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Multisensory Integration Uses a Real-Time
Unisensory—Multisensory Transform

Ryan L. Miller, Barry E. Stein, and Benjamin A. Rowland
Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157

The manner in which the brain integrates different sensory inputs to facilitate perception and behavior has been the subject of numerous
speculations. By examining multisensory neurons in cat superior colliculus, the present study demonstrated that two operational prin-
ciples are sufficient to understand how this remarkable result is achieved: (1) unisensory signals are integrated continuously and in real
time as soon as they arrive at their common target neuron and (2) the resultant multisensory computation is modified in shape and timing
by a delayed, calibrating inhibition. These principles were tested for descriptive sufficiency by embedding them in a neurocomputational
model and using it to predict a neuron’s moment-by-moment multisensory response given only knowledge of its responses to the
individual modality-specific component cues. The predictions proved to be highly accurate, reliable, and unbiased and were, in most
cases, not statistically distinguishable from the neuron’s actual instantaneous multisensory response at any phase throughout its entire
duration. The model was also able to explain why different multisensory products are often observed in different neurons at different time
points, as well as the higher-order properties of multisensory integration, such as the dependency of multisensory products on the
temporal alignment of crossmodal cues. These observations not only reveal this fundamental integrative operation, but also identify
quantitatively the multisensory transform used by each neuron. As a result, they provide a means of comparing the integrative profiles
among neurons and evaluating how they are affected by changes in intrinsic or extrinsic factors.
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Multisensory integration is the process by which the brain combines information from multiple sensory sources (e.g., vision and
audition) to maximize an organism’s ability to identify and respond to environmental stimuli. The actual transformative process
by which the neural products of multisensory integration are achieved is poorly understood. By focusing on the millisecond-by-
millisecond differences between a neuron’s unisensory component responses and its integrated multisensory response, it was
found that this multisensory transform can be described by two basic principles: unisensory information is integrated in real time
and the multisensory response is shaped by calibrating inhibition. It is now possible to use these principles to predict a neuron’s
multisensory response accurately armed only with knowledge of its unisensory responses. j

ignificance Statement

Introduction

Multisensory neurons in the superior colliculus (SC) enhance
their sensory processing by synthesizing information from mul-
tiple senses. For example, when visual and auditory signals are in
spatiotemporal concordance, as they would be when derived
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from the same event, they elicit enhanced responses (Stein et al.,
1975; Meredith and Stein, 1983; Stein and Meredith, 1993; Miller
etal., 2015). The originating event is then more robustly detected
and localized (Stein et al., 1989; Wilkinson et al., 1996; Burnett et
al., 2004, 2007; Gingras et al., 2009). The brain develops this
capability for “multisensory integration” by acquiring experience
with crossmodal signals early in life (Wallace and Stein, 1997;
Wallace et al., 2006; Stein et al., 2009, 2014; Xu et al., 2012, 2014,
2015, Yu et al., 2010, 2013; see also Stein, 2012; Rowland et al.,
2014; Felch et al., 2016). In the absence of these antecedent expe-
riences and the changes that they induce in the underlying neural
circuitry, the net response to concordant crossmodal stimuli is no
more robust than to the most effective individual component
stimulus; that is, the neuron’s “default” multisensory computa-
tion reflects a maximizing or averaging of those unisensory in-
puts (Jiang et al., 2006; Alvarado et al., 2008; Stein et al., 2014).
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The postnatal acquisition of this capacity, its nonlinear scal-
ing, and its functional utility have attracted the attention of many
(Ernst and Banks, 2002; Anastasio and Patton, 2003; Alais and
Burr, 2004; Colonius and Diederich, 2004; Ma et al., 2006; Row-
land et al., 2007a; Morgan et al., 2008; Biirck et al., 2010; Ohshiro
etal., 2011; Cuppini et al., 2012), but its biological bases remain
poorly understood. In part, this is because efforts to understand
this process have focused on the generalized, “canonical” rela-
tionship between net multisensory and unisensory response
magnitudes. These are abstract quantities calculated by averaging
the responses (i.e., impulse counts) of many neurons over long
temporal windows and are therefore not a direct indicator of the
actual multisensory transform as it occurs on a moment-by-
moment basis and as individual neurons communicate their
multisensory products to their downstream targets. It merely re-
flects aggregate relationships quantified in an empirically conve-
nient fashion. It is also sufficiently abstract as to be reproducible
by any number of “biologically plausible” models. However, be-
cause they are based on these abstract, averaged quantities, such
proposals are loosely constrained, have limited predictability,
and fail to take into account the inherent variation in multisen-
sory products among neurons at different times. A comprehen-
sive analysis of the statistical properties and dynamic features of
the multisensory computation is needed to understand the actual
operating constraints of the biological mechanism.

