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Cell-Specific PKM Isoforms Contribute to the Maintenance
of Different Forms of Persistent Long-Term Synaptic
Plasticity
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Multiple kinase activations contribute to long-term synaptic plasticity, a cellular mechanism mediating long-term memory. The senso-
rimotor synapse of Aplysia expresses different forms of long-term facilitation (LTF)—nonassociative and associative LTF—that require
the timely activation of kinases, including protein kinase C (PKC). It is not known which PKC isoforms in the sensory neuron or motor
neuron L7 are required to sustain each form of LTF. We show that different PKMs, the constitutively active isoforms of PKCs generated
by calpain cleavage, in the sensory neuron and L7 are required to maintain each form of LTF. Different PKMs or calpain isoforms were
blocked by overexpressing specific dominant-negative constructs in either presynaptic or postsynaptic neurons. Blocking either PKM
AplTin L7, or PKM Apl IT or PKM Apl III in the sensory neuron 2 d after 5-hydroxytryptamine (5-HT) treatment reversed persistent
nonassociative LTF. In contrast, blocking either PKM Apl II or PKM Apl III in L7, or PKM Apl II in the sensory neuron 2 d after paired
stimuli reversed persistent associative LTF. Blocking either classical calpain or atypical small optic lobe (SOL) calpain 2 d after 5-HT
treatment or paired stimuli did not disrupt the maintenance of persistent LTF. Soon after 5-HT treatment or paired stimuli, however,
blocking classical calpain inhibited the expression of persistent associative LTF, while blocking SOL calpain inhibited the expression of
persistent nonassociative LTF. Our data suggest that different stimuli activate different calpains that generate specific sets of PKMs in
each neuron whose constitutive activities sustain long-term synaptic plasticity.
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Persistent synaptic plasticity contributes to the maintenance of long-term memory. Although various kinases such as protein
kinase C (PKC) contribute to the expression of long-term plasticity, little is known about how constitutive activation of specific
kinase isoforms sustains long-term plasticity. This study provides evidence that the cell-specific activities of different PKM
isoforms generated from PKCs by calpain-mediated cleavage maintain two forms of persistent synaptic plasticity, which are the
cellular analogs of two forms of long-term memory. Moreover, we found that the activation of specific calpains depends on the
features of the stimuli evoking the different forms of synaptic plasticity. Given the recent controversy over the role of PKM{
maintaining memory, these findings are significant in identifying roles of multiple PKMs in the retention of memory. j
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isoforms contribute to the expression of long-term plasticity in
the mammalian CNS (Klann et al., 1991; Thomas et al., 1994;
Abel et al., 1997; Schafe et al., 1999; Huang et al., 2000; Duffy and
Nguyen, 2003; Yang et al., 2004; Nie et al., 2007; Kandel, 2012;
Tsokas et al., 2016) and at the sensorimotor synapse of Aplysia
(Hegde et al., 1993; Sossin et al., 1994; Martin et al., 1997b; Chain
et al., 1999; Purcell et al., 2003; Liu et al., 2004; Fiumara et al.,
2015). Despite this wealth of data, little is known about whether
coordinated and constitutive activations of specific kinase iso-
forms in the presynaptic and postsynaptic compartments are
needed to sustain long-term plasticity.

The sensorimotor synapse of Aplysia expresses different
forms of persistent long-term facilitation (LTF). Nonassociative
LTF is produced by repeated applications of serotonin [5-
hydroxytryptamine (5-HT)] or repeated sensitizing stimuli and
is a cellular analog of long-term sensitization (Castellucci et al.,
1978; Frost et al., 1985; Montarolo et al., 1986; Cleary et al., 1998;
Marinesco et al., 2006; Hu et al., 2011; Hu and Schacher, 2014).
Associative LTF is produced by pairing activity in the sensory
neuron with 5-HT or pairing tactile stimulation with sensitizing
stimuli, and is a cellular analog of long-term classical condition-
ing (Carew et al., 1981; Walters and Byrne, 1983; Buonomano
and Byrne, 1990; Hu and Schacher, 2015). Each form of LTF
requires timely activation of protein kinase A (PKA), MAPK, and
PKC (Abrams et al., 1991; Martin et al., 1997a; Chain et al., 1999;
Hu et al.,, 2004, 2006, 2007, 2011; Liu et al., 2004; Shobe et al.,
2009; Villareal et al., 2009; Fiumara et al., 2015). Persistent LTF
(lasting more than a week) for each form is evoked by two sets of
stimuli in 2 consecutive days or after a 5 h interval, and incuba-
tion with the PKC inhibitor chelerythrine resulted in the reversal
of nonassociative or associative LTF (Cai et al., 2011; Hu et al.,,
2011; Hu and Schacher, 2015). Aplysia neurons express the fol-
lowing three isoforms of PKC (Kruger et al., 1991; Bougie et al.,
2009): PKC Apl I (classical); PKC Apl II (novel); and PKC Apl 11T
(atypical). Each of these PKC isoforms can be converted to a
constitutively active form after calpain-dependent cleavage,
PKM Apl I, PKM Apl II, and PKM Apl III, some of which con-
tribute to intermediate forms of facilitation (Sossin, 2007; Sutton
et al., 2004; Bougie et al., 2009, 2012; Farah et al., 2016). Which
isoforms of PKM in each neuron need to be active to maintain the
two forms of persistent LTF?

We manipulated the activity of PKC/PKM isoforms or two
calpain isoforms, classical and atypical small optic lobe (SOL),
using a dominant-negative (dn) approach. We found that cell-
specific activations of different PKMs were required to sustain
different forms of persistent synaptic plasticity. Calpain activity
was not required to maintain persistent LTF, but specific calpain
isoform activity was required for the expression of each form of
persistent LTF. Thus, different stimuli activate different calpain
isoforms that generate specific PKMs in the sensory neurons
and L7, whose constitutive activities maintain different forms of
long-term plasticity.

Materials and Methods

Cell culture and electrophysiology. Sensory neurons were isolated from
pleural ganglia dissected from adult animals (60—80 g; Aplysia califor-
nica, which are hermaphrodites; RRID: SCR_008361), and motor
neuron L7s were isolated from juvenile abdominal ganglia (2 g) and
maintained in coculture up to 10 d (Hu et al,, 2015). The coculture
contained one sensory neuron and one L7. Each culture represented one
sample, since each motor neuron L7 was derived from a separate animal.
The sensory neurons added to each L7 for cultures prepared on the same
day (between 9 and 13 cultures) were derived from the pleural ganglia of
two adult animals (four hemi-ganglia in total). The cultures prepared on
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the same day were divided into two experimental and two control (Cont)
groups for each experiment. Cultures were maintained at 18°C and fed
every other day with medium containing 50% filtered hemolymph and
50% L15.

A standard intracellular recording technique was used to record the
amplitude of EPSPs evoked in motor neuron L7. The soma of L7 was
impaled with a recording microelectrode (10—15 M() filled with a solu-
tion containing 2.0 M K-acetate, 0.5 M KCl, and 10 mm K-HEPES, pH 7.4.
An AxoClamp-2A amplifier and pCLAMP software (Molecular Devices)
were used for data acquisition. To accurately record the amplitude of the
EPSPs in each coculture, the membrane potential of L7 was hyperpolar-
ized to —80 mV (~25 mV below resting potential), and an EPSP was
evoked in L7 by stimulating the sensory neuron with a brief (0.3—0.5 ms)
depolarizing pulse to evoke an action potential using an extracellular
electrode placed near the cell body of the sensory neuron. EPSP ampli-
tudes were monitored before and after various treatments at the indi-
cated time points in the different experiments. The resting potential or
input resistance measured in the soma of L7 was not significantly altered
by time in culture, stimulation, and/or overexpression of control or ex-
perimental constructs. These measures of cell viability changed by <10%
over the course of the experiments (6 d, days 4—10 in culture). Cultures
on day 4 with initial EPSP amplitudes in the range of 15-30 mV were
selected (85% of total cultures) for control and experimental conditions.
The synaptic strength on day 4 in culture represented the basal synaptic
strength (defined as the synaptic baseline), since there was little change in
synapse strength over the next week in the absence of stimulation (Hu et
al., 2011; Hu and Schacher, 2014, 2015; see Results). The assignment of
any culture to control and experimental groups at the start of each ex-
periment on day 4 in culture (defined as day 0 in Results and figures) was
to ensure that there were no significant differences in the mean and
variance of the initial strength of the synapses between the groups before
treatments.

Persistent LTF. Persistent nonassociative LTF lasting more than a week
was evoked as reported previously (Hu et al., 2011). After recording the
initial EPSP amplitudes of sensorimotor synapses on day 0, some cultures
were exposed to 2 consecutive days (days 0 and 1) of 5 applications of
5-HT (5 uMm; Sigma-Aldrich) each lasting 5 min at 20 min intervals (2
5-HT; see Fig. 1A) to evoke persistent nonassociative LTF. Each applica-
tion of 5-HT was washed out with a solution containing 50% seawater
and 50% L15. Control cultures received mock treatments. EPSP ampli-
tudes were re-examined on day 3 (2 d after the last set of applications)
before the injections of constructs and at subsequent time points, as
indicated in the protocol portion of the figures.

