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Posterior Orbitofrontal and Anterior Cingulate Pathways to
the Amygdala Target Inhibitory and Excitatory Systems with
Opposite Functions
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The bidirectional dialogue of the primate posterior orbitofrontal cortex (pOFC) with the amygdala is essential in cognitive- emotional
functions. The pOFC also sends a uniquely one-way excitatory pathway to the amygdalar inhibitory intercalated masses (IM), which
inhibit the medial part of the central amygdalar nucleus (CeM). Inhibition of IM has the opposite effect, allowing amygdalar activation of
autonomic structures and emotional arousal. Using multiple labeling approaches to identify pathways and their postsynaptic sites in the
amygdala in rhesus monkeys, we found that the anterior cingulate cortex innervated mostly the basolateral and CeM amygdalar nuclei,
poised to activate CeM for autonomic arousal. By contrast, a pathway from pOFC to IM exceeded all other pathways to the amygdala by
density and size and proportion of large and efficient terminals. Moreover, whereas pOFC terminals in IM innervated each of the three
distinct classes of inhibitory neurons, most targeted neurons expressing dopamine- and cAMP-regulated phosphoprotein (DARPP-
32+), known to be modulated by dopamine. The predominant pOFC innervation of DARPP-32+ neurons suggests activation of IM and
inhibition of CeM, resulting in modulated autonomic function. By contrast, inhibition of DARPP-32 neurons in IM by high dopamine levels
disinhibits CeM and triggers autonomic arousal. The findings provide a mechanism to help explain how a strong pOFC pathway, which is
poised to moderate activity of CeM, through IM, can be undermined by the high level of dopamine during stress, resulting in collapse of
potent inhibitory mechanisms in the amygdala and heightened autonomic drive, as seen in chronic anxiety disorders.
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The dialogue between prefrontal cortex and amygdala allows thoughts and emotions to influence actions. The posterior orbitofrontal
cortex sends a powerful pathway that targets a special class of amygdalar intercalated mass (IM) inhibitory neurons, whose wiring may
help modulate autonomic function. By contrast, the anterior cingulate cortex innervates other amygdalar parts, activating circuits to help
avoid danger. Most IM neurons in primates label for the protein DARPP-32, known to be activated or inhibited based on the level of
dopamine. Stress markedly increases dopamine release and inhibits IM neurons, compromises prefrontal control of the amygdala, and
sets off a general alarm system as seen in affective disorders, such as chronic anxiety and post-traumatic stress disorder. j
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Introduction
Bidirectional connections between the posterior orbitofrontal

cortex (pOFC) and the amygdala in primates (Ghashghaei et al.,
2007) are associated with evaluating the affective significance of
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yond the bidirectional connections, the pOFC is distinguished
for its dense and nonreciprocal pathway to the intercalated
masses (IM) of the amygdala (Ghashghaei and Barbas, 2002). The
significance of this pathway is based on the entirely inhibitory
nature of the IM and its critical role in the internal processing of
the amygdala (for review, see Paré et al., 2003; Palomares-Castillo
etal., 2012).

The primate IM did not always receive attention commensu-
rate with its key role in the amygdala. Composed of small neurons
and squeezed between the amygdala’s basal nuclei and below its
central (output) nucleus, the IM are dwarfed by the nearby large
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neurons of the basal nuclei. The position
of IM in monkeys was traditionally abro-
gated in most maps of the primate amyg-
dala. Notwithstanding their inconspicuous
stature, it is now clear that IM neurons
across species have a central role in the
amygdala and on downstream influence
of autonomic structures (Ghashghaei and
Barbas, 2002; Paré et al., 2003).

A recent study revealed an ordered di-
versity in the GABAergic IM neurons and
their intrinsic circuitry in rhesus monkeys
(Zikopoulos et al., 2016). By morphology,
IM neurons are broadly divided into those
with dendritic spines and those without
spines. By neurochemistry, IM neurons
fall into three classes. The largest class
comprises dopamine- and cAMP-regulated
phosphoprotein (DARPP-32+) neurons,
which are always spiny and include a subset
that also expresses calbindin (CB). A second
class consists of IM neurons that express CB
but are aspiny. A third class includes aspiny
neurons that are positive for nitric oxide
synthase (NOS) but not CB. This analysis
thus segregates the inhibitory neurons in IM
into three nonoverlapping classes identified
by morphology and neurochemistry (Ziko-
poulos et al., 2016).

The innervation of the diverse IM inhib-
itory system by pOFC axons is unknown. In
addition, beyond its high density, it is un-
known whether the pOFC pathway to IM
differs from a lighter pathway that emanates
from the anterior cingulate cortex (ACGC;
area 32) or from either pOFC or ACC path-
ways that variously innervate other nuclei of
the amygdala. We addressed these issues
from the system to the synapse. We found
that the pOFC pathway to IM is robust not
only in density but also by the large size of
boutons and their proportion, which ex-
ceeded all other pathways by pOFC or ACC
to other nuclei of the amygdala, or by ACC
to IM. Moreover, by a predominant inner-
vation of DARPP-32 neurons in IM, which
are differentially engaged based on the level
of dopamine in the system, the pOFC path-
way is poised to dynamically modulate au-
tonomic drive, a process that goes awry in
psychiatric diseases marked by anxiety.

Materials and Methods
Experimental design

We injected anterograde neural tracers in pOFC
areas [orbital proisocortex (OPro) and posterior
area 13] and in ACC area 32 in rhesus monkeys
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Figure1.  Experimental approachand tracerinjections. Anterograde tracers BDA (brown), (Bl (blue), FE (green), and LY (yellow)
were injected in ACC area 32 (medial view of rhesus macaque brain shown on top) and pOFC (bottom, orbital view of rhesus
macaque brain) of 10 animals [left (-L) or right (-R) hemisphere] to study the distribution and overlap of pathways terminating in
the amygdala and their interactions with local excitatory and inhibitory neurons. A diagram of a coronal section through the central
extent of the amygdala shows key amygdalar nuclei. The inset shows low-magnification images from prefrontal coronal sections
with sites injected with neural tracers: BDA in area 32 of case BG-R (brown, top) and LY in area OPro of case BI-L (bottom). Red
asterisks indicate injection sites. The BM nucleus is also known as accessory basal. Co, Cortical. Scale bar (inset), 5 mm.