The present effort sought to do just that. The operating
principles of the multisensory transform were inferred from
empirical data gathered here and, to determine whether they fully
described this transform, they were put to a stringent test: pre-
dicting the actual moment-by-moment multisensory responses
of individual neurons given only knowledge of each neuron’s
response to its modality-specific component stimuli. This was
accomplished by embedding the principles in a simple neuro-
computational model: the continuous-time multisensory model
(CTMM; Fig. 1). Despite being highly constrained by a small
number of relatively inflexible parameters (and even when fixing
those parameters across the population), the model proved to
be highly accurate and precise in predicting the moment-by-
moment multisensory responses. Therefore, it demonstrated that
these operating principles provided a complete description of the
multisensory transform as it operates in real time. Although this
approach was developed for describing SC multisensory integra-
tion, the principles identified here are likely to be common
among neurons throughout the nervous system.

Materials and Methods
Electrophysiology

Protocols were in accordance with the National Institutes of Health’s
Guide for the Care and Use of Laboratory Animals, Ed 8. They were ap-
proved by the Animal Care and Use Committee of Wake Forest School of
Medicine, an Association for the Assessment and Accreditation of Labo-
ratory Animal Care International-accredited institution. Two male cats
were used in this study. Some samples from a previously acquired dataset
(Miller et al., 2015) were also added to the present analysis.

Surgical procedures

Each animal was anesthetized and tranquilized with ketamine hydro-
chloride (25-30 mg/kg, IM) and acepromazine maleate (0.1 mg/kg, IM).
It was then transported to the surgical preparation room, where it was
given prophylactic antibiotics (5 mg/kg enrofloxacin, IM) and analgesics
(0.01 mg/kg buprenorphine, IM) and intubated. It was then transferred
to the surgical suite. Deep anesthesia was induced and maintained (1.5
3.0% inhaled isoflurane) and the animal was placed in a stereotaxic
frame. During the surgery, expired CO,, oxygen saturation, blood pres-
sure, and heart rate were monitored with a vital signs monitor (VetSpecs
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Figure1. CTMM schematic. Visual (bird) and auditory (accompanying song) inputs (top) are
integrated continuously as they arrive at their common target neuron (middle). The multisen-
sory input drives the neuron’simpulse generator (dark gray ratchet) to produce its multisensory
outputs (purple arrows). Note that the moment-by-moment integrated multisensory products
(firing rate) are plotted graphically as “output” (bottom) and decrease over time. This is due to
the influence of a delayed calibrating inhibition (shown in orange, middle), which dispropor-
tionately suppresses later portions of the response.

VSM7) and body temperature was maintained with a hot water heating
pad. A craniotomy was made dorsal to the SC and covered with a stainless
steel recording cylinder (McHaffie and Stein, 1983), which was secured
to the skull with stainless steel screws and dental acrylic. The skin was
sutured closed around the implant, the anesthetic discontinued, and the
animal was allowed to recover. When mobility was regained, the animal
was returned to its home pen and given analgesics (2 mg/kg ketoprofen, IM,
once per day; 0.01 mg/kg buprenorphine, IM, twice per day) for up to 3 d.

