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Human Superior Temporal Gyrus Organization of
Spectrotemporal Modulation Tuning Derived from Speech
Stimuli

Patrick W. Hullett,1,2,3 X Liberty S. Hamilton,2,4 Nima Mesgarani,2,4 X Christoph E. Schreiner,1,2,3

and Edward F. Chang1,2,4

1University of California Berkeley and San Francisco Joint Graduate Group in Bioengineering, 2Center for Integrative Neuroscience, 3Department of
Otolaryngology—Head and Neck Surgery, and 4Department of Neurological Surgery, School of Medicine, University of California, San Francisco, San
Francisco, California 94158

The human superior temporal gyrus (STG) is critical for speech perception, yet the organization of spectrotemporal processing of speech
within the STG is not well understood. Here, to characterize the spatial organization of spectrotemporal processing of speech across
human STG, we use high-density cortical surface field potential recordings while participants listened to natural continuous speech.
While synthetic broad-band stimuli did not yield sustained activation of the STG, spectrotemporal receptive fields could be reconstructed
from vigorous responses to speech stimuli. We find that the human STG displays a robust anterior–posterior spatial distribution of
spectrotemporal tuning in which the posterior STG is tuned for temporally fast varying speech sounds that have relatively constant energy
across the frequency axis (low spectral modulation) while the anterior STG is tuned for temporally slow varying speech sounds that have
a high degree of spectral variation across the frequency axis (high spectral modulation). This work illustrates organization of spectro-
temporal processing in the human STG, and illuminates processing of ethologically relevant speech signals in a region of the brain
specialized for speech perception.
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Introduction
A remarkable array of imaging, electrophysiological, and func-
tional lesion studies have implicated the human superior tempo-

ral gyrus (STG) in speech processing and perception. However,
organization of basic spectrotemporal processing during speech
perception is not well understood (Boatman et al., 1997; Binder et
al., 2000; Boatman, 2004; Hickok and Poeppel, 2007; Raus-
checker and Scott, 2009). While tonotopy is a prominent orga-
nizing principle in the ascending auditory pathway and has been
investigated in STG (Talavage et al., 2004; Striem-Amit et al.,
2011; Moerel et al., 2012; Nourski et al., 2014), additional char-
acterization of spectrotemporal processing in the context of
speech processing is less well defined. Here, using speech stimuli
to assess broad organizational principles during natural speech
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Significance Statement

Considerable evidence has implicated the human superior temporal gyrus (STG) in speech processing. However, the gross orga-
nization of spectrotemporal processing of speech within the STG is not well characterized. Here we use natural speech stimuli and
advanced receptive field characterization methods to show that spectrotemporal features within speech are well organized along
the posterior-to-anterior axis of the human STG. These findings demonstrate robust functional organization based on spectro-
temporal modulation content, and illustrate that much of the encoded information in the STG represents the physical acoustic
properties of speech stimuli.
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perception, we examine fundamental spectrotemporal response
parameters across the STG.

A major goal of sensory neuroscience is to understand how
sensory systems encode natural stimuli and, in particular, how
spectrotemporal processing is organized in STG during speech
processing. Traditionally sensory encoding has been studied with
simple parameterized stimuli. However, recently, there has been
increasing use of natural stimuli to study sensory encoding
(Theunissen et al., 2000; David et al., 2004; Sharpee et al., 2006;
Talebi and Baker, 2012). Part of the motivation for this is increas-
ing evidence that sensory processing is adapted to statistics of
behaviorally relevant stimuli. Data suggest receptive fields and
response properties of neurons are matched to the statistics of
natural inputs to maximize efficiency of information transmis-
sion (Dong and Atick, 1995; Rieke et al., 1995; Dan et al., 1996;
Olshausen and Field, 1996; Hsu et al., 2004). In higher-order
areas, systems become more selective for natural stimuli and less
responsive to synthetic or noise stimuli (Theunissen et al., 2000;
Wilkinson et al., 2000; Felsen et al., 2005; Talebi and Baker, 2012).
In areas that respond broadly to both synthetic and natural stim-
uli, natural inputs can push neurons into different operating
ranges and activate nonlinearities that evoke response properties
not present with synthetic stimuli alone (David et al., 2004; Talebi
and Baker, 2012). Finally, neurons adapt on a moment-by-
moment basis to match their response properties to statistics of
the input stimulus, thus making descriptions of sensory encoding
inherently specific to the statistics and class of stimuli used for
characterization (Smirnakis et al., 1997; Brenner et al., 2000;
Fairhall et al., 2001; Sharpee et al., 2006). Thus, in situations
where the question of interest is to understand encoding of nat-
ural stimuli, it is advantageous to use natural inputs, such as
speech, to characterize the system.

Given the relevance of STG in speech processing, we are
interested in characterizing spectrotemporal processing in the
context of natural speech. However, characterization of spec-
trotemporal processing based on speech stimuli is difficult due
to the statistically biased and highly correlated structure of
natural signals. Recently, a number of techniques have been
developed to address this bias (Theunissen et al., 2001; Panin-
ski, 2004; Sharpee et al., 2004; David et al., 2007). Here we
use maximally informative dimension (MID) analysis, an
information-based method designed to lift the requirement of
statistically tractable stimuli and allow the use of more com-
plex, but ethologically relevant, natural stimuli for receptive
field characterization (Sharpee et al., 2004; Atencio et al.,
2008).

By using electrocorticography (ECoG) to record speech-
driven activity, we compute spectrotemporal receptive fields
(STRFs) using MID analysis and assess the organization of spec-
trotemporal processing in human STG during natural speech
processing. While synthetic broad-band stimuli did not yield
strong activation of the STG, STRFs could be reconstructed from
vigorous responses to speech stimuli. We find that the human
STG displays a robust anterior–posterior spatial distribution of
spectrotemporal tuning characterized by tuning for high tempo-
ral and low spectral modulation speech features posteriorly and
high spectral and low temporal modulation speech features an-
teriorly. This work further defines organization of spectrotempo-
ral processing of speech in human STG, and illuminates
processing of ethologically relevant speech signals in a region of
the brain specialized for speech perception.