(Macaca mulatta) to quantitatively examine terminations in the amygdala 3t the confocal microscope and serial electron microscopy (EM) to study

(Fig. 1). We double and triple immunolabeled coronal sections through the

synaptic features.

amygdala, to visualize the tracers and several markers of inhibitory neurons. Surgery, tracer injections, and tissue processing
We used three-dimensional (3D) analysis and reconstruction to study close ~ Experiments were conducted on 10 adult rhesus monkeys (2-3 years of
appositions of prefrontal terminals with excitatory and inhibitory structures ~ age; both sexes, n = 7 female), obtained from the New England Primate
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Research Center (NEPRC), in accordance with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals (publication
80-22 revised, 1996). The experiments were approved by the Institutional
Animal Care and Use Committee at Boston University School of Medi-
cine, Harvard Medical School, and NEPRC. Procedures were designed to
minimize animal suffering and reduce the number of animals needed for
research. These cases and injection sites have also been used to study
other pathways in previous studies, as described (Barbas et al., 2005;
Zikopoulos and Barbas, 2006; Medalla and Barbas, 2009, 2010, 2012;
Bunce and Barbas, 2011; Bunce et al., 2013; Garcia-Cabezas and Barbas,
2014; Timbie and Barbas, 2015).

We calculated the stereotaxic coordinates for each tracer injection
using the interaural line as reference after obtaining 3D scans of each
brain using high-resolution magnetic resonance imaging (MRI) in anes-
thetized animals, as described (Zikopoulos and Barbas, 2006, 2007b;
Medalla and Barbas, 2009; Timbie and Barbas, 2015). One week or longer
after the MRI, we injected 3—10 ul of 10% solution of several anterograde
tracers in anterior cingulate area 32 (cases AY-L, BG-R, BI-R, BN-L, BL-R,
and BL-L) and posterior orbitofrontal areas 13 or OPro (collectively referred
to as pOFC; cases BC-R, BH-R, BI-L, BJ-R, BK-R, BN-L, and BQ-R) under
general anesthesia. In each case, the tracers were injected in two penetrations
(half the quantity in each penetration) at a depth of 1.2-1.6 mm below the
pial surface. After injection, the needle was left in place for 1015 min to
allow the dye to penetrate at the injection site and prevent upward suction of
the dye during retraction of the needle.

The anterograde tracers we used, namely biotinylated dextran amine
(BDA; cases AY-L, BG-R, and BI-R), fluoro-emerald (FE; cases BC-R,
BQ-R, and BL-L), cascade blue (CBI; case BK-R), and Lucifer yellow (LY;
cases BI-L, BJ-R, BH-R, BL-R, and BN-L; all tracers had a molecular
weight of 10 kDa; Invitrogen), optimized for anterograde transport to
label axons and boutons (Veenman et al., 1992; Reiner et al., 2000). There
is, however, minimal transport in the retrograde direction, restricted to
labeling of the cell body and proximal dendrites of projection neurons;
the tracer does not enter axon collaterals or travel trans-synaptically
(Veenman et al., 1992; Richmond et al., 1994; Reiner et al., 2000). The
axon boutons seen in the amygdala, therefore, could not have belonged
to collateral axons from retrogradely labeled amygdalar neurons or from
other areas that project to the prefrontal cortex and the amygdala.

After a survival period of 1820 d, the animals were anesthetized and
transcardially perfused with 4% paraformaldehyde and 0.2% glutaralde-
hyde, and the brains were removed from the skull, cryoprotected in
graded solutions of sucrose (10-30%), frozen, and cut on a freezing
microtome in the coronal plane at 50 wm to produce 10 series, as de-
scribed previously (Zikopoulos and Barbas, 2006, 2007b; Medalla and
Barbas, 2009; Timbie and Barbas, 2015). In cases with injection of fluo-
rescent tracers, one series was mounted on glass slides, coverslipped, and
used to map labeled neurons and terminals.

Immunohistochemical procedures

Bright-field and fluorescence microscopy. In experiments with tracer injec-
tions, one series of sections was processed to visualize boutons and labeled
neurons using standard bright-field or fluorescence immunohistochemical
protocols, as described previously (Zikopoulos and Barbas, 2006, 2007b;
Medalla and Barbas, 2009; Timbie and Barbas, 2015). Briefly, in cases with
BDA injections, free-floating sections were rinsed in 0.01 M PBS, pH 7.4, and
incubated for 1 h in an avidin—biotin HRP complex (AB-Kit, Vector Labo-
ratories; diluted 1:100 in 0.01 M PBS with 0.1% Triton X-100). The sections
were then washed and processed for immunoperoxidase reaction using di-
aminobenzidine (DAB; Zymed Laboratories). Sections were then mounted,
dried, and coverslipped with Entellan (Merck).

In cases with FE, CBI, and LY injections in ACC and pOFC, we used
polyclonal antibodies (rabbit anti-fluorescein/Oregon Green, RRID:
AB_221562; anti-Alexa 405/Cascade Blue, RRID: AB_2314090; and anti-
LY, RRID: AB_2536190, 1:800; Invitrogen) to convert the fluorescent
tracers for viewing under bright-field illumination and visualized label by
the peroxidase-catalyzed polymerization of DAB. In cases with fluores-
cent tracer injections, where we had an additional BDA injection, we
incubated sections in AB blocking reagent (Vector Laboratories) or used
nonbiotinylated polyclonal anti-rabbit secondary antibody (RRID:
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AB_510013) followed by tertiary anti-rabbit solution (PAP method,
1:200, Sternberger Monoclonals; RRID: AB_10119996) to avoid cross-
reaction with the BDA.

To identify and examine IM inhibitory neurons and their interactions
with prefrontal terminals, we performed double or triple immunofluo-
rescence, using antibodies against the inhibitory neurotransmitter
GABA, glutamic acid decarboxylase (GAD-67), calcium-binding protein
CB, DARPP-32, and NOS/[or histochemical labeling for NADPH-
diaphorase, as described previously (Dombrowski and Barbas, 1996;
Zikopoulos et al., 2016)]. The tissue was rinsed in 0.01 m PBS, pH 7.4,
followed by 10% normal goat serum, 5% bovine serum albumin, and
0.1% Triton X-100in 0.01 M PBS blocking solution for 1 h, and incubated
overnight in one or two of the following primary antibodies for GABA
(1:1000, mouse monoclonal, Sigma, RRID: AB_476667; or 1:1000, rabbit
polyclonal, DiaSorin, RRID: AB_572234), GAD-67 (1:200, rabbit poly-
clonal, Millipore Bioscience Research Reagents, RRID: AB_90715), CB
(1:2000, mouse monoclonal, RRID: AB_10000347, or rabbit polyclonal,
RRID: AB_10000340, Swant), DARPP-32 (1:30,000, mouse monoclonal;
gift from Dr. Paul Greengard, The Rockefeller University, New York, NY,
and Dr. Jean-Antoine Girault, INSERM, Sorbonne Universites, Paris,
France), and bNOS (1:250, mouse monoclonal or rabbit polyclonal, b iso-
form (neuronal) NOS, Transduction Laboratories, RRID: AB_2314961).
The sections were rinsed in PBS, incubated for 1 h with a goat anti-rabbit (for
polyclonal) or anti-mouse (for monoclonal) IgG conjugated with the fluo-
rescent probes Alexa Fluor 488 (green) or Alexa Fluor 568 (red) or Alexa
Fluor 405 (blue; 1:100, Invitrogen; RRIDs: AB_2556548, AB_2534072,
AB_221604, AB_221605, AB_2534123, and AB_2576217) and thoroughly
rinsed with PBS. In some cases, a biotinylated secondary antibody and an
avidin-biotin—peroxidase kit was used to label inhibitory neurons with
DAB. To exclude any nonspecific immunoreactivity, we performed control
experiments, with sections adjacent to those used in the experiments de-
scribed above. These included omission of the primary antibodies and incu-
bation with all secondary or tertiary antisera used. All control experiments
resulted in no immunohistochemical labeling.