Recording procedures

After a minimum of 7 d of recovery, weekly experimental recording
sessions began. In each session, the animal was anesthetized and tran-
quilized with ketamine hydrochloride (20 mg/kg, IM) and acepromazine
maleate (0.1 mg/kg IM), intubated, artificially respired, and secured to a
stereotaxic frame in a recumbent position by attaching two head posts to
a recording chamber, which ensures that no wounds or pressure points
were introduced. Respiratory rate and volume were adjusted to keep the
end-tidal CO, at ~4.0%. Expiratory CO,, heart rate, and blood pressure
were monitored continuously to assess and, if necessary, adjust, the
depth of anesthesia. Neuromuscular blockade was induced with an in-
jection of rocuronium bromide (0.7 mg/kg, IV) to preclude movement
artifacts and to fix the orientations of the eyes and ears. Contact lenses
were placed on the eyes to prevent corneal drying and focus them on the
tangent plane where LEDs were positioned. Anesthesia, neuromuscular
blockade, and hydration were maintained by intravenous infusion of ket-
amine hydrochloride (5 mg/kg/h), rocuronium bromide (1-3 mg/kg/h),
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Figure2. Variation in multisensory products across neurons and SOAs. In these three exemplar neurons (left to right), the relationship between the timing of the visual and auditory inputs and

their synthesized multisensory product was examined. Three SOAs were used with the visual stimulus preceding the auditory: 0 ms (VOA, top), 25 ms (V25A, middle), and 50 ms (V50A, bottom). In
each of the panels, the unisensory response spike density functions (V/and A) were plotted, as were their arithmetic sum (V/ + A) and the actual multisensory response they yielded in combination
(V/A). Note that even the smallest change in the relative timing of the crossmodal component stimuli altered the alignment of their inputs substantially and changed the magnitude of their integrated
product significantly (i.e., MEand Al). In each case, the enhanced product was greatest during the period of the IRE (gray shading; Rowland et al., 2007a). Together, these observations suggest that
crossmodal inputs are synthesized in real time, but that the scale of the multisensory products that they generate changes during the course of the response.

and 5% dextrose in sterile saline (2-4 ml/h). Body temperature was
maintained at 37-38°C using a hot water pad.

A glass-coated tungsten electrode (1-3 M) impedance at 1 kHz) was
lowered manually with an electrode manipulator to the surface of the SC
and then advanced by hydraulic microdrive to search for single neurons
in its multisensory (i.e., intermediate and deep) layers. The neural data
were sampled at ~24 kHz, band-pass filtered between 500 and 7000 Hz,
and spike-sorted online and offline using a Tucker-Davis Technologies
recording system and OpenSorter software. When a visual-auditory neu-
ron was isolated (amplitude 4 or more SDs above background), its visual
and auditory receptive fields (RFs) were mapped manually using white
LEDs and broadband noise bursts. These stimuli were generated from a
grid of LEDs and speakers ~60 cm from the animal’s head.

Testing stimuli were presented at the approximate center of each RF.
Stimulus intensities were adjusted to evoke weak, but reliable, responses
from each neuron for each stimulus modality. Only neurons that were
reliably responsive to both visual and auditory cues individually were
included in the study. This required that each unisensory response was at
least 1 impulse/trial above the spontaneous activity and that this differ-
ence was statistically significant (¢ test, & = 0.05). Stimuli for testing
included a visual stimulus alone (V, 75 ms duration white LED flash), an
auditory stimulus alone [A, 75 ms broadband (0.1-20 kHz) noise with a
square-wave envelope], and their crossmodal combinations at varying
stimulus onset asynchronies (SOAs). From these, 3 SOAs were chosen:
VOA (simultaneous), V25A (auditory lagging visual by 25 ms), and
V50A. These SOAs were chosen because they represent the range over