Materials and Methods
Participants and neural recordings. Subdural ECoG arrays (interelectrode
distance, 4 mm) were placed unilaterally in eight patient volunteers
[three right hemisphere (one female/two male), five left hemisphere
(three female/two male)] undergoing a neurosurgical procedure for the
treatment of medication refractory epilepsy. Seven of eight participants
were native English speakers; all were fluent in English. All participants
had normal hearing. None had communication deficits. All experimental
protocols were approved by the University of California, San Francisco
Institutional Review Board and Committee on Human Research. Loca-
tion of array placement was determined by clinical criteria alone. Partic-
ipants were asked to passively listen to 15–25 min of natural speech while
ECoG signals were recorded simultaneously. Some participants also pas-
sively listened to dynamic moving ripple (DMR) or temporally orthog-
onal ripple combination (TORC) stimuli (see below). Signals were
amplified and sampled at 3052 Hz. After rejection of electrodes with
excessive noise or artifacts, signals were referenced to a common average
and the high-gamma band (70 –150 Hz) was extracted as the analytic
amplitude of the Hilbert transform (Crone et al., 2001; Chang et al.,
2011). Signals were subsequently downsampled to 100 Hz. The resulting
signal for each electrode was z-scored based on the mean and SD of
activity during the entire block.

Stimuli
Speech stimuli. Speech stimuli were delivered binaurally through free-
field speakers at �70 dB average sound pressure level. The frequency
power spectrum of stimuli spanned 0 – 8000 Hz. The stimulus set con-
sisted of prerecorded (2– 4 s) sentences from the phonetically transcribed
Texas Instruments/Massachusetts Institute of Technology (TIMIT)
speech corpus with 1 s silent intervals between each sentence presenta-
tion (Garofolo et al., 1993). Each participant was presented 484 – 499
sentences. The speech corpus included 286 male and 116 female speakers,
with 1–3 sentences spoken per speaker, and unique lexical content for
each sentence. Spectrogram representations of speech stimuli were gen-
erated using a cochlear model of auditory processing (Yang et al., 1992).

Synthetic stimuli. DMR stimuli were presented to four subjects (EC63,
GP30, GP31, and GP33) at 70 dB average sound pressure level. Of these,
only GP31 was included in the functional organization analysis. The
other three participants had less predictive or noncontiguously spaced
MID-based STRFs along STG and thus were less useful for characterizing
organization of spectrotemporal processing (but still of sufficient data
quality to assess responsiveness). The DMR was composed of a bank of
sinusoidal carriers whose amplitude is modulated over time with a spec-
trotemporal ripple envelope (Depireux et al., 2001; Escabi and Schreiner,
2002). The amplitude distribution of the envelope was Gaussian and had
a maximum modulation depth of 40 dB. The DMR is broadband (500 –
20,000 Hz) and consisted of �50 sinusoidal carriers per octave with
randomized phase. The spectral and temporal modulation frequency
parameters defined the characteristics of the ripple modulation envelope
at any given point in time. The spectral modulation parameter defines
the number of spectral peaks per octave. The temporal modulation pa-
rameter defines the speed and direction of the peak’s change. Spectral
and temporal modulation parameters were varied randomly and inde-
pendently during the stimulus. The spectral modulation parameter var-
ied between 0 and 4 cycles/octave (maximum rate of change, 1 Hz) and
the temporal modulation rate parameter varied between �35 and �35
Hz (rate of change, �3 Hz). TORC stimuli were presented to two subjects
(EC2 and EC28) at 70 dB average sound pressure level. TORC stimuli are
generated by modulating broadband white noise (frequency content,
250 – 8000 Hz) with a combination of 12 temporally orthogonal ripples
(Klein et al., 2000). The spectral modulation of ripples ranged between 0
and 1.4 cycles/octave and the temporal modulation of ripples ranged
between 4 and 48 Hz.

Analysis
STRFs. STRFs were computed with two different methods designed spe-
cifically for use with naturalistic stimuli—MID analysis and normalized
reverse correlation (Theunissen et al., 2001; Sharpee et al., 2004). To
compute STRFs using MID analysis, a gradient ascent procedure was
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used to search for the receptive field that maximizes the Kullback–Leibler
divergence between the raw distribution of STRF-stimulus projection
values and the distribution of STRF-stimulus projection values weighted
by the magnitude of the response. STRF estimates based on normalized
reverse correlation (normalization based on the stimulus autocorrelation
matrix) were computed using ridge regression with open source code
available at http://strfpak.berkeley.edu/. Regularization was controlled
by fitting a tolerance hyperparameter via cross-validation (David et al.,
2007). STRFs were computed with both methods on the same estimation
set (90% of the total data) and cross-validated on the same test set, which
was withheld from the estimation process (10% of the data).

Modulation tuning. To characterize modulation tuning-based organi-
zation, the modulation transfer function (MTF) for each site was com-
puted by taking the magnitude of the two-dimensional Fourier
transform (ℑ2� � �) of each STRF according to the following equation:

MTF��t, �s� � �ℑ2�STRF�t, f ���

Where (t, f ) are time and frequency and (�t, �s) are temporal and spec-
tral modulation, respectively. The best spectrotemporal modulation
(bSTM) is defined as the peak of the MTF (see Fig. 3A). The sign of the
best temporal modulation determines the drift direction of spectral con-
tent within each ripple (increasing or decreasing; see Fig. 3B). Similar to
previous work, we are interested in the magnitude of temporal modula-
tion and therefore take the absolute value of best temporal modulations
(Langers et al., 2003; Santoro et al., 2014). The ensemble MTF was com-
puted by normalizing each MTF to have a sum of 1, then computing the
average MTF across all sites and all participants.