Electron microscopy. Sections treated for bright-field BDA, FE, CBI, or
LY were processed for electron microscopy (cases BI-R, BJ-R, BK-R,
BN-L, and BQ-R). We used the protocols described above, but Triton
X-100 concentration in all solutions was reduced to 0.025%. To deter-
mine the postsynaptic targets of labeled axon terminals from prefrontal
areas in the amygdala, we double and triple labeled sections using anti-
bodies against GABA and/or CB and pre-embedding immunohisto-
chemistry. Prefrontal terminals labeled with tracers were visualized with
DAB as described previously, and sections were incubated in avidin—biotin
blocking kit solutions (Vector Laboratories) to block free binding sites. In-
hibitory GABAergic neurons were visualized with gold-conjugated anti-
rabbit or anti-mouse secondary antibodies (1:50; gold particle diameter,
1 nm; GE Healthcare, RRID: AB_1062550 for anti-mouse, RRID:
AB_1062553 for anti-rabbit), as described previously (Zikopoulos and Bar-
bas, 2006, 2007b; Zikopoulos et al., 2016). Sections were also coincubated
overnight with CB (as above) and processed for immunoperoxidase reaction
using tetramethylbenzidine (TMB; 5-15 min incubation; 0.005% TMB in
100% ethanol, 5% ammonium paratungstate, 0.004% NH,Cl, and 0.005%
H,0, in 0.1 M PB, pH 6), which produces a reaction product of grainy rods
that is distinct from the uniform reaction product of DAB. To prevent dif-
fusion of the gold particles, tissue was postfixed in a microwave with 6%
glutaraldehyde after quick rinses in PBS. Gold labeling was intensified with
the use of a silver enhancement kit (IntenSE, GE Healthcare).

Tissue sections with label were mounted on slides and quickly viewed
under the light microscope, and images were captured with a CCD cam-
era. Small blocks of sections with anterograde, GABA, and CB label were
cut under a dissecting microscope, postfixed in 1% osmium tetroxide
with 1.5% potassium ferrocyanide in phosphate buffer (PB), washed in
buffer (PB) and water, and dehydrated in an ascending series of alcohols.
While in 70% alcohol, they were stained with 1% uranyl acetate for 30
min. Subsequently, they were cleared in propylene oxide and embedded
in Araldite at 60°C. Serial ultrathin sections (50 nm) were cut with a
diamond knife (Diatome) using an ultramicrotome (Ultracut, Leica) and
collected on single slot grids to view with a transmission electron micro-
scope (100CX, JEOL).
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Stereological analysis and 3D reconstruction

Light and confocal laser microscopy. We delineated prefrontal cortical areas
and the nuclei of the amygdala from Nissl- and acetylcholinesterase-stained
sections matched to sections that were immunohistochemically labeled. The
nomenclature we used for the amygdala was according to the maps used
previously (Ghashghaei and Barbas, 2002; Zikopoulos et al., 2016), based on
classic maps (Johnston, 1923; Price et al., 1987; De Olmos, 1990).

We viewed immunolabeled sections under bright-field or fluores-
cence/confocal laser illumination and outlined brain sections, placed
architectonic borders of amygdalar nuclei, and mapped labeled pathways
in each case with the aid of a commercial computerized microscope
system and motorized stage (Neurolucida, MicroBrightField, RRID:
SCR_001775). The procedure involves setting a reference point for every
brain hemisphere analyzed, and as a result, the outlines are automatically
registered and aligned to the actual corresponding sections, retaining
information about the 3D coordinates of every mark or trace. We used
these sections and outlines for stereological analyses and to compare the
relative topography and distribution of anterograde labeling across cases
and injection sites.

Images presented or used for analyses were captured at high resolution
with a CCD camera (DP-70), mounted on an Olympus Optical BX51
microscope, and connected to a personal computer, using commercial
imaging systems [MetaMorph version 4.1 (Universal Imaging Corpora-
tion, RRID: SCR_002368) or Neurolucida]. For confocal images, we used
an Olympus Fluoview or a Zeiss LSM 510 microscope and viewed sec-
tions under high magnification (1000X). We acquired image stacks of
several focal planes in each area of interest resulting in pictures with high
depth of field of 50-wm-thick sections focused throughout the extent of
their z-axes. We applied 3D-deconvolution algorithms to images before
analysis with the aid of Autodeblur (Media Cybernetics, RRID:
SCR_002465). Stacks were reconstructed in 3D and rotated (in 1° incre-
ments in the x-, y-, or z-axis) using the ImageJ (RRID: SCR_003070)
“3D-project” plug-in to visualize close appositions between labeled axon
terminals from ACC or pOFC and GABA+, GAD-67+, CB+, NOS+, or
DARPP-32+ inhibitory IM neurons.

Bouton population analysis and density. We analyzed anterograde la-
beling in the amygdala at high magnification (1000X) using unbiased
stereological methods (Howard and Reed, 1998), as described previously
(Zikopoulos and Barbas, 2006, 2012). Briefly, the systematic, random
sampling fraction was 1/50 of the total volume of the region studied and
resulted in measuring the morphological characteristics of >2000 la-
beled bouton profiles in each case. The morphological characteristics
measured were the minor and major diameter, perimeter, and surface
area.