which integration is most robust (Miller et al., 2015) and are character-
istic of external events occurring within a reasonable range (i.e., 17 m) of
the animal. Furthermore, although the overall magnitudes of multisen-
sory products at the population level tend to be quite similar at these
different SOAs (Miller et al., 2015), they can be quite variable within
individual neurons (Fig. 2). This is because the shapes of the multi-
sensory responses (and alignments of the unisensory inputs) vary sub-
stantially. Therefore, they provide an effective means of evaluating how
moment-by-moment changes in unisensory relationships affect their
multisensory transform independent of substantial changes in their net
products. At the end of a recording session, the animal was injected with
~50 ml of saline subcutaneously to ensure postoperative hydration. An-
esthesia and neuromuscular blockade were terminated and, when the
animal was demonstrably able to breathe without assistance, it was re-
moved from the head-holder, extubated, and monitored until ambula-
tory. Once ambulatory, it was returned to its home pen.

Data analysis

Analyses were divided into two sections. The first analyzed the empirical
data to reveal the operational principles of the moment-by-moment
multisensory transform. The second embedded these principles within a
neurocomputational model (CTMM) and tested whether they could be
used to predict accurately the moment-by-moment multisensory re-
sponses of any given neuron. This provided a means of determining the
sufficiency and completeness of the empirically derived principles to
describe the multisensory transform.
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Evaluation of the multisensory transform. The
computations underlying the SC multisensory
response (i.e., the manner in which various
unisensory inputs are combined to evoke a
multisensory discharge train) are typically in-
accessible to direct probes. However, the oper-
ational principles of the moment-by-moment
multisensory transform can be inferred from
the overt responses of the neuron to modality-
specific cues presented individually (ie., its
unisensory responses) and in combination
(i.e., its multisensory response). This is because
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the impulse generator of the SC neuron that 0
transforms its inputs to its outputs (i.e., its re-
sponses) is reasonably assumed to be source
agnostic; that is, it is a transform that is consis-
tently applied to all inputs regardless of
whether they are unisensory or multisensory.
Consistently applied transforms do not alter
the statistical relationships between variables
(Howell, 2014). Therefore, the relationships
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Accordingly, the basic objective was to
quantify the relationships between the uni-
sensory and multisensory responses at a high
temporal resolution (“moment-by-moment,”
operationally: 1 ms resolution) relative to stim-
ulus onset. These comparisons required shift-
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ing each of the recorded unisensory responses
to align stimulus onsets with those in the
matching multisensory condition. For exam-
ple, in comparisons involving the VOA (i.e.,
simultaneous) crossmodal condition, the mul-
tisensory response at t = 60 ms after stimulus
onset was compared with the sum of the uni-
sensory visual and auditory responses at t = 60
ms. In comparisons involving the V50A cross-
modal condition, in which the auditory stimu-
lus was delayed by 50 ms relative to the visual
stimulus, the multisensory response at t = 60
ms was compared with the sum of the unisen-
sory visual response at = 60 ms and the uni-
sensory auditory response (recorded on the
auditory-alone trials) at t = 10 ms.

For population analyses, samples were
grouped by SOA condition and synchronized
to the “estimated time of convergence”
(ETOC). The ETOC was an estimate of when
inputs from both the visual (V) and auditory
(A) modalities first converged onto their target
neuron in the crossmodal stimulus condition, and thus when the multi-
sensory transform could begin. To find this time, the two unisensory
response latencies (LV and LA) were added to the two stimulus onset
times (SV and SA) and the maximum of these two sums was identified as
follows: ETOC = max(SV + LV, SA + LA).

