitude of differential correlations is
therefore directly related to the width of the subject’s posterior,
and their timescale is determined by the dynamics of the sam-
pling process. The difference between the two models is seen
most clearly if we assume that the prior was constant across trials
(i.e., no attentional fluctuations). In this case, their model pre-
dictions would not change at all, whereas our model would not
predict any correlations. Thus, our model puts the emphasis on
the trial-to-trial fluctuations of the prior, which, despite being
suboptimal, seem to be present. For instance, it has long been
known that there are serial dependencies in subjects’ responses
(Fernberger, 1920; Senders and Sowards, 1952), which indicate
that subjects bias their estimates depending on the past stimuli
they have seen, despite the fact that there is no real dependence in
the stimuli that are shown. Our model also resonates well with
recent behavioral data showing that noise in the prior is an im-
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portant component for models of human probabilistic inference
(Acerbi et al., 2014). Therefore, in our model, the timescale of
correlations corresponds to the timescale at which subjects adapt
their prior expectations about the stimuli they see. Ultimately, we
expect that both processes (the mechanisms of the inference
process itself and the variability in the subject’s priors from trial
to trial) create correlated variability. Separating these aspects
through their underlying timescales and/or manipulations in the
task contingencies is an interesting avenue for further theoretical
and experimental work.

In addition to offering a parsimonious account of neuronal
variability and covariability, our model has implications for how
we should interpret the effect of attention as it relates to improve-
ments in perceptual performance. Recent studies argue that spa-
tial attention improves behavioral performance primarily by
reducing correlations (Cohen and Maunsell, 2009; Mitchell et al.,
2009). However, if the reduction of correlations observed under
attention is indeed due to a suppression of attentional gain fluc-
tuations, as our model would suggest, this reduction of correla-
tions is irrelevant for the coding accuracy of the population and
cannot be the mechanism improving behavioral performance. In
terms of Fisher information, the only difference that matters in
this case is the increase in response gain, which leads to a propor-
tional increase in Fisher information, at least so long as perfor-
mance is not limited by input noise.

Although gain fluctuations are irrelevant for coding, this is not
true for all types of attentional fluctuations: when the fluctuations
in attention occur around a specific feature value rather than in
the gain, they introduce differential correlations, a pattern of
correlations that leads to information saturation (Moreno-Bote
et al., 2014). Thus, our model leads to an interesting, but at the
same time puzzling, observation: because the attentional state is
represented by a finite number of neurons, there is necessarily
some trial-to-trial variability in the attended feature itself. Such
fluctuations indeed impair the readout because it cannot have
exact (i.e., noiseless) access to the attended feature when imple-
mented in neural hardware. Thus, the precision of the attentional
mechanism itself places a limit on how accurately a stimulus can
be represented by a sensory population, and this limit can at least
in principle be substantially lower than the amount of sensory
information entering the brain through the eye.

If attentional fluctuations can limit behavioral performance,
one may ask why there should be an attentional mechanism in the
first place. We will give two speculative answers in the following.

First, as discussed earlier, we can think of attention as the
subject’s prior. Using prior information to bias an estimate to-
ward more likely solutions improves the estimate on average
(over all possible stimuli) if the distribution of stimuli is nonuni-
form. In the real world, in situations where the sensory input is
noisy or ambiguous and decisions have to be made quickly, such
a bias is usually beneficial and outweighs the small extra noise
added due to variability in the prior.

Second, the primary goal of attention may not be to improve
the sensory representation, as suggested by recent studies charac-
terizing neural responses (Cohen and Maunsell, 2009; Mitchell et
al.,, 2009). In typical laboratory experiments involving two-
alternative forced-choice discrimination at perceptual threshold,
there is no prior information that could be used to improve per-
formance. The feedforward sensory signal contains all the infor-
mation available to the organism, so it is unclear where the
additional information should come from. However, in the real
world, the sensory signal usually contains a lot of nuisance vari-
ables, which are irrelevant to the task and thus act as a crucial



1788 - J. Neurosci., February 3, 2016 - 36(5):1775-1789

noise source. Therefore, the goal of attention may be instead, as
suggested by the traditional view (Broadbent, 1958), to select the
relevant pieces of information and suppress the irrelevant. This
selection is precisely what the gain profile implements: it en-
hances attended stimuli and suppresses unattended ones. The
behavioral improvement due to attention may therefore not be a
result of an improved representation at the level of sensory pop-
ulations but instead result from the fact that the decision is not
corrupted by irrelevant information (noise or nuisance) from the
distractors.