We plotted and estimated the numbers of anterogradely labeled bou-
tons from axons of neurons originating in prefrontal cortex and termi-
nating in the amygdala, using either exhaustive sampling of selected
sections or the unbiased stereological method of the optical fractionator
(Gundersen, 1986; Howard and Reed, 1998) with the use of specific
software (Neurolucida and StereoInvestigator, MicroBrightField, RRID:
SCR_002526), as described previously (Zikopoulos and Barbas, 2006,
2012). The advantage of the optical fractionator is that it is not affected by
tissue shrinkage (Gundersen, 1986; West et al., 1991; Howard and Reed,
1998). Using the Stereolnvestigator software, we measured the height of
each section before counting the particles of interest. To ensure an unbi-
ased estimate of objects counted, the method uses a guard zone at the
bottom and top of each section to correct for objects plucked during
sectioning, so the disector thickness is always smaller than the thickness
of the section.

The sampling fraction was 1/20 of the total volume of each nucleus
examined for bouton number estimation and was determined in pilot
studies using exhaustive sampling of a complete series and progressive
means analysis so that final estimates had a coefficient of error =10%.
The use of uniform random sampling ensured that every part of each
nucleus examined had the same chance of being included in the sample.
Large and small boutons were measured separately and were systemati-
cally distinguished based on the results of the bouton population analyses
(see previous section). The estimated numbers of boutons and the vol-
umes of the corresponding nuclei estimated with the Cavalieri method
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were divided to assess the density of label in each case. We normalized
data by expressing the number or density of large and small boutons as a
percentage of the total number or maximum density of all labeled bou-
tons in the amygdalar nuclei in each case.

Electron microscopy. We viewed >200 labeled boutons emanating
from prefrontal axons from ACC and pOFC, as well as neighboring
unlabeled boutons forming synapses in the IM and the basolateral (BL)
nuclei of the amygdala at high magnification (10,000 X to 30,000X). We
captured high-resolution images with a digital camera (ES1000W, Ga-
tan) attached to the electron microscope (JEOL). We estimated the major
and minor diameters of most boutons from miniseries of ~10 images
(2D analysis) and used the average radius (r) of each bouton to estimate
corresponding volumes, assuming spherical shape (volume, 4/37r>). We
photographed ~50 boutons throughout their entire extent (between 10
and 80 serial ultrathin sections) using exhaustive sampling and imported
them as a series in Reconstruct (Fiala, 2005) and aligned them. We then
traced boutons, postsynaptic densities, and postsynaptic structures (e.g.,
dendrites). We calibrated section thickness through measurements of the
diameter of mitochondria as described previously (Zikopoulos and Bar-
bas, 2006). We reconstructed structures in 3D and calculated their vol-
umes, surface areas, and diameters. We used all estimated volumes and
diameters from the 2D and 3D EM analyses for regressions and correla-
tions. We used classic criteria for identifying synapses and profiles as
described previously (Peters et al., 1991; Zikopoulos and Barbas, 2006).
Photomicrographs were prepared with Adobe Photoshop (RRID:
SCR_014199) and Ilustrator (RRID: SCR_014198; Adobe Systems), and
overall brightness and contrast were adjusted without retouching.

Statistical analysis

Data were evaluated with Statistica (StatSoft; RRID: SCR_014213),
through scatter and frequency distribution plots and K-means cluster
analysis with parameters set to maximize initial between-cluster dis-
tances. We used x? and Kolmogorov—Smirnov tests to examine bouton
size distributions. We used ANOVA to test for differences among bouton
populations and densities, and p values <0.01 were taken as statistically
significant. Post hoc analysis using Bonferroni’s/Dunn’s (all means) test
was performed to identify possible differences between groups (cases
with ACC or pOFC injection sites).

Results

The injection sites encompassed several sites of ACC (area 32)
and pOFC (areas 13 and OPro) but were restricted within the
respective areas (Fig. 1). In all cases, the injection sites covered all
layers, with the exception of a small injection site in area 13 (case
BC-R), which was restricted to the deep layers (5-6), the main
layers that give rise to projections to the amygdala. These cases
and injection sites will be described briefly here, as they were
previously used to study other connections of ACC and pOFC
(Barbas et al., 2005; Zikopoulos and Barbas, 2006; Medalla and
Barbas, 2009, 2010, 2012; Bunce and Barbas, 2011; Bunce et al.,
2013; Garcia-Cabezas and Barbas, 2014; Timbie and Barbas,
2015). Tracer injections in ACC included two small injections in
anterior area 32 (case AY-L) and dorsal/posterior area 32, near
the border with area 9 (case BG-R), as well as larger injections in
central (case BI-R) and posterior (cases BN-L, BL-R, and BL-L)
area 32. Tracer injections in the pOFC included small injections
inarea 13 (cases BC-R and BH-R) and lateral (case BK-R), central
(cases BI-L and BQ-R), and medial (case BJ-R) parts of area
OPro.

Differential distribution of pOFC and ACC projections to

the amygdala

As shown in Figure 2, axons from pOFC and ACC terminated in
several nuclei of the amygdala. Both prefrontal regions heavily
targeted the BL nucleus of the amygdala. Moderate to low axon
terminations were found in the basomedial (BM) nucleus (also



Zikopoulos et al. @ Prefrontal-Amygdalar Circuits in Emotional Control J. Neurosci., May 17,2017 - 37(20):5051-5064 5055

A Anterior Posterior

Projections from pOFC

Projections from ACC

Figure2. Differential distribution of axon terminations from pOFCand ACCin the amygdala. Outlines of series of representative coronal sections from a reference case for each injection site show
labeled boutons from different tracer injections superimposed by their relative stereotaxic coordinates. Pathways from pOFC (top, green dots) and ACC (bottom, red dots) terminated widely
throughout the anteroposterior and mediolateral extent of the amygdala, but pOFC strongly targeted the IM whereas ACC targeted mostly the BL nucleus. Each dot represents one axon terminal.
AAA, Anterior amygdalar area; ACo, anterior subdivision of the cortical nuclei; VCo, ventral subdivision of the cortical nuclei.
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Figure3. Labeled pathways from pOFCand ACC terminated with large and small boutons in the amygdala. A—C, BDA-labeled fibers from pOFC to IM (4), BL nucleus (B), and La nucleus (€) with
large (blue arrows) and small (red arrows) boutons. D—F, BDA-labeled fibers from ACCto IM (D), BL nucleus (E), and Ce nucleus (F) with large (blue arrows) and small (red arrows) boutons. Three
projection neurons with labeled somata and proximal dendrites are visible in B and E (asterisks). G, Comparison of bouton populations from pOFCand ACCin amygdalar nuclei showed that boutons
from pOFCto IM were significantly larger than all other terminations from pOFCand ACCin the amygdala. Asterisk indicates statistically significant difference. H, Size distribution frequency of labeled
boutons in amygdalar nuclei from axons originating in pOFCand ACC. The frequency for the population of terminations from pOFC to IM (red line) was skewed upward, indicating overall more large

terminals.

known as accessory basal); anterior amygdalar area; anterior,
posterior, and ventral subdivisions of the cortical nuclei; and the
medial nucleus. These findings confirm and extend previous data
(Ghashghaei and Barbas, 2002; Stefanacci and Amaral, 2002).