Spatial analysis. Permutation tests were used to assess whether STRF-
derived parameters, such as bSTM, MTF cluster type, or best frequency
(BF), were locally organized. Each test determined whether the average
level of similarity between a site and its neighbors would be expected if
the true underlying spatial organization were random. For each site, we
compute difference between a site and its neighbors (anterior, posterior,
dorsal, and ventral), take the absolute value, and then compute the aver-
age. This value is computed for each site and then averaged across the
whole map to compute the mean neighborhood similarity index. The
map is then randomly permuted 10,000 times and the map neighbor-
hood similarity index recomputed on each permutation to generate a
distribution of randomized map neighborhood similarity indices. The
true neighborhood similarity index is compared with the randomized
map neighborhood similarity index distribution to assess the level of
significance. To determine significance values for each spectrotemporal
modulation map (two parameters at each site: one for best spectral mod-
ulation, one for best temporal modulation), the above procedure was
repeated with a two-parameter neighborhood similarity metric. The
two-parameter neighborhood similarity metric was generated by nor-
malizing best temporal modulation values and best spectral modulation
values by their respective maxima so both sets of data had a range of 0 –1.
For each parameter at each site, we compute difference between a site and
its neighbors (anterior, posterior, dorsal, and ventral), take the absolute
value, and then compute the average. This value for each parameter was
then added together to generate the two-parameter similarity metric.
This metric was averaged across sites to generate the two-parameter neigh-
borhood similarity index for the entire map. While there are many metrics
that could potentially be used to quantify organization, we choose to use
neighborhood similarity because of its generality in that previously described
forms of organization (linear gradients, nonlinear gradients, clusters, or
modules) have neighborhood similarity as a common feature.

Group analysis was achieved by combining data across subjects in a
common coordinate system defined by anatomical landmarks. The
x-axis was defined as a line that runs parallel to the long axis of STG along
its dorsal–ventral midpoint. The y-axis was defined as a line orthogonal
to the x-axis with the origin aligned with the anterior temporal pole (see
Fig. 6D, red). After coordinates of ECoG sites were defined, data were
binned at 4 mm resolution consistent with the interelectrode distance of
the ECoG arrays (4 mm interelectrode distance). Tonotopic and spectro-
temporal modulation maps represent topographic distributions of BF
and preferred spectrotemporal modulation across the two-dimensional

surface of the STG. To compute the gradient of such maps, a two-
dimensional plane was fit to the data using linear (planar) regression. The
direction of steepest angle of the plane is taken to be the gradient of the
topographic map (Baumann et al., 2011). The gradient direction is spec-
ified as an angle counterclockwise from the x-axis of the coordinate
system that runs in the anterior–posterior direction along the long axis of
STG. For spectrotemporal modulation maps, which represent a map of
two parameters, spectral and temporal modulation values were normal-
ized by their group maxima so each set of data has a range of 0 –1.
Gradients were calculated for the spectral modulation map and temporal
modulation map independently and then averaged to determine the gra-
dient for the joint spectrotemporal modulation map.

Results
STRF maps
Given the role of STG in speech processing, we are interested in
characterizing functional organization in STG based on re-
sponses to natural speech stimuli. After ECoG array placement,
participants were asked to passively listen to 15–25 min of natural
speech, which consisted of prerecorded (2– 4 s) sentences from
the phonetically transcribed TIMIT speech corpus (Garofolo et
al., 1993). After data collection, an STRF was computed off-line
from the local field potential signal at each cortical site to generate
an STG STRF map in each subject (Fig. 1A). STRFs were com-
puted using the high-gamma (70 –150 Hz) band of ECoG record-
ings (Crone et al., 2001), which correlates with spiking activity
(Ray and Maunsell, 2011) and spike-based tuning properties in
the midlaminar auditory cortex (Steinschneider et al., 2008). To
compute STRFs, two different methods designed for use with
natural signals were used: MID analysis (Sharpee et al., 2004) and
normalized reverse correlation (Theunissen et al., 2001). Using
these two methods, we computed MID and normalized reverse
correlation-based STRFs using responses to speech stimuli and
evaluated their performance through cross-validation. While
MID-based STRFs were generally similar to normalized reverse
correlation-based STRFs, MID-based STRFs produced higher
prediction values and were therefore used in the remainder of the
analysis (Fig. 1C; p 	 0.001, Wilcoxon signed-rank test, mean
percentage increase in prediction: 19.0 
 1.9% SEM).

For purposes of studying organization of spectrotemporal
processing, it is necessary to restrict analysis to STRFs that char-
acterize the underlying spectrotemporal processing. Similar to
previous work, only sites that predict �5% of the variance in the
response were included in the analysis (Fig. 1D,E; Kim and
Doupe, 2011). This set of STRFs showed relatively high predic-
tion performance (mean r � 0.48 
 0.12 SD; Fig. 1D), compara-
ble to STRF prediction values from lower-order areas (Calabrese
et al., 2011; Kim and Doupe, 2011). These highly predictive
STRFs are based on the acoustic properties of speech alone and
the model does not take into account other aspects of speech,
such as semantic meaning. This indicates that the physical acous-
tic properties of speech are a major component of the encoded
information in STG and the computed speech-based STRFs pro-
vide a good characterization of the underlying spectrotemporal
processing of speech. Similar to STRFs found in lower-order au-
ditory areas, STRFs within STG showed clear contiguous excit-
atory and inhibitory regions and structure characteristic of
“temporal” and “spectral” STRFs (Fig. 2; Nagel and Doupe, 2008;
Atencio et al., 2008). Temporal STRF aspects exhibit short excit-
atory regions followed by short inhibitory regions (Fig. 2, ●).
These types of STRFs are characteristic of sites tuned for rapid
temporal modulations in sound energy that occur at the onset or
offset of sound and within many consonants. Spectral STRF as-
pects are characterized by temporally long excitatory regions
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flanked by inhibition on one or both sides
(Fig. 2, �). These types of STRFs are char-
acteristic of sites tuned to sound energy
that fluctuates across frequency, but is rel-
atively constant over time, such as the for-
mant structure prevalent in vowel sounds.
These data show that STG STRFs have char-
acteristics similar to STRFs found in lower-
order auditory areas and are predictive of
responses to speech stimuli, demonstrating
their ability to characterize spectrotemporal
processing of speech in STG.