Notes

Supplemental material for this article is available at http://bethgelab.org/
code/ecker2015. It contains MATLAB code to reproduce all figures and
numerical simulations in this paper. This material has not been peer
reviewed.

References

Acerbi L, Vijayakumar S, Wolpert DM (2014) On the origins of suboptimal-
ity in human probabilistic inference. PLoS Comput Biol 10:¢1003661.
CrossRef Medline

Bahcall DO, Kowler E (1999) Attentional interference at small spatial sepa-
rations. Vision Res 39:71-86. CrossRef Medline

Bair W, Zohary E, Newsome WT (2001) Correlated firing in macaque visual
area MT: time scales and relationship to behavior. ] Neurosci 21:1676—
1697. Medline

Beck J, Bejjanki VR, Pouget A (2011) Insights from a simple expression for
linear fisher information in a recurrently connected population of spiking
neurons. Neural Comput 23:1484-1502. CrossRef Medline

Bejjanki VR, Beck JM, Lu ZL, Pouget A (2011) Perceptual learning as im-
proved probabilistic inference in early sensory areas. Nat Neurosci 14:
642—648. CrossRef Medline

Berens P, Ecker AS, Gerwinn S, Tolias AS, Bethge M (2011) Reassessing
optimal neural population codes with neurometric functions. Proc Natl
Acad Sci U S A 108:4423—4428. CrossRef Medline

Britten KH, Shadlen MN, Newsome WT, Movshon JA (1993) Responses of
neurons in macaque MT to stochastic motion signals. Vis Neurosci 10:
1157-1169. CrossRef Medline

Broadbent DE (1958) Perception and communication. Elmsford, NY:
Pergamon.

Buesing L, Macke JH, Sahani M (2012) Learning stable, regularised latent
models of neural population dynamics. Network 23:24—47. CrossRef
Medline

Cohen MR, Maunsell JH (2009) Attention improves performance primarily
by reducing interneuronal correlations. Nat Neurosci 12:1594-1600.
CrossRef Medline

Cohen MR, Maunsell JH (2010) A neuronal population measure of atten-
tion predicts behavioral performance on individual trials. ] Neurosci 30:
15241-15253. CrossRef Medline

Cohen MR, Maunsell JH (2011) Using neuronal populations to study the
mechanisms underlying spatial and feature attention. Neuron 70:
1192-1204. CrossRef Medline

Collins M, Dasgupta S, Schapire RE (2001) A generalization of principal
components analysis to the exponential family. In: Advances in neural
information processing systems 14, pp 617—624. Cambridge: MIT.

Dean AF (1981) The variability of discharge of simple cells in the cat striate
cortex. Exp Brain Res 44:437-440. Medline

delaRochaJ, Doiron B, Shea-Brown E, Josia K, Reyes A (2007) Correlation
between neural spike trains increases with firing rate. Nature
448:802—-806. CrossRef Medline

Ecker AS, Tolias AS (2014) Is there signal in the noise? Nat Neurosci 17:
750-751. CrossRef Medline

Ecker AS, Berens P, Keliris GA, Bethge M, Logothetis NK, Tolias AS (2010)
Decorrelated neuronal firing in cortical microcircuits. Science 327:
584-587. CrossRef Medline

Ecker AS, Berens P, Tolias AS, Bethge M (2011) The effect of noise cor-
relations in populations of diversely tuned neurons. ] Neurosci 31:
14272-14283. CrossRef Medline

Ecker AS, Berens P, Tolias AS, Bethge M (2012) The correlation structure
induced by fluctuations in attention. Cosyne Abstr I11-46.