Persistent associative LTF lasting more than a week was evoked by two
pairings of a presynaptic tetanus with an application of 5-HT on 2 con-
secutive days [days 0 and 1; 2 (Tet plus 5-HT); see Fig. 7A], as reported
previously (Hu and Schacher, 2015). In brief, after recording the initial
EPSP amplitudes on day 0, the sensory neuron was stimulated with a
tetanus (20 Hz for 2 s) that was followed immediately (0.5-1.5 s) by an
application of 5-HT (5 um) for 5 min. During the tetanus, motor neuron
L7 was maintained at its resting membrane potential (—55 to —60 mV).
Cultures were rinsed with L15-sea water and then with culture medium
(50% filtered hemolymph and 50% L15). On day 1, these cultures re-
ceived a second presynaptic tetanus paired with an application of 5-HT.
Control cultures received mock treatments, and in some cultures cells
received unpaired stimulation where the application of tetanus and 5-HT
were separated by 3—5 min (unpaired). Two unpaired stimuli evoked no
LTF (Hu and Schacher, 2015). The strengths of the synapses were re-
examined on day 3 (2 d after the last pairing) and at subsequent time
points, as indicated in the protocol portion of the figures.

Plasmid constructs and microinjection. All DNA constructs use the
PNEX3 plasmid background and promoter (Kaang, 1996). Dominant-
negative monomeric red fluorescent protein (mRFP)-PKMs and dominant-
negative mRFP-PKC Apl IIT have a conserved aspartic acid in the catalytic
site converted to alanine (Apl III D392-A, Apl I D444-A, and Apl II
D526-A). This mutation removes >95% of kinase activity but allows for
stabilizing phosphorylation at critical priming sites (Cameron et al.,
2009; Bougie et al., 2012; Farah et al., 2016). The dominant-negative
mRFP-PKM Apl III and mRFP-PKM Apl I constructs have been shown
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Figure1.  PKM Apllactivityin L7 isrequired after day 3 to maintain persistent nonassociative LTF. 4, Experimental protocol for evoking persistent nonassociative LTF consists of repeated applications of 5-HT
ondays 0and 1. EPSP amplitudes were tested before control or experimental treatments on day 0 and retested on days 3, 4, and 6. Various constructs (control or experimental) were injected into L7 on day 3.
B, Phase contrast views of sensorimotor cultures and epifluorescent views of construct expression in the same view area 24 h after injection. Scale bar, 50 um. €, EPSPsin L7 over time for control and experimental
groups. Repeated applications of 5-HT resulted in an increase in EPSP amplitude that persisted to day 6, except for the experimental group where L7 overexpressed dn-PKM Apl | (2 5-HT + dn-PKM Apl 1).
Overexpression of dn-PKM Apl | did not affect the synaptic baseline in the control group. D, Summary of the changes in EPSP amplitudes for control and experimental groups. A two-factor ANOVA indicated a
significant effect of treatment over time (F 5,135, = 40.72; p << 0.001). Individual comparisons indicated the following: (1) overexpression of dn-PKM Apl lin L7 after control treatment (Cont + dn-PKM Apl )
had nosignificant effect on the synaptic baseline compared with control or overexpressing mRFP in control (#) on day 4 (F; ,5) = 0.002 0r 0.001; all p > 0.8) and day 6 (F; ,5) = 0.0003 0r0.0002; all p > 0.9);
(2) two sets of 5-HT treatment (2 5-HT) produced a significant increase in synaptic strength (*) on days 3, 4, and 6 compared with Cont, Cont + mRFP, or Cont + dn-PKM Apl | (F s ;) = 3.859, 3.962, or 4.649,
allp < 0.0Tonday3;Fs 45 = 3.981,3.938, 0r3.457,all p < 0.01 onday 4; 5 ,5) = 3.923,3.829, 0r 3.237, all p << 0.01 on day 6); (3) overexpressing control construct mRFP (2 5-HT + mRFP) on day 3 did
not significantly affect the increasein synaptic strength produced by two sets of 5-HT treatments on days 4 and 6 compared with 2 5-HT alone (F;5 5, = 0.003 and 0.002; all p > 0.9); (4) overexpressing dn-PKM
Apllonday 3 resulted in a significant reversal of the increase in synaptic strength by 2 5-HT (2 5-HT + dn-PKM Apl 1) on days 4 and 6 (o) compared with other 5-HT-treated groups (F;s 45, = 2.772 and 3.769,
allp < 0.05 compared with 2 5-HT alone; F 5 45) = 2.946 and 3.944, all p < 0.05 compared with 2 5-HT + mRFP); and (5) the synaptic strength in 2 5-HT + dn-PKM Apl | was not significantly different from
each control group (#) on days 4 and 6 (F s 45, = 0.79 and 0.069, all p > 0.5 compared with Cont; £ ,5, = 0.769 and 0.056, all p > 0.5 compared with Cont + mRFP; F 5 ,5) = 0.677 and 0.04, all p > 0.5
compared with Cont + dn-PKM Apl ).
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Figure 2. PKM Apl Il or PKM Apl I1l activity in L7 is not required after day 3 to maintain nonassociative LTF. A, Experimental protocol. Persistent nonassociative LTF was evoked by repeated
applications of 5-HT on days 0 and 1. Various constructs were injected into L7 on day 3. B, Phase contrast views of sensorimotor cultures and epifluorescent views of construct expression in the same
view area 24 h after injection. Scale bar, 50 um. €, Examples of the change in the EPSP amplitudes in L7 over time for control and experimental groups. All experimental groups, receiving repeated
applications of 5-HT (2 5-HT), showed an increase in EPSP amplitude that persisted to day 6, including those that were overexpressing dn-PKM Apl I or dn-PKM Apl il in L7. Overexpression of the
dominant-negative constructs did not affect synaptic baseline in control. D, Summary of the change in EPSP amplitudes for control and experimental groups. A two-factor ANOVA indicated a
significant effect of treatment over time (F ;5,153 = 42.479; p << 0.001). Individual comparisons indicated the following: (1) overexpression of dn-PKM Apl Il or dn-PKM Apl lll on day 3 in L7 after
control treatment (Cont + dn-PKM Apl II; Cont + dn-PKM Apl Ill) had no significant effect on synaptic baseline compared with control (#) on days 4 and 6 (Figure legend continues.)
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to block distinct forms of intermediate forms of facilitation (Bougie et al.,
2012; Farah et al,, 2016). Dominant-negative forms of enhanced green
fluorescent protein (eGFP)-PKC Apl I and II were made previously
(Manseau et al., 2001). Dominant-negative eGFP-PKC Apl I and eGFP-
PKC Apl II have a catalytic lysine converted to arginine, and the priming
phosphorylation sites mutated were to glutamic acid for stabilization.
These dominant-negatives have been shown to be effective at having
isoform-specific effects at inhibiting physiological changes that are pro-
duced by activating their respective PKC isoforms (Manseau et al., 2001;
Zhao et al., 2006; Lorenzetti et al., 2008; Hu et al., 2010). While PKCs do
not dimerize, dominant-negative PKMs and PKCs compete for scaffolds
and substrates with the endogenous PKCs, thus blocking their functional
activity. The classical and SOL calpains were the most prominent cal-
pains expressed in sensory and motor neurons, although other calpains
also exist in Aplysia databases (Farah et al., 2016). The calpains were
cloned by PCR based on transcriptosome data (Farah et al., 2016), and
dominant-negative calpains were generated by converting the catalytic
cysteine to serine (Farah et al., 2016). Many calpains act as dimers, and
dominant-negative calpains could act by forming mutant heterodimers.
Alternatively, dominant-negative calpains, similar to dominant-negative
PKCs, may act by competing with endogenous calpains for substrates
and scaffolds. The dominant-negative classical calpain (dn-classical) has
been shown to be effective at blocking both the cleavage of PKCs using a
FRET-based live imaging assay and the induction of intermediate facili-
tation, while dominant-negative SOL calpain (dn-SOL) did not have a
significant effect in these experiments (Farah et al., 2016).

Microinjection was executed by a pneumatic picopump (PV820,
World Precision Instruments). A solution of constructs (0.3 ug/ul DNA
in distilled water) containing 0.2% Fast Green was microinjected into the
nuclei of sensory neurons or L7s on day 1 or 3 (see the protocol for each
experiment). The tip of the micropipette was inserted into the cell nu-
cleus. A short pressure pulse (20—50 ms duration; 20—40 psi) was deliv-
ered until the nucleus of the sensory neurons became uniformly green
(Huetal., 2010). Because the volume of the nucleus in L7 is ~30X that of
the nucleus of the sensory neuron, the pressure pulse (20—40 psi) of
600-1200 ms was delivered until the nucleus of L7 became uniformly
green. The fluorescent images of construct expression were captured
with a Nikon Diaphot microscope 24 h after injections.