Quantitative comparison of axon terminations from pOFC
and ACC showed a differential distribution of terminals within
amygdalar nuclei (Figs. 3A—F, 4 B). The most robust terminations
from ACC area 32 (n = 3 cases) in the amygdala were in BL
nucleus (69% of all ACC terminations), whereas 28% of all pOFC
(n = 3 cases) terminations were found in BL nucleus (Fig. 4B).
The ACC had robust terminations in the central (Ce) nucleus
(12% of all terminations; Fig. 4B), especially in its medial sector,
which is the main subcortical output of the amygdala (Price and
Amaral, 1981), whereas pOFC projections to Ce were sparser (5%
of all terminations; Fig. 4B). On the other hand, only the pOFC
pathway terminated in the sensory-related lateral (La) nucleus
(20% of all terminations; Fig. 4B), with anterograde label found
mostly in the dorsal (upper) parts of the nucleus. Labeled axons
from pOFC densely terminated in the inhibitory IM (30% of
all terminations; Fig. 4B), which contain small/medium-sized
GABAergic neurons interposed between the BM, BL, Ce, and La
nuclei of the amygdala. The pOFC terminations in IM were
among the densest projections within the amygdala, confirming
and extending previous findings (Ghashghaei and Barbas, 2002).
Compared with pOFC, ACC (area 32) projections to IM were
sparse (8% of all terminations; Fig. 4B).

The above descriptions on the density of label were corrobo-
rated using an unbiased stereologic method to estimate axon
bouton density based on the volume of each nucleus (Howard
and Reed, 1998). This analysis revealed that the densest termina-
tions from pOFC were in the pathway to IM (114,917 = 36,416
boutons/mm?), which received 2.4 times denser terminations
than the overall terminations in the amygdala (47,388 * 25,362
boutons/mm?), followed by the pathway to BM nucleus
(102,288 = 31,515 boutons/mm?>), then to BL (61,542 =+ 32,724
boutons/mm?), La (61,370 = 38,925 boutons/mm?), and Ce
(36,867 * 14,024 boutons/mm?>) nuclei. The same analysis for
the ACC area 32 pathway showed that the densest terminations
were in BL nucleus (139,042 *+ 43,722 boutons/mm?), which
received 3.2 times denser terminations than the overall termina-
tions in the amygdala from area 32 (43,241 * 11,499 boutons/
mm?°), followed by the pathway to Ce nucleus (98,875 = 32,412
boutons/mm?), then to IM (38,824 * 15,361 boutons/mm>) and
BM nucleus (23,975 * 15,861 boutons/mm>); there was no evi-
dence of signal in La nucleus.

Dual mode of prefrontal terminations in the amygdala

We next investigated the size of labeled terminals at the popula-
tion level, using stereological sampling methods at the light mi-
croscope (1000 X magnification; >2000 boutons per case). This
analysis is based on evidence that large boutons have more mito-
chondria and more synaptic vesicles than small boutons, in pro-
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Figure 4.  Differences in the size and relative density of axon terminations from pOFC and

ACCinamygdalar nuclei, based on bright-field and confocal microscopy. 4, Cluster analysis and
subsequent comparison of bouton populations from pOFCand ACCin amygdalar nuclei showed
that there were distinct populations of large and small boutons. Boutons from pOFCin IM were
larger than all other boutons in their respective size groups. B, Proportion of large and small
boutons in each pathway shows a higher relative proportion of large boutons from pOFC to IM
(~1:1), compared with other pathways, suggesting that this is a robust connection. The plot
also highlights the relative prevalence of axon terminals from pOFC and ACC in different
amygdalar nuclei, with pOFC targeting mostly the IM, followed by BL, La and Ce nuclei, whereas
ACC overwhelmingly targeted the BL nucleus, followed by Ce nucleus and IM.

portion to their size (Pierce and Mendell, 1993; Pierce and Lewin,
1994; Shepherd and Harris, 1998; Germuska et al., 2006; Ziko-
poulos and Barbas, 2007b). We found that pOFC terminals in IM
were significantly larger than other terminals in the amygdala
from either pOFC or ACC (Fig. 3). The major diameter of labeled
boutons in IM originating from pOFC was ~30% larger than
pOFC boutons in Ce, La, or BL nuclei. The pOFC boutons in IM
were also significantly larger than boutons from area 32 in IM. In
contrast, the terminations from pOFC and ACC were compara-
ble in other nuclei of the amygdala (Ce, La, and BL; Fig. 3G).
Interestingly, the frequency of distribution of all labeled prefron-
tal boutons in the amygdala based on their size showed that pOFC
boutons in IM were consistently the largest among other pOFC
and ACC terminals (Fig. 3H).

Further analysis of the size of boutons using cluster analysis
revealed a dual mode of prefrontal terminations in the amygdala,
consisting of large (major diameter =0.95 um) and small (major
diameter <0.95 um) boutons (Fig. 4A4). Most pOFC and ACC
axons contained both types of terminals or only small boutons,
whereas only a few axons (~8%) had exclusively large boutons.
Interestingly, both large and small boutons from pOFC to IM
were, on average, larger than boutons falling into the large and
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small clusters from pOFC and ACC in other nuclei of the
amygdala (Fig. 4A). Stereologic estimation of the relative propor-
tions of large and small boutons in several amygdalar nuclei from
pOFC and ACC revealed that only the pOFC pathway to IM
consisted of approximately equal numbers of large and small
boutons (Fig. 4B). This ratio was significantly elevated compared
with the more typical large-to-small bouton ratio in all other
examined pathways from pOFC or ACC to the amygdala, which
was, on average, 20% large/80% small boutons.

We then addressed the issue of the size of boutons from pOFC
to IM compared with terminations in the BL nucleus of the
amygdala at the synaptic level in the electron microscope (n = 3;
cases BK, BN, and BQ; 142 boutons total; 55 boutons were recon-
structed in 3D). A direct comparison of the two pathways from
pOFC confirmed that terminals in IM had significantly larger
volumes (Fig. 5A), diameters, and synapses and more mitochon-
dria (not shown) than pOFC boutons that terminated in BL nu-
cleus (mean bouton volume = SEM, 0.46 * 0.06 um> in IM;
0.25 = 0.02 wm* in BL nucleus; mean diameter = SEM: 1.10 *
0.03 wm in IM; 0.70 = 0.09 wm in BL nucleus; p = 0.0001).