Ecker AS, Berens P, Cotton RJ, Subramaniyan M, Denfield GH, Cadwell CR,

Ecker et al. @ Structure of Neuronal Population Activity

Smirnakis SM, Bethge M, Tolias AS (2014) State dependence of noise
correlations in macaque primary visual cortex. Neuron 82:235-248.
CrossRef Medline

Fernberger SW (1920) Interdependence of judgments within the series for
the method of constant stimuli. ] Exp Psychol 3:126-150. CrossRef

Goris RL, Movshon JA, Simoncelli EP (2014) Partitioning neuronal vari-
ability. Nat Neurosci 17:858—865. CrossRef Medline

Haefner RM, Berkes P, Fiser ] (2014) Perceptual decision-making as prob-
abilistic inference by neural sampling. arXiv:1409.0257 [q-bio].
http://arxiv.org/abs/1409.0257.

Herrero JL, Gieselmann MA, Sanayei M, Thiele A (2013) Attention-induced
variance and noise correlation reduction in macaque V1 is mediated by
NMDA receptors. Neuron 78:729-739. CrossRef Medline

Hopf JM, Boehler CN, Luck SJ, Tsotsos JK, Heinze HJ, Schoenfeld MA
(2006) Direct neurophysiological evidence for spatial suppression sur-
rounding the focus of attention in vision. Proc Natl Acad Sci U S A 103:
1053-1058. CrossRef Medline

Intriligator J, Cavanagh P (2001) The spatial resolution of visual attention.
Cogn Psychol 43:171-216. CrossRef Medline

Kay SM (1993) Fundamentals of statistical signal processing, Vol. I: Estima-
tion theory, Ed 1. Englewood Cliffs, NJ: Prentice Hall.

Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual
cortex. ] Opt Soc Am A Opt Image Sci Vis 20:1434-1448. CrossRef
Medline

Macke JH, Buesing L, Cunningham JP, Yu BM, Shenoy KV, Sahani M
(2011) Empirical models of spiking in neural populations. In: Ad-
vances in neural information processing systems 24, p 13501358.
Available at: http://papers.nips.cc/book/advances-in-neural-information-
processing-systems-24-2011.

Maunsell JH, Treue S (2006) Feature-based attention in visual cortex.
Trends Neurosci 29:317-322. CrossRef Medline

McAdams CJ, Maunsell JH (1999) Effects of attention on orientation-
tuning functions of single neurons in macaque cortical area V4. ] Neuro-
sci 19:431-441. Medline

Mitchell JF, Sundberg KA, Reynolds JH (2009) Spatial attention decorre-
lates intrinsic activity fluctuations in macaque area V4. Neuron 63:
879-888. CrossRef Medline

Mohamed S, Ghahramani Z, Heller KA (2009) Bayesian exponential
family PCA. In: Advances in neural information processing sys-
tems 22, pp 1089-1096. Available at: http://papers.nips.cc/book/
advances-in-neural-information-processing-systems-22-2009.

Moreno-Bote R, Beck J, Kanitscheider I, Pitkow X, Latham P, Pouget A
(2014) Information-limiting correlations. Nat Neurosci 17:1410-1417.
CrossRef Medline

Miiller NG, Kleinschmidt A (2004) The attentional ‘spotlight’s’ penumbra:
center-surround modulation in striate cortex. Neuroreport 15:977-980.
CrossRef Medline

Mumford D (1991) On the computational architecture of the neocortex.
Biol Cybern 65:135-145. CrossRef Medline

Newsome WT, Paré EB (1988) A selective impairment of motion percep-
tion following lesions of the middle temporal visual area (MT). ] Neurosci
8:2201-2211. Medline

Nienborg H, Cumming BG (2009) Decision-related activity in sensory neu-
rons reflects more than a neuron’s causal effect. Nature 459:89-92.
CrossRef Medline

Pillow JW, Scott JG (2012) Fully Bayesian inference for neural models with
negative-binomial spiking. In: Advances in neural information process-
ing systems 25, pp 1907-1915. Available at: http://papers.nips.cc/book/
advances-in-neural-information-processing-systems-25-2012.