Organization of spectrotemporal
processing of speech in human STG
Given that the STRF characterizes spec-
trotemporal processing at each ECoG site,
the STRF map characterizes how process-
ing varies across STG. However, as Figure
2 shows, the spectrotemporal structure
within each STRF is relatively complex,
making it difficult to empirically visualize
or quantify organizational aspects from
the raw STRF maps. One alternative rep-
resentation of the STRF that contains
identical spectrotemporal information
(minus phase), but which exhibits visually
less complex structure, is the MTF (Fig.
3). The MTF characterizes spectrotempo-
ral modulation tuning of each STRF with
a structure that is often more localized in
modulation space than the correspond-
ing STRF structure within the time–fre-
quency domain (Fig. 3A, compare STRF,
MTF). Additionally, STRF features that
are shifted in frequency or time, but have
the same overall spectrotemporal struc-
ture, have the same MTF representation
because phase information is discarded.
Using this alternative, but less complex
and equivalent representation of the
STRF, we examined the distribution of
MTFs within the STG. A map of MTFs for
one participant (EC6) is shown in Figure
4. The “temporal” and “spectral” STRFs
shown in Figure 2 have corresponding
temporal and spectral MTFs in Figure 4.
Temporal transfer functions (●) are char-
acterized by tuning shifted away from the
vertical midline toward high temporal
modulations. Spectral transfer functions
(�) are characterized by tuning shifted
away from the base of the MTF toward
high spectral modulations. In this repre-
sentation it becomes more apparent, on
visual inspection, that sites in the poste-
rior STG are tuned for high temporal
modulations (energy shifted away from
the vertical axis) and sites in the anterior
STG are tuned for slow temporal modula-
tions, but high spectral modulations (en-
ergy falling along the vertical axis and
shifted upward).

Figure 1. Experimental approach and the STRF. A, Experimental approach. An STRF was computed off-line for each ECoG
electrode site (top, center) to generate a corresponding STRF map (bottom, center) . The STRF describes the spectrotemporal
structure in the stimulus that drives activity at a particular site. On the right is a subset of measured and predicted responses for the
sentence “He sized up the situation and shook his head” (spectrogram at left). B, An STRF and the predicted and measured response
for a single sentence. Predicted responses are obtained by convolving the stimulus with the STRF and are proportional to the
similarity between the spectrotemporal content in the stimulus and the receptive field. C, Comparison of two methods used to
compute STRFs. MID-based STRFs show higher predictive performance compared with normalized reverse correlation (NRC)-based
STRFs (mean percentage increase in prediction: 19.0 
 1.9% SEM, p 	 0.001, Wilcoxon signed-rank test). D, MID-STRF Pearson
correlation coefficient prediction values for all STG sites. E, MID-STRF predicted variance values for all sites. Sites with �5% of the
variance predicted (red) were included in the analysis. MID, maximally informative dimension analysis; NRC, normalized reverse
correlation analysis.
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To more thoroughly characterize this
apparent nonrandom distribution of
spectrotemporal processing, representa-
tive MTFs of STG were first identified by
k-means clustering of all MTFs from all
participants. Silhouette criterion values
were used to identify the number of data
clusters that maximize intracluster simi-
larity compared with similarity between
neighboring clusters. The centroid MTFs
from this analysis are shown in Figure 5A,
along with their 50% energy contours.
Compared with the average MTF for STG
(Fig. 5E), centroid MTFs occupy discrete
regions of modulation tuning space in an
orderly fashion from high spectral/low
temporal modulation tuning (Fig. 5A, left
MTF with red contour) to high temporal/
low spectral modulation tuning (Fig. 5A,
right MTF with yellow contour). To ex-
amine the distribution of overall spectro-
temporal modulation tuning across STG,
a group MTF map was computed and
each MTF within the map was classified
according to its cluster identity (Fig. 5B).
Cluster identities from the group map are plotted in Figure 5C.
This map shows significant local organization of the MTF type
(p 	 1.0  10�5, neighborhood similarity permutation test) and
illustrates anterior-to-posterior organization of modulation tun-
ing along the STG in which high spectral modulation/low tem-
poral modulation tuned MTFs are located anteriorly (red). By
contrast, high temporal modulation/low spectral modulation
tuned MTFs are located posteriorly (yellow). This is further
quantified by the average location of each MTF type along the
anterior-to-posterior extent of the STG (Fig. 5D). Overall, this
shows that the STG is tuned for temporally fast-changing speech
sounds that have relatively constant energy across the frequency
axis (low spectral modulation) in the posterior STG while the
anterior STG is tuned for temporally slow-changing speech
sound that have a high degree of spectral variation across the
frequency axis (high spectral modulation).

To further illustrate the organized distribution of spectrotem-
poral processing along the anterior–posterior extent of the STG,
we plot the distribution of MTF peak values across the STG. The
peak of the MTF defines the bSTM, and in this context represents
the dominant spectrotemporal modulation in the feature each
site is tuned to (as captured by the STRF). It should be noted that
examining the distribution of MTF peaks (bSTM values) derived
for natural speech does not imply that the STG will respond to
individual spectrotemporal modulations. Rather, the localized
nature of modulation energy in MTFs makes the peak a good
descriptor of the overall MTF tuning. The distribution of bSTMs
can, therefore, be used to further characterize overall organiza-
tion of spectrotemporal modulation tuning in the STG. The dis-
tribution of bSTMs for all sites and from all participants is shown
in Figure 6A. The relationship between best temporal modula-
tion and best spectral modulation shows a trade-off pattern in
which spectral modulation decreases with increasing temporal
modulation. This relationship between spectral and temporal
modulation tuning has been observed previously in other audi-
tory areas, including the human primary auditory cortex (Schön-
wiesner and Zatorre, 2009), the cat primary auditory cortex, the
cat medial geniculate body, the cat inferior colliculus (Miller et

al., 2002; Rodríguez et al., 2010; Atencio and Schreiner, 2012),
and in models of auditory processing that predict receptive field
structure based on efficient coding hypotheses (Carlson et al.,
2012).