We then used double labeling for the pOFC pathway and
GAD-67 to identify the postsynaptic sites in IM and the nearby
BL amygdalar nucleus (n = 2; cases BN and BQ; n = 87 boutons).
We found that in IM, pOFC boutons innervated both spines and
dendrites of inhibitory neurons. The majority (57%) of pOFC
boutons in IM formed asymmetric synapses with spines of
GABAergic IM neurons (Fig. 5C,D). The rest of the pOFC bou-
tons (43%) formed synapses with GABAergic dendritic shafts.

Using the same double-labeling approach to view pathways
and GAD-67, we investigated the synaptic interactions from
pOFC axons in the nearby BL nucleus of the amygdala. The BL
nucleus is composed of mostly excitatory neurons and a smaller
proportion of inhibitory neurons, in proportions similar to the
cortex (Pitkdnen and Amaral, 1993; Sorvari et al., 1995, 1996a,b;
McDonald and Mascagni, 2001). We found that most of the
pOFC boutons in BL nucleus formed asymmetric (and presumed
excitatory) synapses with spines of excitatory projection neurons
(83%), and the rest of the boutons (17%) formed asymmetric
synapses with inhibitory interneurons (13% on dendrites and 4%
on spines of local GABAergic neurons; Fig. 5B,D). Additional
comparison of the size of boutons from pOFC and ACC (n = 3
cases, 185 boutons) in BL nucleus and their postsynaptic targets
showed that the two pathways had boutons of similar size, which
innervated a similar proportion of excitatory projection neurons
(86%) and local inhibitory interneurons (14%). These findings at
the level of the synapse confirm and extend the findings at the level of
the entire system using light microscopy as described above.

Our findings on the quantitative distribution, density, and
size of prefrontal terminals in the amygdala indicated that the
pOFC to IM pathway was dense and contained more large bou-
tons, which also significantly exceeded in size boutons in other
nuclei of the amygdala.

Differential targeting by pOFC pathways of distinct classes of
IM neurons

We then investigated the types of inhibitory neurons targeted by
the specialized pOFC pathway in IM. This experiment was based
on a recent quantitative study on the composition and relative
proportions of distinct inhibitory neurons in the primate IM and
their internal circuitry (Zikopoulos et al., 2016). The previous
study established that the inhibitory IM neurons are morpholog-
ically and neurochemically diverse and are intermingled (Fig.
6A). Most GABAergic IM neurons coexpress DARPP-32 and are
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Synaptic and structural features of pOFC terminals in the amygdala. A, The size (volume) of labeled boutons from pOFCin IM (brown diamonds) is larger than in the BL nucleus (blue

diamonds). B, Relatively small pOFChoutons in BL nucleus (Sb) form synapses primarily with spines (sp) of excitatory projection neurons (83%). The rest form synapses with GABAergic dendrites (De)
and spines of local inhibitory interneurons (17%). The EM photomicrograph shows one ultrathin section from a long series used to follow and reconstruct in 3D a small bouton from pOFC (Sh) and
its synapse (red asterisk) with a spine emanating from a dendrite of an excitatory projection neuron in BL nucleus (light blue, Sb; light green, De and sp, postsynaptic processes). , Relatively large
pOFC boutons in IM (Lb) form synapses mainly with spines of DARPP-32+ medium-sized spiny inhibitory neurons (57%). The rest formed synapses with GABAergic dendrites from aspiny IM
inhibitory neurons (43%). The EM photomicrographs show two adjacent ultrathin sections from a long series used to follow and reconstruct two large boutons from pOFC (Lb) and their synapses (red
asterisks) with spines emanating from a dendrite of a medium-sized spiny inhibitory neuron in IM, labeled with GABA (yellow arrows point to gold immunolabeling on the spine and dendrite).
D, 3D reconstructions of pOFC boutons and their postsynaptic targets in IM (dark blue, Lb; pink, GABA-+ De and sp, medium-sized spiny inhibitory neuron processes). The reconstructed dendrites,
spines, and boutons are rendered semitransparent to allow visualization of the synapse (red asterisks). E, As shown in €, most pOFC boutons in IM formed synapses with spines from medium-sized
spiny inhibitory neurons that were DARPP-32+ (57%). The rest formed synapses with dendrites of aspiny (B+ (26%) and NOS+ (17%) inhibitory neurons.

focal laser microscope (n = 2; cases BK and BL; >2000 apposi-
tions per case). We found that NOS+, CB+, and DARPP-32+
IM neurons were differentially targeted by pOFC axon terminals,
as shown in Figure 6, B and C. Most pOFC axon terminals were
closely apposed to dendritic spines of DARPP-32+ IM neurons
(~60%), followed by aspiny dendrites of NOS neurons (~23%),

spiny (~61%). These neurons have similar morphology to the
medium-sized spiny striatal neurons, which are also DARPP-
32+ (Greengard, 2001). Approximately 24% of the DARPP-32+
(spiny) neurons also coexpress CB. However, there is an addi-
tional population of aspiny inhibitory IM neurons that expresses
CB, but not DARPP-32 or NOS (~22%). The third and smallest

class of inhibitory IM neurons are aspiny and are positive for
NOS but not CB or DARPP-32 (~11%).

We addressed the specific interactions of the pOFC pathway
to IM in two ways. First, we examined close appositions of
fluorescent-labeled axon terminals and IM neurons using a con-

and aspiny dendrites of CB+ neurons (~17%). Approximately
14% of pOFC boutons were closely apposed to spiny dendrites of
DARPP-32+ neurons that also expressed CB.

We then used triple labeling to investigate synapses of pOFC
boutons with inhibitory IM neurons labeled with GABA and CB
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Differential targeting of distinct classes of inhibitory neuronsin IM by pOFC. 4, Distinct morphological and neurochemical subtypes of inhibitory IM neurons and their relative proportion

in the rhesus monkey IM [modified from (Zikopoulos et al., 2016)]. IM neurons are aspiny or spiny. Aspiny IM neurons belong to two classes: those that are NOS/NADPHd + (blue neurons, ~14%)
and those that are (B-+ (red neurons, ~23%). The majority of neurons in IM are spiny (~63%). All spiny neurons in IM express DARPP-32, and about one-third of them coexpress (B (green
neurons). B, Examples and relative proportions (bar graphs) of pOFC axon terminations (green fluorescence) closely apposed onto dendrites and spines of neurochemically distinct IM neurons (red
fluorescence). Most pOFC terminals were closely apposed to spines of DARPP-32+ IM neurons, followed by appositions with dendrites of aspiny NOS+ and CB+ IM neurons. €, 3D-projected
confocal stacks, rotated on the x-axis, show high magnifications of corresponding image segments in B (highlighted by yellow arrows) of closely apposed pOFC terminals (green) onto NOS+ (left),
(B+ (middle), and DARPP-32+ (right) dendritic segments (red fluorescence). The yellow arrows indicate the same sites of contact in Band C.