Rabinowitz NC, Goris RL, Cohen M, Simoncelli E (2015) Attention stabi-
lizes the shared gain of V4 populations. eLife 4:e08998. CrossRef Medline

Renart A, de la Rocha J, Bartho P, Hollender L, Parga N, Reyes A, Harris KD
(2010) The asynchronous state in cortical circuits. Science 327:587-590.
CrossRef Medline

Reynolds JH, Heeger DJ (2009) The normalization model of attention. Neu-
ron 61:168—185. CrossRef Medline

Reynolds JH, Chelazzi L (2004) Attentional modulation of visual process-
ing. Annu Rev Neurosci 27:611-647. CrossRef Medline

Reynolds JH, Pasternak T, Desimone R (2000) Attention increases sensitiv-
ity of V4 neurons. Neuron 26:703—714. CrossRef Medline

Ruff DA, Cohen MR (2014) Attention can either increase or decrease spike


http://dx.doi.org/10.1371/journal.pcbi.1003661
http://www.ncbi.nlm.nih.gov/pubmed/24945142
http://dx.doi.org/10.1016/S0042-6989(98)00090-X
http://www.ncbi.nlm.nih.gov/pubmed/10211397
http://www.ncbi.nlm.nih.gov/pubmed/11222658
http://dx.doi.org/10.1162/NECO_a_00125
http://www.ncbi.nlm.nih.gov/pubmed/21395435
http://dx.doi.org/10.1038/nn.2796
http://www.ncbi.nlm.nih.gov/pubmed/21460833
http://dx.doi.org/10.1073/pnas.1015904108
http://www.ncbi.nlm.nih.gov/pubmed/21368193
http://dx.doi.org/10.1017/S0952523800010269
http://www.ncbi.nlm.nih.gov/pubmed/8257671
http://dx.doi.org/10.3109/0954898X.2012.677095
http://www.ncbi.nlm.nih.gov/pubmed/22663075
http://dx.doi.org/10.1038/nn.2439
http://www.ncbi.nlm.nih.gov/pubmed/19915566
http://dx.doi.org/10.1523/JNEUROSCI.2171-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/21068329
http://dx.doi.org/10.1016/j.neuron.2011.04.029
http://www.ncbi.nlm.nih.gov/pubmed/21689604
http://www.ncbi.nlm.nih.gov/pubmed/7308358
http://dx.doi.org/10.1038/nature06028
http://www.ncbi.nlm.nih.gov/pubmed/17700699
http://dx.doi.org/10.1038/nn.3722
http://www.ncbi.nlm.nih.gov/pubmed/24866037
http://dx.doi.org/10.1126/science.1179867
http://www.ncbi.nlm.nih.gov/pubmed/20110506
http://dx.doi.org/10.1523/JNEUROSCI.2539-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21976512
http://dx.doi.org/10.1016/j.neuron.2014.02.006
http://www.ncbi.nlm.nih.gov/pubmed/24698278
http://dx.doi.org/10.1037/h0065212
http://dx.doi.org/10.1038/nn.3711
http://www.ncbi.nlm.nih.gov/pubmed/24777419
http://dx.doi.org/10.1016/j.neuron.2013.03.029
http://www.ncbi.nlm.nih.gov/pubmed/23719166
http://dx.doi.org/10.1073/pnas.0507746103
http://www.ncbi.nlm.nih.gov/pubmed/16410356
http://dx.doi.org/10.1006/cogp.2001.0755
http://www.ncbi.nlm.nih.gov/pubmed/11689021
http://dx.doi.org/10.1364/JOSAA.20.001434
http://www.ncbi.nlm.nih.gov/pubmed/12868647
http://dx.doi.org/10.1016/j.tins.2006.04.001
http://www.ncbi.nlm.nih.gov/pubmed/16697058
http://www.ncbi.nlm.nih.gov/pubmed/9870971
http://dx.doi.org/10.1016/j.neuron.2009.09.013
http://www.ncbi.nlm.nih.gov/pubmed/19778515
http://dx.doi.org/10.1038/nn.3807
http://www.ncbi.nlm.nih.gov/pubmed/25195105
http://dx.doi.org/10.1097/00001756-200404290-00009
http://www.ncbi.nlm.nih.gov/pubmed/15076718
http://dx.doi.org/10.1007/BF00202389
http://www.ncbi.nlm.nih.gov/pubmed/1912004
http://www.ncbi.nlm.nih.gov/pubmed/3385495
http://dx.doi.org/10.1038/nature07821
http://www.ncbi.nlm.nih.gov/pubmed/19270683
http://dx.doi.org/10.7554/eLife.08998
http://www.ncbi.nlm.nih.gov/pubmed/26523390
http://dx.doi.org/10.1126/science.1179850
http://www.ncbi.nlm.nih.gov/pubmed/20110507
http://dx.doi.org/10.1016/j.neuron.2009.01.002
http://www.ncbi.nlm.nih.gov/pubmed/19186161
http://dx.doi.org/10.1146/annurev.neuro.26.041002.131039
http://www.ncbi.nlm.nih.gov/pubmed/15217345
http://dx.doi.org/10.1016/S0896-6273(00)81206-4
http://www.ncbi.nlm.nih.gov/pubmed/10896165