To examine the spatial distribution of bSTM tuning across the
human STG, we plot bSTM values at their corresponding cortical
position within each subject (Fig. 6A, color scale, B). Most par-
ticipants show a significant degree of nonrandom local organiza-
tion that is consistent across participants (EC6, p 	 1.0  10�5;
GP31, p � 5.0  10�4; EC36, p � 0.029; EC28, p � 4.5  10�5;
EC53, p � 0.015; EC58, p � 0.10; EC56, p � 0.06; EC2, p � 0.42;
two-parameter neighborhood similarity permutation test). Pos-
terior regions of the STG show primarily high temporal modula-
tion/low spectral modulation tuning (blue), while more anterior
regions show primarily high spectral modulation/low temporal
modulation tuning (green). With respect to interhemispheric
differences, there was no significant difference in best temporal
modulation tuning (left: mean, 0.89 
 0.8 Hz; right: mean,
0.72 
 0.8 Hz, p � 0.17, Wilcoxon rank-sum test) and a subtle
difference in best spectral modulation tuning (left: mean, 0.14 

0.17 cycles/octave; right: mean, 0.08 
 0.13 cycles/octave, p �
0.015, Wilcoxon rank-sum test). To examine data across subjects,
we computed a group modulation tuning map, which is shown in
Figure 6D. Similar to individual subject maps, the group map
shows primarily high temporal modulation/low spectral modu-
lation tuning posteriorly (blue) and high spectral modulation/
low temporal modulation tuning anteriorly (green, p 	 1.0 
10�5, neighborhood similarity permutation test). The dominant
gradient within the group modulation map runs in the posterior-
to-anterior direction (�176° counterclockwise from the 3
o’clock position; Fig. 6D) nearly parallel with the anterior–pos-
terior axis of the STG. Again, these data represent organized spec-
trotemporal processing along the STG, in which posterior
regions are tuned to temporally fast sounds with relatively con-
stant energy along the spectral axis (low spectral modulation) and
more anterior regions are tuned for temporally slower sound
with high variation in energy along the spectral axis (high spectral
modulation). To further characterize modulation organization,

Figure 2. Participant EC6 cortical STRF map. A, STRF map for participant EC6 (STRFs calculated with MID analysis). STG STRFs
showed clear contiguous excitatory and inhibitory regions and structure characteristic of STRFs found in other regions. Represen-
tative temporal STRFs (●, tuned to quick onsets or offsets), and spectral STRFs (�, tuned to constant sound energy that fluctuates
across frequency), are shown. LS, Lateral sulcus; STS, superior temporal sulcus; MTG, medial temporal gyrus; CS, central sulcus.
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average best temporal modulation and best spectral modulation
tuning are plotted as a function of distance along the anterior–
posterior extent of the STG (Fig. 6E,F, red). Additionally, mod-
ulation tuning was plotted as a function of map distance after
individual maps have been aligned by their individual gradients
(Fig. 6E,F, blue and green lines). This shows a transition from
high temporal modulation to high spectral modulation along the

posterior–anterior aspect of the STG. A
similar but less robust distribution of
modulation tuning was also seen for
STRFs based on normalized reverse corre-
lation (Fig. 6E,F, insets). Further analysis
showed no compelling additional organi-
zation within the maps based on inclusion
of the temporal modulation sign (positive
vs negative), no organized distribution of
prediction performance that paralleled
the distribution of spectrotemporal mod-
ulation tuning, and no difference in pre-
diction performance between “spectral”
and “temporal” STRFs (r value mean,
0.50 
 0.13 vs 0.48 
 0.11, respectively;
p � 0.23, Wilcoxon rank-sum test; “spec-
tral” and “temporal” STRFs defined as
having bSTM values above or below the
diagonal in Fig. 5A, respectively). Collec-
tively, these data reveal spatially organized
spectrotemporal processing of speech in
human STG in which tuning varies from
high temporal/low spectral modulation
tuning in the posterior STG to high spec-
tral/low temporal modulation tuning in
the middle STG. This organization is rem-
iniscent of the posterior-to-anterior dis-

tribution of temporal modulation tuning found at the lateral

aspect of the superior temporal plane in macaques as may have

been predicted for directly adjacent areas (Baumann et al., 2015).

To determine whether organization of spectrotemporal mod-
ulation tuning within the STG is present during processing of
more traditional stimuli used to characterize modulation tuning,

Figure 3. The modulation transfer function and best spectrotemporal modulation (bSTM). A, Computation of the modulation transfer function (MTF). The MTF is derived as the magnitude of the
two-dimensional Fourier transform of the STRF. It characterizes spectrotemporal modulation tuning for each site. Like the BF of a frequency tuning curve, the peak of the MTF defines the bSTM and
represents a good descriptor of the overall MTF given the localized nature of modulation tuning within each MTF. For the site with the STRF shown at the top, the MTF indicates that high spectral
modulations and low temporal modulations drive activity at that site. In contrast, the site below has a bSTM at high temporal modulations and low spectral modulations, indicating that the site is
driven by changes in temporal and not spectral energy. B, Ordered array of spectrotemporal modulations as a function of their temporal and spectral modulation parameters. Spectrotemporal
modulations represent the envelope “frequency” components of the spectrogram. Any spectrogram can be reconstructed exactly by a weighted sum of spectrotemporal modulations since they form
a complete orthonormal basis of functions.

Figure 4. Participant EC6 cortical modulation tuning map. A, Modulation tuning map for participant EC6. Each MTF is derived
from the corresponding STRF. Representative temporal (●) and spectral (�) MTFs are shown. Although MTFs and STRFs contain
equivalent information about spectrotemporal processing (except for phase information, which is discarded in MTFs), the overall
structure of MTFs is less complex than that of STRFs. As shown, sites in the posterior STG are tuned for high temporal modulations
(energy shifted away from the vertical midline) and sites in the anterior STG are tuned for slow temporal modulations and high
spectral modulations (energy falling along the vertical midline and shifted upward). LS, Lateral sulcus; STS, superior temporal
sulcus; MTG, medial temporal gyrus; CS, central sulcus.
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DMR stimuli (Depireux et al., 2001; Escabi and Schreiner, 2002)
were presented to four subjects while recording from the STG.
Consistent with previous work (Schönwiesner and Zatorre,
2009), these synthetic stimuli did not sufficiently activate the
human STG (Fig. 7). Additionally, TORC stimuli, a variant of
moving ripple stimuli (Klein et al., 2006), were presented in two
participants without significant sustained activation of the STG
(data not shown). These data are consistent with only minimal
temporal lobe activation outside of the superior temporal plane
by nonspeech stimuli as seen by Overath et al. (2015) and Schön-
wiesner and Zatorre (2009) and implies a degree of specificity of
the organization demonstrated here for speech in that more tra-
ditional nonspeech synthetic stimuli do not drive robust activity
in the STG.