Quantification and data analysis. All data are expressed as the mean *
SEM produced by the indicated treatments. The EPSP amplitude was mea-
sured in millivolts (mV). The initial EPSP amplitudes on day 0 were normal-
ized as 100%. The changes in EPSP amplitudes were measured by dividing
the EPSP amplitudes on day 2, 3, 4, 5, or 6 by the EPSP amplitude on day 0
multiplied by 100%. Some cultures expressing persistent LTF (8%) had an
increase in synaptic strength that was expressed as an action potential evoked
in L7 on day 2 or 3 with the test stimulus to the sensory neurons. These
cultures were excluded from all analyses. Overall, 91% of the remaining
cultures survived to the final test point (day 5 or 6). All images were viewed
with a Nikon Diaphot microscope attached to a silicon-intensified target
video camera (Dage Series 68, Dage-MTI). Fluorescent intensity (arbitrary
units) was measured by the Microcomputer-Controlled Imaging Device

<«

(Figure legend continued.) ~ (Fs ;) = 0.0001 and 0.002, all p > 0.8 for dn-PKM Apl II;
Fis 51y = 0.003 and 0.0001, all p > 0.7 for dn-PKM Apl 111); (2) 2 5-HT produced a significant
increase in synaptic strength compared with each control group (*) ondays 3,4,and 6 (F s 5,y =
2.997,2.758,and 2.525, all p < 0.05 compared with Cont; F 5 5, = 3.423,3.222,and 2.744, all
p << 0.05 compared with Cont + dn-PKM Apl Il; F 5 5;, = 3.58, 3.4, and 2.929, all p < 0.01
compared with Cont + dn-PKM Apl 1ll); (3) overexpression of dn-PKM Apl Il on day 3, the
changesin synaptic strength evoked by 2 5-HT (2 5-HT + dn-PKM Apl Il) remained significantly
greater than those in each control group (*) on days 4and 6 (Fs 5;) = 3.593 and 3.174,all p <
0.01 compared with Cont; 5 5,, = 4.381and 3.6, all p << 0.01 compared with Cont + dn-PKM
Aplll) but were notsignificantly different from 2 5-HT alone (F s 5, = 0.001and 0.0001, allp >
0.9); (4) overexpressing dn-PKM Apl Il on d 3, the change in synaptic strength evoked by 2 5-HT
(25-HT + dn-PKM Apl lll) remained significantly greater than that for each control group (*) on
days 4 and 6 (F5 5, = 3.86 and 3.16, all p < 0.01 compared with Cont; F5 5, = 5.004 and
3.863, all p < 0.01 compared with Cont + dn-PKM Apl Ill) but were not significantly different
from 2 5-HT alone (F 5 ;) = 0.003 and 0.002; all p > 0.8).
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software package (Imaging Research). ANOVA was used to assess overall
significant differences, and Scheffé’s F test was used to gauge significant
differences between individual treatments. Significant differences between
specific groups in the histograms summarizing the changes in synaptic
strength were indicated as follows: treatments that evoked a significant
change (p < 0.05) compared with controls are designated with an asterisk
(*), treatments that resulted in changes in synaptic strength and were not
significantly different from controls at any time point are designated with a
hashtag (#), treatments that resulted in significant changes in synaptic
strength after stimuli such that at specific time points they were significantly
different from other stimulated groups are designated with a small circle (O).

Results

The role of PKC/PKM activities in maintaining long-term synap-
tic plasticity in mammals is controversial (Volk et al., 2013; Jalil et
al., 2015; Tsokas et al., 2016)— compensatory substitutions are
recruited under conditions when some isoforms are knocked
down or out, suggesting roles for multiple PKC isoforms in long-
term plasticity. In Aplysia, constitutive PKC activity is required
for sustaining long-term plasticity at the behaviorally relevant
sensorimotor synapse (Cai et al., 2011; Hu et al.,, 2011; Hu and
Schacher, 2015). Itis unclear, however, which isoforms of PKC or
the constitutively active PKMs in the presynaptic and postsynap-
tic partner contributes to the persistence. We therefore used a
dominant-negative approach to interfere with the activity of spe-
cific PKM or PKC isoforms on day 3 in either L7 or sensory
neurons to determine whether the activities of specific isoforms
starting 2 d after repeated applications of 5-HT or paired stimu-
lation contributed to different forms of persistent plasticity. All of
the dominant-negative constructs were kinase dead (>95%)
but were otherwise homologous to wild type to allow interac-
tions with endogenous partners. As controls, we also examined
whether the synaptic baseline was affected by reducing the activ-
ity of specific PKM or PKC isoforms in either L7 or sensory
neurons starting on day 3.

Different cell-specific PKM isoforms maintain persistent
nonassociative LTF

Because constitutive PKC activity contributes to the maintenance
of LTF (Cai et al., 2011; Hu and Schacher, 2015), we focused on
the potential roles of the Aplysia PKM isoforms in L7 or sensory
neurons by interfering with specific PKM isoform activity (Cam-
eron etal., 2009; Bougie etal., 2012; Farah et al., 2016) starting2 d
after the last 5-HT application (Fig. 1A). The overexpression of
the dominant-negative mRFP-tagged PKM isoforms and control
construct (mRFP) were monitored by fluorescent microscopy
24 h after the construct was injected on day 3 (Figs. 1B, 2B; see
also 4B, 5B). The mRFP control construct was expressed quite
strongly and was detected throughout the sensory neuron or L7,
while the mRFP-tagged dominant-negative constructs for each of
the PKMs was expressed at equivalent levels in the cell body,
axons, and neurites of L7 or sensory neurons independent of any
changes in synaptic strength produced by a previous stimula-
tion history on day 0 or 1 (Figs. 1B, 2B; see also 4B, 5B; data not
shown). We examined the consequences of overexpressing each
control or dominant-negative construct in L7 or sensory neurons
on the persistence of nonassociative LTF produced by 2 d of brief
applications of 5-HT (2 5-HT).

Overexpression of dn-mRFP-PKM Apl I in L7 resulted in the
reversal of persistent nonassociative LTF (2 5-HT plus dn-PKM
AplI;n = 13; Fig. 1C,D). The decline in synaptic strength on days
4 and 6 was significant compared with the persistent nonassocia-
tive LTF expressed in cultures with no construct injection (2
5-HT; n = 8) or after injection of the control construct (2 5-HT
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Figure3.  PKCApl |l activity in L7 is not required after day 3 to maintain nonassociative LTF.
A, Phase contrast views of sensorimotor cultures and epifluorescent views of construct expres-
sion in the same view area (control and dominant-negative forms) in L7 24 h after injection.
Scale bar, 50 m. B, Summary of the change in the EPSP amplitude for control and experimen-
tal groups indicated that overexpression of dn-PKC Apl lin L7 (2 5-HT + dn-PKC Apl 1) failed to
affect persistent nonassociative LTF. A two-factor ANOVA indicated a significant effect of treat-
ment over time (F g g7y = 55.135; p < 0.001). Individual comparisons indicated the following:
(1) stimulation with 5-HT produced a significant change in synaptic strength compared with
control () on days 3, 4,and 6 (F 3 ,4) = 9.603,8.779,and 7.166; all p < 0.01); (2) overexpress-
ing control construct eGFP on day 3 had no significant effect on the change in synaptic strength
evoked by 2 d of 5-HT treatments (2 5-HT + eGFP), which remained significantly greater than
the change observed in control (*) on days 4 and 6 (F 5 ,o) = 8.84 and 7.12; all p < 0.01); and
(3) After 2 d of 5-HT treatments, overexpression of dn-PKC Apl 1 (2 5-HT + dn-PKCApl 1) did not
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plus mRFP; n = 8). The persistent facilitation was maintained on
days 4 and 6 in these latter two groups compared with Cont (n =
6) or with overexpression of the control construct (Cont plus
mRFP; n = 8). The decline in synaptic strength produced by the
overexpression of dn-PKM Apl I was such that it was no longer
significantly different from the control groups. Overexpression
of dn-PKM Apl I in L7 after control treatment (Cont plus dn-
PKM Apl I; n = 6) did not alter the synaptic baseline compared
with control alone (Cont; n = 6; Fig. 1C,D). Thus, PKM Apl I
activity in L7 contributes to the maintenance of persistent non-
associative LTF.

Persistent nonassociative LTF was not reversed when overex-
pressing either dn-PKM Apl II (2 5-HT plus dn-PKM Apl II; n =
13) or dn-PKM Apl III (2 5-HT plus dn-PKM Apl II]; n = 15) in
L7 starting 2 d after 5-HT treatments (Fig. 2). The increases in
synaptic strength in both sets of cultures were comparable to the
increase evoked by 2 5-HT (n = 7). In the absence of any 5-HT
applications, the synaptic baseline was unaffected by the overex-
pression of dn-PKM Apl II (Cont plus dn-PKM Apl II; n = 8) or
by dn-PKM Apl III (Cont plus dn-PKM Apl III; n = 8) compared
with Cont (n = 6; Fig. 2C,D). Thus, reducing either PKM Apl II
or PKM Apl IIT activity in L7 does not affect the maintenance of
persistent nonassociative LTF.