(Fig. 5E). This strategy made it possible to identify the propor-
tion of pOFC pathways on the unique class of CB neurons with
aspiny dendrites, the proportion of synapses on CB-positive
or CB-negative spiny dendrites (which are found on DARPP-
32+ neurons), as well as synapses on nonlabeled dendritic
shafts, which correspond to the unique class of NOS+ inhib-
itory neurons.

We used unbiased stereologic methods to sample miniseries
of ultrathin sections containing >100 labeled pOFC boutons in
IM (n = 2 cases; 140 boutons) and estimated the number of
synapses involving distinct postsynaptic sites. We found that the
pOFC pathway formed synapses with double-labeled aspiny den-
drites of CB/GABA+ IM neurons (26%), single-labeled aspiny
dendrites of GABA+ IM neurons (17%, presumably emanating
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A, Schematic diagram of prefrontal connectivity. Arrowhead sizes reflect relative connection strengths. ACC projections are strongest to the basal nuclei of the amygdala (BA; which

includes BL and BM nuclei), followed by Ce and then IM. An approximately complementary pattern is shown by pOFC projections: they are strongest in IM, followed by BA, La, and Ce. An excitatory
pathway from ACC (area 32) can activate the CeM sector of Ce and thus upregulate autonomic arousal, whereas pOFCis poised to inhibit CeM and therefore downregulate (Figure legend continues.)
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from NOS+ aspiny IM neurons). Another population of termi-
nals formed synapses on double-labeled spines of CB/GABA+
IM neurons (7%, presumably emanating from DARPP-32+ and
CB+ spiny IM neurons). The rest and largest population of ter-
minals formed synapses on single-labeled spines of GABA+ IM
neurons (50%, which likely emanate from DARPP-32+ spiny
neurons). These findings are in line with the general trend from
the results obtained using confocal microscopy. Overall, the pro-
portion of large and small labeled boutons from pOFC in IM that
targeted spines or dendrites of inhibitory neurons was balanced,
~50/50 (Fig. 5C,E). Interestingly, spiny and aspiny CB+ inhibi-
tory IM neurons were targeted by a higher proportion of large
pOFC terminals, as opposed to aspiny NOS inhibitory IM neu-
rons, which were innervated mainly by small pOFC boutons.

Discussion

Our findings revealed that the primate pOFC pathway to IM has
special features: a high proportion of large terminals, the densest
terminations compared with pathways that innervate other
amygdalar nuclei, and uneven innervation of distinct classes of
inhibitory IM neurons.

The significance of large terminals is based on evidence that
they are more likely to activate their targets (Rosenmund and
Stevens, 1996; Murthy et al., 1997) and are found in active and
stable networks (Thomson, 2000; Zikopoulos and Barbas, 2007a;
Becker et al., 2008). The functional import of the inhibitory IM
has been studied most extensively in rodents (John et al., 2013).
IM neurons project and inhibit the central amygdalar nucleus,
whose medial sector (CeM) projects out of the amygdala to au-
tonomic structures. Consequently, the IM in rodents mediates
extinction of conditioned fear responses, attributed to activation
of infralimbic (IL) cortex, which robustly innervates IM (Likhtik
et al., 2008; Amano et al., 2011). Stimulation of IL cortex thus
leads to feedforward inhibition of CeM (Likhtik et al., 2008),
preventing downstream activation of autonomic structures. The
intrinsic amygdalar circuitry is remarkably similar in various spe-
cies, including mice, rats, gerbils, and cats (Amir et al., 2011).

Based on its dense projections to IM, we suggest that pOFC in
primates is equivalent to the rodent IL cortex, which may corre-
spond only to the orbital (basal) part of a large ventromedial
region described in humans (Phelps et al., 2004; Zald and An-
dreotti, 2010; Milad and Quirk, 2012). The shift of IL cortex from
a medial position in rodents to a basal (orbital) position in mon-
keys reflects the prefrontal cortical expansion in evolution. Ac-
cordingly, the primate orbitofrontal cortex is large and has more
areas than in rodents, but only projections from its most caudal
part (pOFC) exquisitely outline the IM in monkeys (Ghashghaei
and Barbas, 2002).

Studies in rodents have also identified an area situated above
the IL cortex as the prelimbic (PL) cortex, which has distinct
connections with the amygdala (Sesack et al., 1989; Vertes, 2004).
Unlike the IL cortex, the PL cortex has few terminations in IM but

<«

(Figure legend continued.)  autonomic function. B, Proposed effects of high (large blue arrow-
head) and low (small blue arrowhead) dopamine (DA) levels on IM inhibition of Ce. Green
arrowhead sizes reflect relative connection strength from pOFC to the three neurochemical
classes of inhibitory neuronsin IM. High DA levels (large blue arrowhead) have been reported to
hyperpolarize IM neurons, whereas low DA levels (small blue arrowhead) do not. In contrast to
pOFC pathways, an elevated DA state is consistent with suppression of DARPP32+ and (B+
neurons, resulting in disinhibition of Ce activity. Thus, high DA levels (left), which can occur
during stressful situations, may counteract or mask a strong pathway from pOFC to IM and
reduce inhibitory control on Ce.
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projects strongly to BL nucleus and CeM (Amano etal., 2011), as
found here for ACC area 32. A strong pathway from area 32 to BL
nucleus (which projects to CeM) should activate CeM and facil-
itate acquisition of fear responses. Based on their common con-
nections, we can thus equate the rodent PL cortex with primate
area 32. The likely opposing functions of the primate pOFC and
ACC area 32 can thus be understood by their distinct amygdalar
connections, as in rodents. However, the mechanism of engaging
or disengaging these areas to mediate opposing functions is un-
known, except to note that the physiologic properties of IM neu-
rons depend on context (Paré et al., 2003; Amir et al., 2011).