Topography of spectral tuning
Last, we analyzed the spatial distribution of frequency tuning in
human STG to examine the relationship between spectral fre-
quency and modulation tuning in this region. To examine the
distribution of spectral tuning, two metrics derived from the
STRF were used to characterize BF. The first metric is defined as
the peak excitatory value of the STRF (STRF-BF) and represents

the frequency with the largest gain at any time point within the
STRF. The second metric is defined as the peak of the spectral
receptive field (SRF). The SRF is obtained by summing across the
temporal dimension of the STRF. The peak of the SRF (SRF-BF)
takes into account all temporal lags of the STRF and identifies the
frequency associated with the largest net gain. Both metrics of BF
showed similar tuning across ECoG sites (Pearson correlation
coefficient, 0.693) and the average difference in BF between an
ECoG site and its directly adjacent neighbors (anterior, posterior,
dorsal, ventral) was not significantly different between the two
metrics, reflecting equal degrees of neighborhood similarity
(mean difference in BF between adjacent sites: STRF-BF, 0.7 

0.65 octaves SE; SRF-BF, 0.84 
 0.72 octaves SE, p � 0.065,
Wilcoxon rank-sum test). Individual maps for the topography of
STRF-BF values are shown in Figure 8B. For both metrics,
only two of eight participants showed a significant degree of local
organization based on neighborhood similarity (STRF-BF p/
SRF-BF p: EC6, p � 0.12/0.23; GP31, p � 0.004/0.007; EC36, p �
0.10/0.04; EC28, p � 0.02/0.75; EC53, p � 0.29/0.13; EC58, p �
0.27/0.07; EC56, p � 0.39/0.20; EC2, p � 0.11/0.25; neighbor-
hood similarity permutation test). Examination of the group
map also showed a low degree of local organization based on

Figure 5. Organization of MTFs in STG. A, K-means cluster centroids generated from all MTFs across all participants. Their respective 50% contours are shown below. The overall tuning within an
individual MTF centroid is fairly well localized. The collection of MTF centroid types span modulation space from high spectral/low temporal regions (red, left) to high temporal/low spectral regions
(yellow, right) as shown by the 50% contours. B, Group MTF map. The map represents the average MTF across participants at each STG position. Only locations with �2 MTFs contributing to the
average are included. Each MTF within the map is color-coded by its cluster membership. C, MTF cluster identity map. MTF cluster identities from B are plotted. The cluster identity map shows a
transition from high spectral/low temporal MTFs anteriorly (red) to high temporal/low spectral MTFs posteriorly (yellow) and a significant degree of local organization ( p 	 1.0  10 �5,
neighborhood similarity permutation test). D, Average MTF cluster distance along the anterior–posterior extent of STG. Distances are measured from the anterior temporal pole illustrated in C (red
horizontal axis). High spectral/low temporal MTFs are located anteriorly (red). High temporal/low spectral MTFs are located posteriorly (yellow, error bars represent SEM). E, Ensemble MTF
(population average) for STG. Contour lines represent percentage maximum. LS, lateral sulcus; STG, superior temporal gyrus; MTG, medial temporal gyrus; CS, central sulcus.
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Figure 6. Organization of bSTM tuning in STG. A, bSTM tuning values from all participants. The distribution of bSTM values shows a particular relationship in which spectral modulation
tuning decreases as temporal modulation tuning increases. B, Individual subject bSTM maps (A, color scale). Most participants show high temporal/low spectral modulation tuning
posteriorly (blue), and high spectral/low temporal modulation tuning anteriorly (green) with significant nonrandom organization (EC6, p 	 1.0  10 �5; GP31, p � 5.0  10 �4; EC36,
p � 0.029; EC28, p � 4.5  10 �5; EC53, p � 0.015; EC58, p � 0.10; EC56, p � 0.06; EC2, p � 0.42; two-parameter neighborhood similarity permutation test). C, Topographic ECoG
site distribution along the anterior–posterior/dorsal–ventral extent of the STG. An example of the coordinate system used to measure distances is shown in D (red axis). Distances along
the long axis of STG are measured from the anterior temporal pole. Distances along the short axis of STG are measured from the dorsal–ventral midpoint of the STG. D, Group
spectrotemporal modulation tuning map. Only sites with data from �2 participants are included. High temporal/low spectral modulation tuned sites are located posteriorly (blue) and
high spectral/low temporal modulation tuned sites are located anteriorly (green) with significant nonrandom organization and a mean gradient of �176° counterclockwise from the
long axis of the STG ( p 	 1.0  10 �5, neighborhood similarity permutation test). Data were binned at 4  4 mm resolution (same interelectrode distance as the ECoG array). E, Average
best temporal modulation tuning as a function of distance along the dominant spectrotemporal modulation gradient. Individual subject maps were aligned by their gradients before
averaging (blue, error bars represent SEM). Absolute distance is from the edge of data after maps have been aligned. The red function represents the raw average of temporal modulation
tuning as a function of distance along the STG from the anterior temporal pole (D, horizontal red line; no map alignment by gradient before averaging). The inset represents data from
normalized reverse correlation-based STRFs. F, Average best spectral modulation tuning as a function of distance along the dominant spectrotemporal modulation gradient. Maps were
aligned by their gradients before averaging (green, error bars represent SEM). Absolute distance is from the edge of data after maps have been aligned. The red function represents the
raw average of spectral modulation as a function of distance along the STG from the anterior temporal pole (D, horizontal red line; no map alignment by gradient before averaging). The
inset represents data from normalized reverse correlation-based STRFs. LS, Lateral sulcus; STS, superior temporal sulcus; MTG, medial temporal gyrus; CS, central sulcus.
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neighborhood similarity (Fig. 8A, group:
STRF-BF, p � 0.1; SRF-BF, p � 0.06;
neighborhood similarity permutation
test). Despite the general lack of signifi-
cant tonotopic organization within indi-
vidual subjects based on neighborhood
similarity, mean BF in the group data de-
creased as a function of distance along the
STG (Fig. 8C). One aspect of spectral tun-
ing that increases the complexity of char-
acterizing spectral tuning organization is
the widespread presence of multipeaked
SRFs in the STG. Figure 8D shows an ex-
ample of a multipeaked SRF with four
peaks at the 50% maximum level (red
line). We quantified the degree of multi-
peaked tuning in the STG by measuring
the average number of spectral tuning
peaks as a function of percentage maxi-
mum level (Fig. 8E). At 80% maximum,
the average number of spectral peaks was
1.4 
 0.7 with the number of peaks in-
creasing to 2.6 
 1.1 at 50% maximum.
We also quantified the distribution of SRF
types (classified by peak number) for each
level of percentage maximum. Figure 8F
shows the distribution of SRF types at
each percentage maximum level. At 90% maximum, 72% of the
SRFs were single peaked, 25% were double peaked, and 3% had
three peaks. By 70% maximum, there are more multipeaked SRFs
than single-peaked SRFs (52% multipeaked versus 48% single
peaked). Last, we examined the overall distribution of BFs and
found the majority of BFs are concentrated below 1000 Hz (Fig.
8G). This low-frequency tuning is consistent with previous work
characterizing tonotopic organization across the human auditory
cortex in which the STG occupies a low-frequency reversal region
between putative cochleotopic maps that span the planum tem-
porale, the STG, and the superior temporal sulcus (Striem-Amit
et al., 2011; Moerel et al., 2012). Collectively, these data show that
the STG has a substantial proportion of multipeaked spectral
tuning, with low-to-moderate tonotopic organization within the
STG, and a high concentration of low BF frequencies consistent
with its placement as a low-frequency region within larger-scale
cochleotopic maps (Striem-Amit et al., 2011; Moerel et al., 2012).