We also examined whether the activity of classical PKC (PKC
AplI), novel PKC (PKC Apl II), or atypical PKC (PKC Apl III) in
L7 or the sensory neurons might contribute to the maintena-
nce of persistent nonassociative LTF. While dominant-negative
PKCs and PKMs might be expected to have similar effects, the
dominant-negative PKCs contain regulatory domain elements
absent in the PKMs that may allow them to interact with addi-
tional scaffolds or substrates distinct from the PKMs. Alterna-
tively, while all domains in PKM are present in PKC, inhibitory
interactions between the regulatory domain and the catalytic do-
main may mask these interactions in dominant-negative PKCs,
but not PKMs, and allow dominant-negative PKMs to have ac-
tivities not shared with dominant-negative PKCs. The overex-
pression of the dominant-negative eGFP-tagged PKC isoforms
and control construct (eGFP) were monitored by fluorescent mi-
croscopy 24 h after constructs were injected on day 3 (Fig. 3A;
also see 6A). The eGFP construct was expressed quite strongly
and was detected throughout L7 or sensory neurons, while each
of the eGFP-tagged dominant-negative PKC constructs was ex-
pressed at equivalent levels in the cell body, axons, and neurites of
L7 or sensory neurons independent of the previous stimulation
history (data not shown). Each dominant-negative PKC con-
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significantly affect the change in synaptic strength compared with other 5-HT-treated groups on days
4and6 (F 3 . = 0.021and 0.022, allp > 0.8 compared with 2 5-HT alone; F  , = 0.007and 0.051,
allp > 0.8 compared with 2 5-HT + eGFP), which remained significantly greater than the change in
control (F3 50 = 8.84and7.12,all p < 0.01). ¢, Summary of the change in the EPSP amplitudes for
various control groups with and without overexpression of the control construct or the dominant-
negative constructs. A two-factor ANOVA indicated a significant effect of treatment over time
(Fr2,123 = 23.302;p <<0.001). Individual comparisonsindicated the following: (1) overexpression of
dn-PKCApl1inL7 on day 3 after control treatment (Cont + dn-PKC Apl I) had no significant effect on
synaptic baseline compared with control or control + eGFP (#) on day 4 (F, ,,) = 0.008 or 0.003; all
p>0.8)andday6 (F, ,;, = 0.007 or 0.004; all p > 0.8); (2) overexpression of dn-PKC Apl Ilin L7 on
day 3 after control treatment (Cont + dn-PKCApl Il) had a significant effect (depression) on synaptic
baseline compared with control or control + eGFP (*) onday 4 (F, 4,y = 2.203 0r2.097;allp < 0.05)
and day 6 (Fy, 4, = 1.997 or 2.113; all p << 0.05); (3) overexpression of dn-PKC Apl Il in L7 after
control treatment on day 3 (Cont + dn-PKC Apl 1ll) had a significant effect (depression) on synaptic
baseline compared with control or control + eGFP (*) onday 4 (F, 4, = 2.2110r1.989;allp < 0.05)
andday 6 (F, 47, = 1.933 0r 1.987; all p < 0.05).
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Figure 4.  PKM Apl | activity in the sensory neurons is not required after day 3 to maintain nonassociative LTF. A, Experimental protocol for evoking persistent nonassociative LTF consisted of
repeated applications of 5-HT on days 0 and 1 of culture. EPSP amplitudes were tested before control or experimental treatments on day 0 and retested on days 3, 4, and 6. Constructs were injected
into sensory neurons on day 3. B, Phase contrast views of sensorimotor cultures and epifluorescent views of construct expression in the same view area (control and dominant-negative form
constructs) in the sensory neurons 24 h after injection. Scale bar, 50 pm. €, Examples of the change in the EPSP amplitudes in L7 over time for control and experimental groups. Overexpression of
dn-PKM Apl | after control treatment did not impact synaptic baseline. All experimental groups receiving repeated applications of 5-HT (2 5-HT) showed an increase in EPSP amplitude that persisted
to day 6, including those that were overexpressing dn-PKM Apl lin the sensory neurons. D, Summary of the change in the EPSP amplitude for control and experimental groups. A two-factor ANOVA
indicated asignificant effect of treatment over time (F 5 147y = 66.941; p << 0.001). Individual comparisons indicated the following: (1) overexpression of dn-PKM Apl lin the sensory neurons after
control treatment (Cont + dn-PKM Apl I) had no significant effect on synaptic baseline compared with control or control + mRFP (#) on day 4 (Fs ,;, = 0.004 0r 0.002; all p > 0.8) and day 6
(5,47 = 0.0050r0.011;all p > 0.8); (2) 2 5-HT produced a significant increase in synaptic strength () on days 3, 4, and 6 compared with those for each control group (F s ,,) = 4.689, 3.962. and
3.474,allp < 0.01 compared with Cont; F 5 .7, = 5.356,4.815,and 3.961, all p < 0.01 compared with Cont + mRFP; F 5 .,y = 5.431,4.675,and 4.106, all p < 0.01 compared with Cont + dn-PKM
Apl1); (3) after 2 5-HT and overexpression of dn-PKM Apl | (2 5-HT + dn-PKM Apl 1) on day 3, the change in synaptic strength remained significantly greater than for each control group (*) on days
4and6 (Fs 47y = 4.321and 3.711, p < 0.01 compared with Cont; 5 ,,) = 5.586 and 4.468, p << 0.01 compared with Cont + mRFP; f; ,,, = 5.407 and 4.653, p << 0.01 compared with Cont +
dn-PKM Apl 1), which was not significantly different from other 5-HT-treated groups on days 4 and 6 (F s ,,) = 0.061and 0.064, p > 0.7 compared with 2 5-HT alone; F 5 ., = 0.07 and 0.107, p >
0.5 compared with 2 5-HT + mRFP).
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Figure 5.  PKM Apl 1l or PKM Apl Il activity in the sensory neurons is required after day 3 to maintain nonassociative LTF. A, Experimental protocol. Persistent nonassociative LTF was evoked by
repeated applications of 5-HT on days 0 and 1. EPSP amplitudes were tested before control or experimental treatments on day 0 and were retested on days 3, 4, and 6. Constructs for dn-PKM Apl Il
or dn-PKM Apl Il were injected into sensory neurons on day 3. B, Phase contrast views of sensorimotor cultures and epifluorescent views of construct expression in the same view area 24 h after
injection. Scale bar, 50 pem. €, Examples of the change in the EPSP amplitudes in L7 over time for control and experimental groups. Overexpression of dn-PKM Apl Il or dn-PKM Apl I1l in the sensory
neurons reversed nonassociative LTF and had no effect on synaptic baseline in control. D, Summary of the change in the EPSP amplitudes for control and experimental groups. A two-factor ANOVA
indicates a significant effect of treatment over time (F ;5 144) = 33.39; p < 0.001). Individual comparisons indicated the following: (1) overexpression of dn-PKM Apl Il or dn-PKM Apl lllin the
sensory neurons after control treatment (Cont + dn-PKM Apl II; Cont + dn-PKM Apl Ill) had no significant effect on the synaptic baseline compared with control (#) on (Figure legend continues.)
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struct was shown previously to have isoform-specific effects on
inhibiting physiological changes that are produced by activating
their respective PKC isoforms (Manseau et al., 2001; Zhao et al.,
2006; Lorenzetti et al., 2008; Hu et al., 2010).

Overexpression of dn-PKC AplIin L7 on day 3 (Fig. 3B) did
not significantly affect the maintenance of persistent nonassocia-
tive LTF (2 5-HT plus dn-PKC Apl I; n = 10) compared with the
increases in synaptic strength evoked by 2 5-HT (n = 7) or by 2
5-HT plus overexpression of the control construct (2 5-HT plus
eGFP; n = 7). Overexpression of dn-PKC Apl I (Cont plus dn-
PKC Apl I; n = 10) in L7 on day 3 failed to affect the synaptic
baseline (Fig. 3C). In contrast, the overexpression of dn-PKC Apl
II (n = 12) or dn-PKC Apl III (n = 10) in L7 on day 3 resulted in
a significant decline in synaptic baseline (Fig. 3C) compared with
overexpression of the control construct eGFP (Cont plus eGFP;
n = 7). Since the overexpression of dn-PKC Apl II or dn-PKC Apl
Il in L7 affected the synaptic baseline, we could not test their role
in maintaining persistent LTF; we cannot distinguish between a
reversal of the synaptic plasticity and a decrease in the basal syn-
aptic strength (the synaptic baseline). The results suggest that
PKM AplI, but not PKC Apl1, in L7 contributes to the persistence
of nonassociative LTF. In addition, PKC Apl IT and PKC Apl III
differ from their respective PKM counterparts in that interfering
with the activity of each of the PKC isoforms affects the synaptic
baseline.

Different PKM isoforms in the sensory neurons are required
for maintaining persistent nonassociative LTF (Figs. 4, 5). Over-
expression of dn-PKM Apl I in the sensory neurons failed to
reverse persistent nonassociative LTF (2 5-HT plus dn-PKM Apl
I; n = 16; Fig. 4). The increase in synaptic strength observed after
injection of dn-PKM Apl I was comparable to the increase evoked
by 2 5-HT (n = 7) or the increase after injection of the control
construct in the sensory neurons (2 5-HT plus mRFP; n = 8). The
increase in synaptic strength was also significantly greater than
that in the Cont (1 = 6) or after injection of the control construct
(Cont plus mRFP; n = 8). In addition, overexpression of dn-
PKM Apl I in the sensory neurons (Cont plus dn-PKM Apl [
n = 8) did not affect the synaptic baseline (Fig. 4C,D). Unlike the
results with L7, reducing PKM Apl I activity in the sensory neu-
rons days after 5-HT treatments does not affect the maintenance
of nonassociative LTF.

Persistent nonassociative LTF was reversed after overexpress-
ing dn-PKM Apl IT (2 5-HT plus dn-PKM Apl II; n = 10) or
dn-PKM Apl IIT (2 5-HT plus dn-PKM Apl III; n = 15) in the
sensory neurons (Fig. 5). The increases in synaptic strength in
both sets of cultures on day 3 before construct injection were
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(Figure legend continued.) ~ days4and6 (F s 45 = 0.002and 0.001,all p > 0.8 for dn-PKM Apl
II; F (5,45 = 0.018 and 0.0002, all p > 0.7 for dn-PKM Apl 111); (2) 2 5-HT produced a significant
increase in the change in synaptic strength compared with each control group (*) on days 3, 4,
and 6 (Fs 45 = 3.513,4.190, and 4.624, all p < 0.01 compared with Cont; F5 45 = 3.685,
4.499,and 5.170, all p < 0.01 compared with Cont + dn-PKM Apl II; F 5 ,) = 3.838,4.269and
5332, all p <0.01 compared with Cont + dn-PKM Apl ll); (3) after 2 5-HT and overexpression
of dn-PKM Apl Il (2 5-HT + dn-PKM Apl 1) on day 3, the change in synaptic strength was not
significantly different from Cont or Cont + dn-PKM Apl Il (#) on day 4 (F s 45) = 1.186 0r 1.267;
allp > 0.1) and day 6 (F5 4, = 0.132 0r 0.170; all p > 0.5); (4) after 2 5-HT treatments and
overexpression of dn-PKM Apl I11 (2 5-HT + dn-PKM Apl Ill) on day 3, the change in synaptic
strength was not significantly different from Cont or Cont -+ dn-PKM Apl Il (#) on day 4
(Fis.43 = 1.5410r 1.451;all p > 0.1) and day 6 (F 5 45) = 0.250 0r 0.286; all p > 0.5); (5) after
2 5-HT treatments and overexpression of dn-PKM Apl Il or dn-PKM Apl Ill, the changes in
synaptic strength were significantly smaller (o) than the change detected in 2 5-HT alone on day
6 (F(s 45 = 4213 0r4.412; all p < 0.01).
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significantly reduced on days 4 and 6 after overexpression of
dn-PKM Apl II or dn-PKM Apl III. These reversals of the in-
creases in synaptic strength were significant compared with the
increase evoked by 2 5-HT (n = 8). Overexpression of either
dn-PKM Apl II (Cont plus dn-PKM Apl II; n = 7) or dn-PKM
AplIII (Cont plus dn-PKM Apl IIL; n = 8) in the sensory neurons
after control treatments did not affect the synaptic baseline, and
synaptic strengths were comparable to those of Cont alone (n =
6; Fig. 5C,D). Thus, unlike the results observed with L7, in the
sensory neurons PKM Apl ITand PKM Apl IIT activity contributes
to maintaining persistent nonassociative LTF, while PKM Apl I
activity does not.