Ecker et al. @ Structure of Neuronal Population Activity

count correlations in visual cortex. Nat Neurosci 17:1591-1597. CrossRef
Medline

Senders VL, Sowards A (1952) Analysis of response sequences in the setting
of a psychophysical experiment. J Psychol 65:358 =374. CrossRef Medline

Shadlen MN, Newsome WT (1998) The variable discharge of cortical neu-
rons: implications for connectivity, computation, and information cod-
ing. ] Neurosci 18:3870-3896. Medline

Shamir M, Sompolinsky H (2006) Implications of neuronal diversity on
population coding. Neural Comput 18:1951-1986. CrossRef Medline

Smith MA, Kohn A (2008) Spatial and temporal scales of neuronal correlation in
primary visual cortex. ] Neurosci 28:12591-12603. CrossRef Medline

Smith MA, Sommer MA (2013) Spatial and temporal scales of neuronal
correlation in visual area V4. ] Neurosci 33:5422-5432. CrossRef Medline

Sundberg KA, Mitchell JF, Reynolds JH (2009) Spatial attention modulates

J. Neurosci., February 3,2016 - 36(5):1775-1789 « 1789

center-surround interactions in macaque visual area V4. Neuron 61:
952-963. CrossRef Medline

Tolhurst DJ, Movshon JA, Dean AF (1983) The statistical reliability of sig-
nals in single neurons in cat and monkey visual cortex. Vision Res 23:
775-785. CrossRef Medline

Treue S, Martinez Trujillo JC (1999) Feature-based attention influences
motion processing gain in macaque visual cortex. Nature 399:575-579.
CrossRef Medline

Treue S, Maunsell JH (1996) Attentional modulation of visual motion pro-
cessing in cortical areas MT and MST. Nature 382:539—541. CrossRef
Medline

Zohary E, Shadlen MN, Newsome WT (1994) Correlated neuronal dis-
charge rate and its implications for psychophysical performance. Nature
370:140-143. CrossRef Medline


http://dx.doi.org/10.1038/nn.3835
http://www.ncbi.nlm.nih.gov/pubmed/25306550
http://dx.doi.org/10.2307/1418758
http://www.ncbi.nlm.nih.gov/pubmed/12976561
http://www.ncbi.nlm.nih.gov/pubmed/9570816
http://dx.doi.org/10.1162/neco.2006.18.8.1951
http://www.ncbi.nlm.nih.gov/pubmed/16771659
http://dx.doi.org/10.1523/JNEUROSCI.2929-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/19036953
http://dx.doi.org/10.1523/JNEUROSCI.4782-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23516307
http://dx.doi.org/10.1016/j.neuron.2009.02.023
http://www.ncbi.nlm.nih.gov/pubmed/19324003
http://dx.doi.org/10.1016/0042-6989(83)90200-6
http://www.ncbi.nlm.nih.gov/pubmed/6623937
http://dx.doi.org/10.1038/21176
http://www.ncbi.nlm.nih.gov/pubmed/10376597
http://dx.doi.org/10.1038/382539a0
http://www.ncbi.nlm.nih.gov/pubmed/8700227
http://dx.doi.org/10.1038/370140a0
http://www.ncbi.nlm.nih.gov/pubmed/8022482

	On the Structure of Neuronal Population Activity under Fluctuations in Attentional State
	Introduction
	Materials and Methods
	Notation
	Model setup
	Effect of fluctuating gains on spike count statistics
	Derivation of Fisher information for modulated Poisson distribution
	Coding accuracy under fluctuations of attentional gain
	Coding accuracy under fluctuations of attended feature

	Simulation of experimental results
	Generalized linear population model
	Results
	Fluctuations in spatial attention
	Fluctuations of feature attention
	Effects of attention-induced correlations on population coding
	A new view on correlated variability under attention
	Identifying attentional fluctuations in experimental data
	Discussion
	Notes