Discussion
In this study we used natural speech stimuli in conjunction with
MID analysis and ECoG from human participants to investigate
the organization of spectrotemporal processing of speech in the
human STG. Based on receptive field maps, we found tuning for
temporally fast sound with relatively constant energy across the
frequency axis (low spectral modulation) in the posterior STG
and a transition to tuning for temporally slower sound with
higher variation in spectral energy across the frequency axis (high
spectral modulation) in the anterior STG. Additionally, we found
that the STG shows BF tuning 	1000 Hz, which is consistent with
its placement as a low-frequency reversal region in larger-scale
cochleotopic maps (Striem-Amit et al., 2011; Moerel et al., 2012).
These data expand our view of how the spectrotemporal process-
ing of speech in the STG is organized and demonstrate organized
tuning for different acoustic aspects of speech sounds along the
human STG.

Our data reveal topographic organization of spectrotemporal
modulation tuning in the STG derived from speech. A previous
study examined modulation tuning in the human auditory cortex
using fMRI and spectrotemporal ripple stimuli (Schönwiesner and
Zatorre, 2009). They observed cortical areas responsive to ripple
stimuli in primary and secondary auditory cortex within superior
temporal plane, but did not find evidence of organized modula-
tion tuning. Consistent with our study, individual spectrotempo-
ral ripple stimuli did not drive activity in the STG. Taken alone,
this may indicate organized spectrotemporal modulation pro-
cessing emerges in the STG. However, recent work has shown
topographic organization of temporal modulation tuning alone
in the human primary auditory cortex using fMRI and amplitude
modulated white noise stimuli (Herdener et al., 2013). Consis-
tent with this, Schönwiesner et al. (2009) endorse a tendency for
temporal modulation tuning to increase from the medial Hes-
chl’s gyrus (HG) to the lateral HG in a manner similar to that
supported by data from Herdener et al. (2013). Additionally,
organized temporal modulation tuning has also been found in
subcortical areas, such as the cat and the primate midbrain
(Schreiner and Langner, 1988; Baumann et al., 2011). Organized
joint spectrotemporal modulation tuning has been characterized
in the cat inferior colliculus (Rodríguez et al., 2010) and the cat
auditory cortex (Atencio and Schreiner, 2012). Collectively, these
studies provide evidence for organized spectrotemporal modula-
tion tuning in various subcortical and cortical auditory areas and
indicate that such processing may be a prevalent form of func-
tional organization within the auditory system.

In contrast to robust activation of STG by speech stimuli,
our data with individual ripples (DMR stimulus) and TORCs
indicate that these stimuli do not robustly activate STG, which
is consistent with previous work (Schönwiesner and Zatorre,
2009). The two primary differences of speech from ripple
stimuli are acoustic complexity and behavioral relevance. Al-
though spectrotemporal modulations represent fundamental
elements of complex sounds, such that a linear combination of

Figure 7. DMR stimuli do not activate STG as robustly as speech stimuli from TIMIT. A, Spectrogram of a 3 s segment of the 5 min
DMR stimulus (top) and examples of corresponding Z-scored high-gamma responses from STG electrodes in one subject (GP31).
Z-score was calculated using a silent baseline period. Electrode responses are colored according to their best spectral modulation
(BSM) and best temporal modulation (BTM) as derived from TIMIT stimuli. As demonstrated in the bottom panel, STG electrodes
showed responses to the onset of DMR stimuli, but did not elicit strong responses during the rest of the 5 min stimulus. B,
Comparison between the average response to the DMR stimulus and the average response to TIMIT sentences for STG electrodes
(N � 4 subjects: EC63, GP30, GP31, GP33). The response to speech was significantly higher than the response to DMR stimuli
(speech vs DMR, p � 1  10 �26; speech vs DMR (speech modulations), p � 1.6  10 �25, Wilcoxon signed rank test, 198 STG
electrodes). The average response was calculated across the entire DMR stimulus (labeled DMR) and across time points during
which the DMR included modulations within the tuning range for STG (labeled speech modulations: spectral modulations, �1
cycle/octave; the absolute value of the temporal modulations, �3 Hz). Gray lines connect the mean response for the same
electrode across stimuli; black line indicates the average. For both stimuli, Z-scored responses were recalculated using a silent
baseline to allow for comparisons across stimuli.
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these features can generate any segment of speech, speech is
more acoustically complex due to such features as increased
temporal envelope variability from frequent onsets in words
or syllables, harmonic and formant structure, and formant
transitions. These additional acoustic characteristics of speech

may be necessary to drive speech activation and may underlie
selectivity seen in areas of the human auditory cortex (Overath
et al., 2015). Future work, akin to the analysis-by-synthesis
approach by McDermott and Simoncelli (2011), may be able
to determine which acoustic properties of sound are most