We also examined whether the activity of PKC Apl I, PKC Apl
II, or PKC Apl III in the sensory neurons might contribute to
the persistence of nonassociative LTF. Control and dominant-
negative constructs were overexpressed in the sensory neurons
(Fig. 6A). Overexpression of dn-PKC AplIin the sensory neurons
on day 3 (Fig. 6B) did not significantly affect the maintenance of
persistent nonassociative LTF (2 5-HT plus dn-PKC Apl I; n = 8)
compared with the increases in synaptic strength evoked by 2
5-HT (n = 7) or by 2 5-HT plus overexpression of the control
construct (2 5-HT plus eGFP; n = 7). Overexpression of dn-PKC
Apl I (Cont plus dn-PKC Apl I; n = 8) in the sensory neurons on
day 3 failed to affect the synaptic baseline (Fig. 6C). In contrast,
overexpression of dn-PKC Apl II (n = 10) or dn-PKC Apl III
(n = 10) in the sensory neurons on day 3 resulted in a significant
decline in synaptic baseline (Fig. 6C) compared with overexpres-
sion of the control construct eGFP (Cont plus eGFP; n = 7) or
control alone. Similar to the L7 motor neuron, because the over-
expression of dn-PKC Apl II or dn-PKC Apl III in the sensory
neurons decreased the synaptic baseline, we could not test their
role in maintaining persistent LTF. The results suggest that the
activity of PKM Apl IT or PKM Apl I1I, but not PKM Apl I or PKC
Apl 1, in the sensory neurons even several days after 5-HT appli-
cations, is required to sustain persistent nonassociative LTF.

Different set of cell-specific PKM isoforms maintain
persistent associative LTF

Do activities of the same PKM isoforms in L7 or sensory neurons
maintain persistent associative LTF produced by two pairings of
activity plus 5-HT (Fig. 7A)? In L7 (Fig. 7B), overexpression of
dn-PKM Apl II [2 (Tet plus 5-HT) plus dn-PKM Apl II; n = 11]
or dn-PKM Apl IIT [2 (Tet plus 5-HT) plus dn-PKM Apl II]; n =
12] on day 3 resulted in the reversal of persistent associative LTF
on days 4 and 6. The change in synaptic strength was significantly
reduced compared with the persistent associative LTF evoked
after paired stimulation alone [2 (Tet plus 5-HT); n = 8] or when
L7 was expressed a control construct [2 (Tet plus 5-HT) plus
mRFP; n = 8]. In contrast, overexpression of dn-PKM Apl I in
L7 [2 (Tet plus 5-HT) plus dn-PKM Apl I; n = 10] failed to
reverse persistent associative LTF on days 4 and 6 (Fig. 7B). The
level of facilitation was not significantly different from the facil-
itation produced by paired stimulation alone or paired stimula-
tion plus overexpression of the control construct in L7. Thus, the
PKM activities in L7 that maintain persistent associative LTF—
PKM Apl I and PKM Apl III, but not PKM Apl I—are the oppo-
site of the PKMs in L7 that maintain nonassociative LTF—PKM
Apl 1, but not PKM Apl IT or PKM Apl IIL.

In the sensory neurons, overexpression of dn-PKM Apl I or
dn-PKM Apl I1I failed to reverse persistent associative LTF pro-
duced by two pairings of activity plus 5-HT (Fig. 7C). Overex-
pression of dn-PKM Apl1 [2 (Tet plus 5-HT) plus dn-PKM Apl I;
n = 8] on day 3 failed to affect the facilitation evoked by two



Hu et al. @ PKM Isoforms and Persistent Synaptic Plasticity

2 5-HT +
dn-PKC Apl |

A 2 5-HT + eGFP

B 200 - sensory neuron
™ mm Day 0 * * *
=
©
n
©
Nel
Y—
s}
=
o
n
o
L
N~
-
Cont 2 5-HT 25-HT+ 25-HT+
eGFP  dn-PKC Apl |
C mm Day 0
- 140 | mmDay3 sensory neuron
== Day 4
£120 { mmDays
(0]
17}
®©
o
Y—
s}
S
o
2
o
L
N~
—4 5
\§ \ \ \
O x o PvC a4 e P Welad )
T N A
GO(\ Co(\\ Go(\‘
Figure 6.  PKC Apl | activity in the sensory neurons is not required after day 3 to maintain

nonassociative LTF. A, Phase contrast views of sensorimotor cultures and epifluorescent views
of construct expression in the same view area (control and dominant-negative forms) in the
sensory neurons 24 h after injection. Scale bar, 50 m. B, Summary of the change in the EPSP
amplitude for control and experimental groups indicated that overexpression of dn-PKC Apl in
the sensory neurons (2 5-HT + dn-PKC Apl 1) failed to affect persistent nonassociative LTF. A
two-factor ANOVA indicated a significant effect of treatment over time (Fq,, = 32.47;
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pairings of stimuli on days 4 and 6 compared with the change
observed in 2 (Tet plus 5-HT) (n = 6) or following the expression
of a control construct [2 (Tet plus 5-HT) plus mRFP; n = 7].
Overexpression of dn-PKM Apl I1I (n = 8) also failed to reverse
the increase in synaptic strength produced by two pairings. In
contrast, overexpression of dn-PKM Apl I (n = 10) in the sen-
sory neurons reversed associative LTF on days 4 and 6. The
change in synaptic strength was no longer significantly different
from that of the control (n = 6). Thus, PKM Apl II activity in the
sensory neurons maintains associative LTF, while both PKM Apl
II and PKM Apl III activities in the sensory neurons maintain
nonassociative LTF.

We also examined whether PKC Apl I was required for the
expression of persistent associative LTF. Overexpression of
dominant-negative PKC Apl I in either L7 or sensory neurons
failed to interfere with associative LTF (data not shown). Dom-
inant-negative PKC Apl I in the sensory neurons did affect a
property that is characteristic of persistent associative LTF—the
altered kinetics of homosynaptic depression (HSD) produced by
low-frequency stimulation of the sensory neuron (Hu and Sch-
acher, 2015). Overexpression of dominant-negative PKC Apl I,
but not dominant-negative PKM Apl I or PKM Apl I1I, reversed
HSD kinetics back to control levels (data not shown). Overex-
pression of dominant-negative PKM Apl II in the sensory neu-
rons, which reversed persistent associative LTF (Fig. 7) also
reversed the kinetics of HSD back to control levels (data not
shown). As shown previously (Hu and Schacher, 2015), all ma-
nipulations that reversed persistent associative LTF (even over-
expression of specific dominant-negative PKMs in L7) reversed
the attenuated kinetics of HSD back to control levels (data not
shown). Thus, PKC Apl I activity in the sensory neurons has a
more restricted role in persistent associative LTF.

Activity of classical or SOL calpain is not required for the
maintenance of persistent LTF but is required for the
expression of persistent LTF