In light of the present findings, the likely opposite effects by
ACC (area 32) and pOFC pathways can be understood in the
context of the distinct classes of inhibitory neurons in IM and
their intrinsic circuitry, as identified in primates (Zikopoulos et
al., 2016). The predominant primate IM class consists of DARPP-
32+ neurons, which we found to be the main target of pOFC
axons. A critical feature of IM neurons is their intrinsic circuitry:
DARPP-32+ neurons innervate and inhibit NOS+ neurons,
which innervate and inhibit the nonspiny CB+ neurons (Ziko-
poulos et al., 2016). Based on the circuits revealed here, pOFC
should activate primarily DARPP-32+ neurons in IM, which
would inhibit NOS+ neurons and disinhibit CB+ neurons. This
circuitry suggests that DARPP-32+ and CB+ neurons in IM may
have collaborative functions, namely to inhibit CeM and bar
transmission to downstream autonomic structures. By its sheer
strength, the pOFC pathway to DARPP-32+ and CB+ IM neu-
rons may represent a prepotent pathway.

How is the opposite state achieved, namely activation of CeM
for autonomic arousal? The answer may lie in the diverse func-
tions of the large class of spiny IM neurons when DARPP-32 is
phosphorylated at different sites, a process mediated by the level
of dopamine in the system (Greengard, 2001; Svenningsson et al.,
2004). In mice, dopamine was shown to hyperpolarize amygdalar
IM neurons (Marowsky et al., 2005), likely through D1 receptors
found on IM neurons (Fuxe et al., 2003; Zikopoulos et al., 2016).
The amygdalar DARPP-32+ neurons are akin to spiny striatal
neurons (Millhouse, 1986; Kaoru et al., 2010). Based on the in-
trinsic IM circuitry in primates (Zikopoulos et al., 2016), when
DARPP-32+ neurons are hyperpolarized, NOS+ neurons would
be disinhibited and activated by dopamine through a cascade that
involves cGMP and production of the gas transmitter nitric oxide
(NOj; Sammut et al., 2006; Garthwaite, 2008). In rodents, NO has
been implicated in long-term potentiation in the basal amygdala
for fear conditioning (Lange et al., 2012). Acquisition of fear
responses would favor the PL pathway (primate area 32), which
innervates CeM, as well as BL nucleus (which projects to CeM),
leading to activation of downstream autonomic structures (Fig.
7). These pathways support the idea that ACC area 32 is part of
the “emotional motor system” (Devinsky et al., 1995), along with
subgenual area 25 (our personal observations).

The above circuitry helps explain responses to fearful stimuli,
consistent with modeling work that predicts cooperative interac-
tion between prefrontal cortex and amygdala for making deci-
sions, such as avoiding danger (John et al., 2016). Prefrontal
pathways may help focus on specific negative stimuli by inner-
vating the class of CB+ inhibitory neurons in the amygdalar BL
nucleus and preventing responses to irrelevant stimuli, by anal-
ogy with the cortex (Wang et al., 2004; Medalla and Barbas,
2009); this sequence of events would thus limit activation of CeM
to specific negative stimuli.

The significance of identifying the analogs of PL and IL corti-
ces across species is also based on their extended involvement
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with, respectively, anxiogenic and anxiolytic effects in rodents
(Jinks and McGregor, 1997; Sierra-Mercado et al., 2011; Fu-
chikami et al., 2015). Can the circuits explain these broader states,
which are of high clinical relevance? Consistent evidence across
species has correlated high dopamine levels with stress and anx-
iety, a state that weakens the prefrontal influence (Inglis and
Moghaddam, 1999; Rosenkranz and Grace, 2002; Correll et al.,
2005; Yokoyama et al., 2005). Hyperpolarization of DARPP-32+
IM neurons may thus occur when dopamine levels are very high,
providing a mechanism to help explain how a strong pathway
from pOFC to IM can be overridden under high stress.

The specific innervation of inhibitory systems in the amygdala
found here, along with the differential impact that dopamine has
on them, makes it possible to hypothesize how distinct auto-
nomic states may be achieved. A strong pOFC influence on IM
that activates DARPP-32+ and CB+ neurons may help modu-
late autonomic function by downregulating CeM and thereby
facilitate social interactions in primates (Kalin et al., 2004; Well-
man et al., 2016). In humans, this may be akin to engaging in a
neutral or relaxing activity, such as driving along a scenic country
road. But when a deer darts across the street, quick vigilance and
response ensues by recruiting ACC to activate CeM and down-
stream autonomic structures. A moderate increase in dopamine
would also downregulate IM DARPP-32+ neurons, release their
inhibition of NOS+ neurons, and produce NO, effectively facil-
itating pathways to cope with the emergency. In this context,
collaboration between orbital and ACC prefrontal areas is likely,
as suggested by a recently discovered pathway from area 32 to the
middle-deep layers of pOFC (Garcia-Cabezas and Barbas, 2016),
which project to the amygdala (Cavada et al., 2000; Ghashghaei et
al., 2007) and the thalamic mediodorsal magnocellular (MDmc)
nucleus (Xiao et al., 2009). The specific influence of this indirect
pathway from area 32 to pOFC on the amygdala is unknown but
suggests activation of a tightly knit tripartite and bidirectional
system that involves the amygdala, MDmc, and pOFC. This sys-
tem suggests a mechanism to recruit broad prefrontal areas (Tim-
bie and Barbas, 2014, 2015) for decision and action.

On the other hand, in a panic condition, when survival is
perceived to be threatened, dopamine levels markedly increase.
DARPP-32+ neurons in IM may thus be primarily inhibited,
rendering the pOFC pathway ineffective. At the same time,
NOS+ neurons are activated and inhibit CB neurons, based on
the primate IM circuitry (Zikopoulos et al., 2016). Removal of
pOFC control and collapse of two major inhibitory systems in IM
would strongly disinhibit CeM. The CeM would also be directly
activated by pathways from ACC and BL nucleus, resulting in
massive recruitment of autonomic structures and emotional
arousal (Fig. 7). This scenario could help explain the state in
post-traumatic stress disorder (Bremner et al., 1999), when any
loud noise may lead to panic in affected war veterans after return
to civilian life.

The primate pOFC and ACC pathways, their innervation of
functionally distinct systems in the amygdala, and the intrinsic
circuitry within IM (Zikopoulos et al., 2016) thus provide the
circuit basis to help explain how distinct autonomic states may be
achieved. Influenced in a dynamic way by the level of dopamine
in the amygdala, this circuit system engages a switch between a
neutral autonomic state and normal reaction to a specific danger
for decision and action. In contrast, high dopamine levels render
the pOFC pathway ineffective in anxiety states in psychiatric
diseases.
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