Figure 8. Topography of spectral tuning. A, STRF-BF group map (color scale in B; only sites with data from �2 subjects are shown). The BF gradient runs in the anteroventral direction at �193°
counterclockwise from the 3 o’clock position. Neither group map shows significant local organization. (STRF-BF, p � 0.1; SRF-BF, p � 0.06; neighborhood similarity permutation test). B, Individual
participant STRF-BF maps. Two of eight maps show significant local organization for both metrics (STRF-BF p/SRF-BF p: EC6, p � 0.12/0.23; GP31, p � 0.004/0.007; EC36, p � 0.10/0.04; EC28, p �
0.02/0.75; EC53, p � 0.29/0.13; EC58, p � 0.27/0.07; EC56, p � 0.39/0.20; EC2, p � 0.11/0.25; neighborhood similarity permutation test). C, STRF-BF as a function of distance. Absolute distance
is from the edge of data after maps have been aligned by their dominant gradient (black). The red function represents the raw average of BFs as a function of distance along the STG from the anterior
temporal pole (A, horizontal red line; no map alignment by gradient before averaging). D, Example SRF with the 50% maximum line (red). At 50% maximum, this SRF has four peaks. E, Average peak
number as a function of percentage maximum. F, Distribution of neurons types, in terms of peak number, as a function of percentage maximum level. Color scale represents proportion of neurons.
At 90% maximum, 72% of the SRFs are single peaked, 25% are double peaked, and 3% have three peaks. G, BF distribution. The concentration of BFs in the STG is 	1000 Hz, which is consistent with
STG’s placement as a low-frequency region in larger-scale cochleotopic maps. LS, Lateral sulcus; STS, superior temporal sulcus; MTG, medial temporal gyrus; CS, central sulcus.
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important for activation of the STG. Our work shows that in
the context of speech processing, the STG shows organized
tuning for temporal and spectral modulation properties of
speech.

Acoustic properties may not be the only etiology of speech
selectivity in the STG. Along the auditory pathway, acoustic in-
formation is eventually transformed to semantic information,
which confers behavioral relevance to the stimulus. Synthetic
modulation stimuli lack semantic information and thus lack an
important component of speech stimuli that may be responsible
for activation of the STG. It is difficult to quantify the contribu-
tion of acoustic versus semantic information for driving activity
in the STG in our dataset. The robust ability of STRFs to predict
responses to novel speech stimuli relies on the acoustic content of
sound alone. This suggests a significant component of the en-
coded information represents acoustic rather than semantic in-
formation and is consistent with recent work in the superior
temporal sulcus showing significant selectivity for speech based
on acoustic properties alone (Overath et al., 2015).

The range of temporal tuning within the human auditory
cortex gives insight into the timescale of analysis being per-
formed. Fast temporal tuning reflects processing on the
phonemic timescale while slower temporal tuning reflects
processing on syllabic or prosodic timescales. Currently there
is considerable variation in reported temporal tuning and
shape of the temporal MTF for both HG and the STG (HG,
range of average best temporal modulation: 1.5–10 Hz; STG,
range of average best temporal modulation: 2– 8 Hz; Binder et
al., 1994; Tanaka et al., 2000; Harms and Melcher, 2002;
Langers et al., 2003; Liégeois-Chauvel et al., 2004; Rinne et al.,
2005; Schönwiesner and Zatorre, 2009; Overath et al., 2012;
Pasley et al., 2012; Wang et al., 2012; Gross et al., 2013). There
are a number of possible contributors to this variability.
Within these studies, a wide range of stimuli have been used
to characterize temporal tuning, including sinusoidally
amplitude-modulated (SAM) tones, SAM noise, moving spec-
trotemporal ripples, tone pips, harmonic complexes, noise
bursts, consonant–vowel pairs, and continuous speech. This
variation is relevant because temporal tuning is not invariant
to stimulus type (Eggermont, 2002; Malone et al., 2007, 2013;
Zheng and Escabí, 2008) and differences in temporal tuning in
the various studies may be partially attributable to the vast
array of stimulus types used to characterize the system. In this
study, we use speech stimuli to determine temporal tuning in
the STG and thus characterize temporal processing relevant
for speech processing in the STG.

Variability in temporal tuning within the human auditory
cortex may also be attributable to differences in the range and
spacing of temporal modulation content used to characterize
the system (Edwards and Chang, 2013). The ideal stimulus set
would extend from 0 Hz to temporal modulations well beyond
the limits of the system and have resolution fine enough to
resolve peaks and troughs within the temporal MTF. However,
variable resolution and differences in the upper and lower
limits of temporal modulations used to test temporal tuning
have led to variable interpretations of the shape of the tempo-
ral MTF (low pass vs bandpass) and average temporal tuning
for HG and the STG (Edwards and Chang, 2013). In this study,
we used speech stimuli to define the temporal tuning relevant
for speech processing. Speech contains a continuous distribu-
tion of temporal modulation content rather than discretely
spaced temporally modulated stimuli (ripples, amplitude-
modulated white noise, click trains) that may miss peaks and

troughs in temporal tuning functions. Speech also spans the
range of temporal modulations of interest for speech process-
ing. Thus, an analysis using speech will not miss upper or
lower ranges of tuning that may be missed using a predefined
and narrower range of temporal modulations.

Finally, differences in metrics used to characterize tempo-
ral tuning have led to variable characterizations of temporal
tuning within the STG and other areas. Nonsynchronized
metrics of temporal tuning (mean activity as a function of
temporal modulation) and synchronized metrics of temporal
tuning (vector strength and STRF-based MTFs) are in preva-
lent use within the literature, but can show different tuning
properties (Eggermont, 2002; Zheng and Escabí, 2008). Con-
sistent with this, recent work in the STG has shown that a
nonsynchronized metric and a synchronized metric show low-
pass and bandpass tuning, respectively (Pasley et al., 2012). In
this study we characterized the synchronized component
of temporal tuning, the dominant form of temporal tuning for
the range of temporal modulations most important for speech
perception (Elliott and Theunissen, 2009; Pasley et al., 2012),
and find a low-pass distribution of temporal tuning in the STG
most consistent with processing on prosodic and syllabic
timescales.
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