The Aplysia PKM:s are generated by the action of calpains on their
respective PKC isoforms (Bougie et al., 2009, 2012; Farah et al.,
2016). Are calpain activities critical for the constitutive pres-
ence of PKM activities days after 5-HT applications or paired
stimuli that generated the different forms of persistent plas-
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p < 0.001). Individual comparisons indicated the following: (1) stimulation with 2 d of 5-HT
applications (2 5-HT or 2 5-HT + eGFP) produced a significantincrease in the change in synaptic
strength compared with control (*) on day 3 (F3 ,,) = 5.231 0r 4.982; all p << 0.01), day 4
(F3.24y = 4.503 0r 4.333; all p < 0.01), and day 6 (F 5 54y = 3.535 0r3.759; all p < 0.01); (2)
after 5-HT treatments, overexpression of dn-PKC Apl | on day 3 in the sensory neurons had no
significant effect on the change in synaptic strength, which remained significantly greater than
the change observed in control (*) on days 4 and 6 (F 5 ,,) = 3.777 and 3.35; all p < 0.01).
C, Summary of the change in the EPSP amplitudes for various control groups with/without
overexpression of dominant-negative PKCs constructs. A two-factor ANOVA indicated a signif-
icant effect of treatment over time (F; 105y = 28.059; p << 0.001). Individual comparisons
indicated the following: (1) overexpression of dn-PKC Apl lin the sensory neurons on day 3 after
control treatment (Cont + dn-PKC Apl I) had no significant effect on synaptic baseline com-
pared with control or control + eGFP (#) on day 4 (F, 55, = 0.002 or 0.0001; all p > 0.8) and
day 6 (F(4 35, = 0.00040r0.0002; all p > 0.9); (2) overexpression of dn-PKC Apl Il in the sensory
neurons on day 3 after control treatment (Cont + dn-PKC Apl Il) had a significant effect
(depression) on synaptic baseline compared with control or control + eGFP (*) on day 4
(F35 = 2.053 0r2.217; all p < 0.05) and day 6 (F 4 35) = 1.962 or 2.111; all p < 0.05); (3)
overexpression of dn-PKC Apl Il in the sensory neurons on day 3 after control treatment
(Cont + dn-PKC Apl Ill) had a significant effect (depression) on synaptic baseline compared
with control or control + eGFP (*) on day 4 (F, 35y = 1.906 or 1.974; all p < 0.05) and day 6
(Fia35 = 1.967 0r 1.911; all p << 0.05).
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Figure 7. PKM Apl Il or PKM Apl Il activity in L7 or PKM Apl Il activity in the sensory neurons is required to maintain persistent associative LTF. 4, Experimental protocol for evoking persistent
associative LTF consisted of pairing action potential activity in the sensory neurons (20 Hz for 2 s) with a brief application of 5-HT on days 0 and 1. EPSP amplitudes were tested before control or
experimental treatments on day 0 and were retested on days 3, 4, and 6. Control or experimental constructs were injected into L7 or sensory neuron on day 3. B, Summary of the change in the EPSP
amplitudes for control and experimental groups after overexpression of constructs in L7. A two-factor ANOVA indicated a significant effect of treatment over time (Fy5 ;50) = 30.154; p << 0.001).
Individual comparisons indicated the following: (1) all groups with two pairings of stimuli produced a significant increase in the change in synaptic strength compared with control (*) on day 3
[Fi5,50) = 3.687 for 2 (Tet + 5-HT), 3.814for 2 (Tet + 5-HT) + mRFP, 4.15 for 2 (Tet + 5-HT) + dn-PKM Apl 1, 4.134 for 2 (Tet + 5-HT) + dn-PKM Apl II, and 4.567 for 2 (Tet + 5-HT) + dn-PKM
Aplil;all p << 0.01]; (2) after two pairings of stimuli and overexpression of dn-PKM Apl 1 [2 (Tet + 5-HT) + dn-PKM Apl I]in L7, the change in synaptic strength remained significantly greater than
thatfor control (*) on day 4 (F 5 5) = 4.535; p << 0.01) and day 6 (F 50, = 5.096; p << 0.01); (3) after two pairings of stimuli and overexpression of dn-PKM Apl Il [2 (Tet + 5-HT) + dn-PKM Apl Il]
in L7, the change in synaptic strength was not significantly different from that for control (#) on days 4 and 6 (Fs s,) = 1.077 and 0.208; all p > 0.1), which were significantly smaller (0) than the
change detected in 2 (Tet + 5-HT) alone on day 6 (F550) = 3.844; p << 0.01); (4) after two pairings of stimuli and overexpression of dn-PKM Apl Ill (Figure legend continues.)
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ticity? Dominant-negative versions of two calpain isoforms,
classical or SOL, were injected into L7 or sensory neurons on
day 3, the same time as the injections of dn-PKMs and dn-
PKCs. Dominant-negative calpains may inhibit calpains by
forming inactive dimers or by competing for binding with
scaffolds or substrates. The dominant-negative classical cal-
pain blocks both the cleavage of a FRET-sensitive reporter of
Aplysia PKCs and the induction of plasticity during interme-
diate forms of facilitation (Farah et al., 2016). The persistent
increases in synaptic strength evoked by repeated applications
of 5-HT (nonassociative LTF) or by two pairings of activity
and 5-HT (associative LTF) were unaffected by the overex-
pression of the dominant-negatives of either calpain isoform
in L7 (Fig. 8A,C) or in the sensory neurons (Fig. 8 B, D) after
day 3. Overexpressing each dominant-negative calpain had no
significant effect on synaptic baseline. Thus, it appears that the
constitutive activations of the PKMs, days after 5-HT applica-
tions or paired stimuli that produce different forms of persis-
tent LTF do not require the activities of classical or SOL
calpain.

Are calpain activities required earlier for the expression of the
different forms of persistent LTF? We injected the different
dominant-negative calpains into L7 or sensory neurons on day 1,
4-5 h after the second set of stimuli (Fig. 9A,D) and examined
the changes in synaptic strength on days 2, 3, and 5. Because of the
earlier time of injection of the dominant-negatives, changes in
the expression of LTF could be due to a block in the induction of
the persistent LTF, a reversal in the initial phases of LTF from
stimulation on day 0, day 1, or both.

Overexpression of dn-SOL in L7 on day 1 blocked the expres-
sion of persistent nonassociative LTF (Fig. 9B). Compared with
the increase in synaptic strength produced by 2 d of 5-HT appli-
cations (n = 6), the synaptic strength after injection of dn-SOL
(n = 8) was significantly smaller on days 3 and 5. In contrast,
overexpression of dn-classical (n = 8) in L7 on day 1 did not
significantly change the increase in synaptic strength of persistent
nonassociative LTF on days 2, 3, and 5. Overexpression of dn-
SOL (n = 6) or dn-classical (n = 6) in L7 after control treatments
did not affect the synaptic baseline compared with Cont alone
(n = 6; Fig. 9B).

Overexpression of dn-SOL in the sensory neurons on day 1
also blocked the expression of persistent nonassociative LTF (Fig.
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(Figure legend continued.)  [2 (Tet + 5-HT) + dn-PKM Apl Ill] in L7, the changes in synaptic
strength were not significantly different from those of control (#) on days 4 and 6 (F s 5o, =
0.551and 0.045; all p > 0.1), which were significantly smaller (o) than the changes detected in
2(Tet + 5-HT) ondays 4and 6 (F 5 0 = 2.302and 5.10;p < 0.05and 0.01). ¢, Summary of the
change in the EPSP amplitudes for control and experimental groups after overexpression of
constructs in the sensory neurons. A two-factor ANOVA indicated a significant effect of treat-
ment over time (F;5 117y = 30.764; p << 0.001). Individual comparisons indicated the follow-
ing: (1) all groups with two pairings of stimuli produced a significant increase in the change in
synaptic strength compared with control (*) on day 3 [Fs 50, = 3.446 for 2 (Tet + 5-HT), 3.67
for 2 (Tet + 5-HT) + mRFP, 4.009 for 2 (Tet + 5-HT) + dn-PKM Apl |, 4.28 for 2 (Tet + 5-HT) +
dn-PKM Apl I, 3.772 for 2 (Tet + 5-HT) + dn-PKM Apl I1I; all p << 0.01]; (2) after two pairings
of stimuli and overexpression of either dn-PKM Apl | [2 (Tet + 5-HT) + dn-PKM Apl I] or
dn-PKM Apl Il [2 (Tet + 5-HT) + dn-PKM Apl IlI] in the sensory neurons, the changes in
synaptic strength remained significantly greater than those for control (*) on day 4 (F s 3, =
2.3870r3.660;p < 0.050r0.01) and day 6 (F s 35, = 2.6810r3.779;p < 0.05 0r 0.01); (3) after
two pairings of stimuli and overexpression of dn-PKM Apl I1 [2 (Tet + 5-HT) + dn-PKM Apl 1]
in the sensory neurons, the changes in synaptic strength were not significantly different from
those for control (#) on day 4 (F 5 35 = 1.810;p > 0.05) and day 6 (F 5 54, = 0.209;p > 0.3),
which were significantly smaller (o) than the changes detected in 2 (Tet + 5-HT) on day 6
(Fis 39 = 2.192; p < 0.05).
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9C). Compared with the increases in synaptic strengths produced
by 2 5-HT (n = 6), the change in synaptic strengths after the
injection of dn-SOL (n = 8) was significantly smaller on days 2, 3,
and 5. In contrast, overexpression of dn-classical in the sensory
neurons on day 1 (n = 8) did not significantly affect persistent
nonassociative LTF. Overexpression of dn-SOL (n = 6) or dn-
classical (n = 6) in the sensory neurons after control treatments
did not affect the synaptic baseline compared with Cont alone
(n = 6; Fig. 9C). Thus, the activity of SOL calpain, but not clas-
sical calpain, both in the sensory neurons and in L7, is required
for the expression of persistent nonassociative LTF.

Persistent associative LTF produced by two pairings of tetanus
plus 5-HT required the activity of classical calpain, but not SOL
calpain, in L7 (Fig. 9E). Compared with the increases in synaptic
strengths produced by two pairings alone (n = 6), the change in
synaptic strength after overexpression of dn-classical in L7 on day
1 (n = 8) was significantly smaller on days 2, 3, and 5. In contrast,
overexpression of dn-SOL (n = 8) on day 1 failed to affect the
expression of persistent associative LTF.

Overexpression of dn-classical in the sensory neurons also
blocked the expression of persistent associative LTF (Fig. 9F).
Compared with the increases in synaptic strength produced by
two pairings (n = 6), the change in synaptic strength after over-
expression of dn-classical (n = 8) was significantly smaller on
days 2, 3, and 5. Overexpression of dn-SOL (n = 8) in the sensory
neurons failed to affect persistent associative LTF. Thus, the same
dominant-negative constructs that failed to interfere with the
maintenance of persistent plasticity when overexpression begins
on day 3 now impact the expression of persistent plasticity when
overexpression begins on day 1. Stimulus-dependent activation
of specific calpain activities is required for the expression of dif-
ferent forms of persistent plasticity.

Discussion

We examined whether constitutively active PKCs, the PKMs,
contribute to the maintenance of different forms of long-term
plasticity starting 2 d after the stimuli that produced the plasticity.
Our results suggest that repeated applications of 5-HT or pairing
activity with a 5-HT application lead to the activation of specific
calpains in the sensory neuron and in L7 that cleave PKCs into
PKMs and contribute to the generation of cell-specific sets of
PKMs. The constitutive presence of the PKMs in each neuron
does not require the constitutive actions of the calpains. Specific
PKM activities in each neuron contribute to the different forms
of persistent plasticity. The results suggest that a timely stimulus-
dependent increase in a specific calpain activity and specific sets
of PKM activities in the presynaptic and postsynaptic neurons are
needed for maintaining different forms of long-term synaptic
plasticity at the behaviorally relevant sensorimotor synapse of
Aplysia (Table 1, Table 2).

Cell-specific roles of PKMs in maintaining persistent LTF

Different sets of PKMs in the presynaptic and postsynaptic neuron
contribute to the maintenance of each form of LTF, and, in general,
there is specificity in the actions of the dominant-negatives, suggest-
ing a specific interaction in the sensory and motor neuron with each
isoform of PKM. However, both dn-PKM Apl II and dn-PKM Apl
III expressed in L7 reverse associative LTF, while both dn-PKM Apl
IT'and dn-PKM Apl IIT expressed in the sensory neuron reverse non-
associative LTF. The similar effects of these two dominant-negatives
may result because they share a similar scaffold/substrate and thus
represent an example of nonisoform specificity of the dominant-
negatives. Alternatively, it may result because both PKMs are inde-
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Figure 8.  Classical or SOL calpain activity after day 3 is not required for maintaining persistent LTF. A, B, Summary of the changes in synaptic strength after control and 5-HT treatments that
produced persistent nonassociative LTF with/without overexpression of dominant-negative constructs for classical or SOL calpains in L7 (A) or sensory neurons (B) on day 3. A two-factor ANOVA
indicated a significant effect of treatment over time for L7 (F ;5 145 = 202.9; p < 0.001) and for sensory neuron (F ;5 49y = 94.49; p << 0.001). Individual comparisons indicated the following: (1)
overexpression of dn-classical or dn-SOL on day 3 after control treatment (Cont + dn-classical or Cont + dn-SOL) had no significant effect on synaptic baseline compared with control (#) on day 4
(F(s 36 = 0.00010r 0.0002, all p > 0.9 for L7; F 5 33 = 0.0001 0r 0.005, p > 0.8 for sensory neuron) and day 6 (F s 35, = 0.002 or 0.007, all p > 0.7 for L7; F 5 55, = 0.0001 or 0.002, p > 0.8 for
sensory neuron); (2) 2 5-HT produced a significant change in synaptic strength compared with control (*) on days 3, 4, and 6 (Fs.36) = 8.871,8.021,and 7.526, all p < 0.01in A; F 5 55, = 5.804,
5.315,and 5.464, all p < 0.01in B); (3) 2 5-HT plus overexpression of either dn-classical or dn-SOL on day 3 had no significant effect on the changes in synaptic strength compared to that evoked
by 2 5-HT alone on day 4 (F s 55) = 0.004 0r 0.002, all p > 0.7 for L7; F 5 33 = 0.0001 0r 0.002, all p > 0.8 for sensory neuron) and day 6 (F5 3 = 0.0010r 0.013, all p > 0.6 for L7; 5 33, = 0.001
0r0.0001, all p > 0.8 for sensory neuron), and they remained significantly greater than those for control (*) on day 4 (Fs,36 = 8.1740r8.84, all p << 0.01 forl7; Fis 33 = 5.36.0r5.496,allp < 0.01
for sensory neuron) and day 6 (F s 55) = 8.18 0r 8.693, all p << 0.01for L7; F 5 33) = 5.304 or 5.464, all p < 0.01 for sensory neuron). C, D, Summary of the changes in synaptic strength after control
and stimulation treatments that produce persistent associative LTF with and without overexpression of dominant-negative constructs for classical or SOL calpainsin L7 (€) or sensory neurons (D) on
day 3. A two-factor ANOVA indicated a significant effect of treatment over time for L7 (F g 5 = 59.939; p < 0.001) and for sensory neuron (Fg 45 = 74.145; p << 0.001). Individual comparisons
indicated the following: (1) two pairings of stimuli [2 (Tet + 5-HT)] produced significant changes in synaptic strength compared with control (*) on days 3, 4,and 6 (F 5 ,3) = 9.656, 8.603 and 9.147,
allp<0.01in GF 3 5 = 10.216,9.845and 9.572, all p < 0.01in D); (2) after two pairings of stimuli, overexpression of either dn-classical or dn-SO0L on day 3 had no significant effect on the changes
in synaptic strength compared with 2 (Tet + 5-HT) alone on day 4 (F 5 ,5) = 0.0010r 0.002, all p > 0.9 for L7; 5 ,,, = 0.004 0r 0.018, all p > 0.5 for sensory neuron) and day 6 (F 5 ,3) = 0.008
0r0.001,allp>0.7for L7; 5 ,,) = 0.008 0 0.001, all p > 0.7 for sensory neuron), and they remained significantly greater than those for control (*) on day 4 (F 5 ,3) = 8.436 0r 8.874, all p < 0.01
forL7; F3 55 = 10.177 0r 9.735, all p << 0.01 for sensory neuron) and day 6 (F 5 ,5) = 9.676 or 9.334, all p < 0.01for L7; F 5 ,,) = 9.726 or 10.148, all p < 0.01 for sensory neuron).

pendently important for plasticity. Although we cannot distinguish
between these two possibilities directly, the finding that only dn-
PKM Apl II expressed in the sensory neuron reverses associative LTF
argues against PKM Apl III and PKM Apl I competing for all forms
of plasticity. While isoform-specific effects of the dn-PKMs were
seen, we do not have an independent method to determine the effi-
cacy of the dn-PKMs. Thus, we cannot rule out the possibility that
the failure of a particular dominant-negative either in L7 or sensory
neurons to reverse a particular form of plasticity was due to insuffi-
cient expression of the dn-PKM. If this were true, it would indicate

that distinct forms of LTF had different thresholds for PKM activity
since all dn-PKMs did reverse some form of plasticity at the level of
expression obtained in a specific cell (Table 1).

Each PKM activity affects critical functions that are necessary
for maintaining each form of plasticity, since blocking the activity
of a single isoform (in either sensory neurons or L7) leads to the
reversal of a specific form of long-term plasticity. In L7, these
functions might include regulating the synthesis and distribution
of molecules critical for different postsynaptic functions (Trudeau
and Castellucci, 1995; Zhu et al., 1997; Sherff and Carew, 2002;
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Figure 9. The SOL calpain isoform is required for the expression of persistent nonassociative LTF, while the classical calpain isoform is required for the expression of persistent associative LTF.
A, The experimental protocol for examining the effects of overexpressing dominant-negative forms of calpain isoforms on the expression of persistent nonassociative LTF. Cultures were treated with
two sets of 5-HT applications on days 0 and 1. Dominant-negative constructs of the different calpain isoforms were injected into L7 or sensory neuron 4 -5 h after last application of 5-HT on day 1.
EPSP amplitudes were tested before control or experimental treatments on day 0 and were retested on days 2, 3,and 5. B, , Summary of the change in the EPSP amplitudes for control and stimulated
groups (2 5-HT) with and without overexpression of dn-SOL or dn-classical in L7 (B) or sensory neurons (C) on day 1. A two-factor ANOVA indicated a significant effect of treatment over time for L7
(Fi5.102) = 70.256; p << 0.001) and for the sensory neurons (F;5, 10, = 25.562; p << 0.001). Individual comparisons indicated the following: (1) overexpression of dn-classical or dn-SOLin L7 on
day 1after control treatment had no significant effect on synaptic baseline compared with control (#) on day 2 (F 5 5,) = 0.0003 0r 0.0001; all p > 0.9) and day 3 (F 5 5,y = 0.0004 0r 0.0003; all p >
0.9)and day 5 (F (s 34) = 0.0040r0.002; all p > 0.7); (2) overexpression of dn-SOL or dn-classical in the sensory neurons on day 1 after control treatment had no significant effect on synaptic baseline
compared with control (#) on day 2 (F 5, = 0.00050r 0.0001; all p > 0.9) and day 3 (F 5 34) = 0.0001 0r 0.002; all p > 0.8) and day 5 (F 3, = 0.0002 or 0.003; all p > 0.8); (3) after stimulation
to produce persistent nonassociative LTF (2 5-HT) and overexpression of dn-classical either in L7 or sensory neurons, the changes in synaptic strength remained significantly greater than control (*)
ondays 2,3, and 5 (Fi5 34 = 5.669, 5.738, and 5.332, all p < 0.01in L7; F5 5, = 2.615, 2.789, and 2.854, all p << 0.05 in the sensory neuron); (4) after stimulation to produce persistent
nonassociative LTF (2 5-HT) and overexpression of dn-SOL either in L7 or sensory neurons, the changes in synaptic strength were no longer significantly different from controls (#) on days 2, 3, and
5(Fs 349 = 1.162,0.348,and 0.211, all p > 0.05in L7; F 5 30 = 0.527,0.205, and 0.095, all p > 0.1in the sensory neuron); (5) after stimulation to produce persistent nonassociative LTF (2 5-HT)
and overexpression of dn-SOL either in L7 or sensory neuron, the changes in synaptic strength were significantly smaller (o) than the change detected in 2 5-HT alone on days 3 and 5in L7 (F s 5, = 3.169
and 2.922; all p < 0.05), and on days 2, 3, and 5 in the sensory neuron (F s 3, = 2.909, 4.382, and 5.335, all p << 0.05). D, The experimental protocol for examining the effects of overexpressing
dominant-negative forms of calpain isoforms on the expression of persistent associative LTF. Cultures were treated with pairings of tetanic stimulation in the sensory neuron plus a brief 5-HT
application on days 0 and 1. Dominant-negative constructs of the different calpain isoforms were injected into L7 or sensory neuron 4 -5 h after the last application of 5-HT on day 1. EPSP amplitudes
were tested before control or experimental treatments on day 0 and retested on days 2, 3, and 5. E, F, Summary of the change in the EPSP amplitudes for control and stimulated groups [2 (Tet +
5-HT)]followed by overexpression of dn-classical or dn-SOL in L7 (E) or sensory neurons (F) on day 1. Atwo-factor ANOVA indicated a significant effect of treatment over time for L7 (F g ;,, = 23.888;
p << 0.001) and for the sensory neurons (Fo,, = 61.12; p << 0.001). Individual comparisons indicated the following: (1) after stimulation to produce (Figure legend continues.)
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Table 1. Overexpression of each dominant negative construct on day 3 in L7 or sensory neurons selectively affected persistent nonassociative LTF, persistent associative

LTF, or synaptic baseline

PKM Apl | PKM Apl I PKM Apl Il PKCApl | PKCAplII PKCApl Il
L7 Nonassociative LTF Associative LTF Associative LTF NA Synaptic baseline Synaptic baseline
Sensory neuron NA Nonassociative LTF-associative LTF Nonassociative LTF NA Synaptic baseline Synaptic baseline

The effect of dominant negative PKC Apl Il or PKC Apl 111 on persistent LTF was not examined, since each significantly affected the synaptic baseline. Cell-specific PKM/PKC isoforms are required for the maintenance of different forms of

persistent LTF and synaptic baseline. NA, none affected.

Table 2. Overexpression of each dominant-negative construct on day 1 had no
effect on the synaptic baseline and a selective effect on a form of persistent LTF
expressed on d 3, and overexpression of the same dominant-negative constructs
on day 3 had no effect on any form of persistent LTF or the synaptic baseline

Injection on day 1 Injection on day 3

(lassical calpain ~ SOL calpain (lassical calpain ~ SOL calpain
L7 Associative LTF Nonassociative LTF~ NA NA
Sensory neuron  Associative LTF Nonassociative LTF~ NA NA

Different calpain isoforms are required for the expression of different forms of persistent LTF but not for the
maintenance of different forms of persistent LTF or the synaptic baseline. NA, none affected.

Antonov et al., 2003; Cai et al., 2008; Hu et al., 2015) or of the
retrograde signals acting on the presynaptic sensory neuron re-
quired for enhanced synaptic function (Zhu et al., 1995; Schacher
et al., 2000; Hu et al., 2010; Choi et al., 2011).

Overexpression of dn-PKMs failed to alter the synaptic base-
line, while some dn-PKCs did (Table 1). One explanation for this
is that the dn-PKCs and dn-PKMs interfere with separate path-
ways. PKCs, through their regulatory domains, may interact with
substrates and/or scaffolds that are involved in sustaining synap-
tic baseline (Haghighi etal., 2003; Seeburg and Sheng, 2008; Dier-
ing et al.,, 2014; Jalil et al., 2015), whereas PKMs do not. In
contrast, dn-PKM Apl I expressed in L7 reversed nonassociative
LTF, but dn-PKC Apl I did not. This could be due to dn-PKM Apl
I interacting through domains that are masked in dn-PKC Apl I
or to dn-PKC Apl I being sequestered by interactions through
their regulatory domain and thus not competing for interactions
with PKM Apl 1. Alternatively, dn-PKM AplI may be expressed at
higher levels than dn-PKC Apl I, and higher levels of dn-PKC Apl
I expression might reverse nonassociative LTF.

In the sensory neuron, PKM Apl IT and PKM Apl III activities
are required for maintaining nonassociative LTF, while only
PKM Apl II activity is required for maintaining associative LTF.
As in L7, the PKM activities in the sensory neuron are not re-
quired to maintain the synaptic baseline, while dn-PKC Apl II
and dn-PKC Apl III expression decreased the synaptic baseline.
PKC Apl I activity in the sensory neurons, but not PKM Apl I, is
required to maintain a property characteristic of persistent asso-
ciative LTF—the altered kinetics of HSD (Hu and Schacher,
2015). The kinase activities in the presynaptic sensory neuron can

<«

(Figure legend continued.)  persistent associative LTF [2 (Tet + 5-HT)] and overexpression of
dn-classical either in L7 or sensory neurons, the changes in synaptic strength were no longer
significantly different from control (#) on days 2, 3, and 5 (F 5 ,,) = 0.829,0.072,and 0.063, all
p>0.1inl7;F;3,, = 1.08,0.261,and 0.063, all p > 0.05 in the sensory neuron), which were
significantly smaller (0) than the changes detected in 2 (Tet + 5-HT) alone (5 ,,) = 2.277,6.968,
and 6.736, all p < 0.05in L7; 3,4 = 5.19, 6.857, and 7.229, all p << 0.01 in the sensory
neuron); (2) after stimulation to produce persistent associative LTF [2 (Tet + 5-HT)] and over-
expression of dn-SOL eitherin L7 or sensory neurons, the changes in synaptic strength remained
significantly greater than those for control (*) on days 2, 3, and 5 (F 5 ,,) = 3.727, 3.456, and
3.923,allp <0.01inL7; F 3 54 = 10.337,9.726,and 8.652, all p < 0.01in the sensory neuron),
which were not significantly different from the changes detected in 2 (Tet + 5-HT) alone
(Fi3,24y = 0.239,1.101,and 0.749, all p > 0.05in L7; F 5 ,,y = 0.01,0.001,and 0.0001, all p >
0.71in the sensory neuron).

impact gene and protein expression in their cell bodies (Impey et
al., 1996; Martin et al., 1997b; Patterson et al., 2001; Limback-
Stokin et al., 2004; Lee et al., 2007; Ma et al., 2015) and at distal
synaptic sites (Hu et al., 2007, 2011; Wang et al., 2009; Wan et al.,
2012; Hu and Schacher, 2015), or can influence orthograde sig-
nals such as the secretion of neuropeptides, whose downstream
actions are to activate additional kinases in both presynaptic and
postsynaptic compartments that are required for maintaining
long-term synaptic plasticity (Hu et al., 2004, 2007, 2011; Kass-
abov et al., 2013; Kopec et al., 2015).

Although the general role of each PKM in the different synap-
tic partners may be similar (regulate the activity of transcription
or translation factors or modify post-translational substrates in
cell compartments), the overall function of a given PKM in each
partner will affect different aspects of synaptic plasticity because
of the different complement or expression levels of protein sub-
strates and scaffolds in each cell type. With associative LTF, PKM
AplIIin L7 may play a critical role in the formation and mainte-
nance of new transmitter release sites (Hu et al., 2010), while
PKM Apl III in L7 may regulate the distribution and concentra-
tion of postsynaptic glutamate receptors at release sites (Villareal
et al., 2009; Migues et al., 2010). PKM Apl I may regulate the
distribution and concentration of postsynaptic glutamate recep-
tors at release sites with nonassociative LTF (Trudeau and Cas-
tellucci, 1995; Zhu et al., 1997). In the sensory neuron, PKM Apl
II may regulate the secretion of neuropeptides such as sensorin
critical for expression of both forms of LTF (Hu et al., 2006,
2007).

Stimulus-dependent activation of specific calpain-mediated
cleavage of PKCs may regulate cell-specific PKMs

How does the nature of the stimuli determine which PKM
activities in the sensory neuron and L7 maintain each form of
persistent plasticity? Although calpain activity is required to
generate the PKMs in Aplysia (Sutton et al., 2004; Bougie et al.,
2009, 2012; Villareal et al., 2009; Farah et al., 2016), classical
and SOL calpain activities 48 h after stimuli do not participate
in maintaining the presence of the PKMs required for sustain-
ing persistent LTF. However, there are additional calpains
present in Aplysia (Farah et al., 2016), and it is possible that a
distinct calpain isoform is required for the persistence of PKM
activity. It is also possible that other intracellular proteases,
such as caspases, could play a role. In addition, there may be
other cellular mechanisms, such as ones that prevent degrada-
tion of PKMs that may be needed to preserve the constitutive
presence of the PKMs in the absence of their continual forma-
tion through protein cleavage.

Activities of specific calpain isoforms at earlier time points
after the stimuli are required for the expression of each form of
persistent plasticity. Blocking SOL calpain activity in the sensory
neuron or L7 soon after the stimuli blocked nonassociative LTF
while blocking classical calpain activity in the sensory neuron or
L7 soon after the stimuli blocked associative LTF. Thus, specific
stimuli induce activation of cell-specific calpain activities both at
earlier time points to mediate the cleavage of appropriate PKCs to
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produce intermediate forms of plasticity (Farah et al., 2016) and
at later time points to generate the appropriate PKMs for main-
taining nonassociative and associative LTF.

In summary, our results suggest that different stimuli activate
different calpain isoforms that generate stimulus- and cell-specific
sets of constitutively active PKMs. Different sets of constitutively
active PKMs in the sensory neuron and L7 contribute to the main-
tenance of different forms of long-term plasticity. These results and
those in the mouse hippocampus where several atypical PKCs can
contribute to long-lasting long-term potentiation (Shema et al.,
2011; Sacktor, 2012; Jalil et al., 2015; Tsokas et al., 2016) suggest that
multiple constitutively active kinases (PKMs) in both presynaptic
and postsynaptic neurons contribute to the maintenance of the
long-term synaptic plasticity that underlies long-term memories.
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