To obtain quantitative measures of “instantaneous” response efficacy,
the binary impulse raster matrices (1 ms resolution) for each response
were converted to spike density functions by convolving each trial with a
narrow Gaussian kernel [N(0.8 ms)] and calculating mean and variance
across trials. Response onsets and offsets (relative to stimulus onset) were
calculated from each impulse raster using a three-step geometric method
(Rowland et al., 2007b). This method identifies response onsets and
offsets by finding the timing of “hooks” in the cumulative impulse count
function, which indicate changes in the firing rate. In addition, a linear
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Population differences between multisensory response and additive prediction. A, Samples were grouped by SOA and
synchronized by ETOC. The unisensory—multisensory correlation was then assessed within each of the 3 groups (V0A, V25A, and
V50A). The coefficient of determination (R2) was significant and high throughout the duration of the multisensory response (the
gray shading indicates the region of the IRE). The dashed line indicates the threshold for significance (R? = 0.045). B, Significant
(albeit diminished) correlations were also observed within each cohort between the moment-by-moment slopes of the multisen-
sory and summed unisensory responses. The dashed line indicates the threshold for significance (R2 = 0.045). €, Heat maps for the
3 S0As for all neurons (each row is a neuron) illustrate the consistency of the IRE across neurons and SOAs (delineated by solid
vertical lines). They also illustrate the transition in the magnitude of the multisensory products, which are heavily superadditive
(red) during the IRE but change to more additive (yellow) and subadditive (green), thereafter. D, Normalized, averaged multisen-
sory (V/4) and summed unisensory (V/ + A) responses within, and immediately after the IRE (gray shading) were plotted. As shown
in the heat map, the superadditive enhancement was largely confined to the IRE. E, Comparisons of the average firing rate
differences between the multisensory and best unisensory component responses (multisensory enhancement) and between the
multisensory and summed unisensory responses (superadditivity) demonstrated that both were significantly (p << 0.001) greater
within, than after, the IRE. Box-and-whisker plots indicate median, interquartile range, and range.

splining technique was applied to each response trace (slope at time ¢
estimated as the slope of a line connecting the mean spike density func-
tion at t — 10 ms and ¢ + 10 ms) to generate an estimate of its “instan-
taneous” slope.

Correlation-based analyses of the timing of multisensory and unisen-
sory responses were conducted to determine whether their dynamics
were time locked. A temporal correlation between each mean multisen-
sory response and the summed unisensory responses (Fig. 3) was calcu-
lated as the R? between firing rate traces paired by time step (1 ms
resolution). Because conventional statistical thresholds require that ob-
servations be independent and identically distributed (invalid for data
sampled on adjacent time steps), a randomization and resampling pro-
cedure was used to evaluate the statistical significance of this R? value.
The sampling distribution of R* expected if the multisensory and summed
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unisensory responses were uncorrelated was calculated by repeatedly
(10,000 times): (1) randomizing the times of the impulses in the
multisensory impulse raster, (2) calculating the resultant spike den-
sity function, and (3) calculating the R? between the now-randomized
multisensory and unisensory spike density functions as before (i.e.,
paired by time step). The proportion of this distribution of these R*
values that was greater than the actual R? value was used to estimate the
p-value for this correlation. A second analysis correlated the multisen-
sory and summed unisensory responses at each time step across the
neurons sampled. To accomplish this, samples were grouped by SOA and
synchronized by the ETOC. Then, at each time step, R? was computed
between the multisensory and summed unisensory firing rates for the
population of neurons studied. Statistical significance was determined
using conventional standards (i.e., @ = 0.05). Identical analyses were
applied to the estimated instantaneous slopes of the multisensory and
unisensory responses. A third analysis calculated the cross-correlation
coefficients between the multisensory and summed unisensory responses
at multiple temporal lags (5 ms intervals) to determine whether their
dynamics were time locked.

To examine trends in the multisensory/unisensory magnitude differ-
ence (Fig. 3), the multisensory and summed unisensory response traces
were aligned and subtracted directly from one another. The amplitude of
the resulting difference trace (which indicated nonlinearity in the multi-
sensory product) was assessed within different windows of time (¢ tests).
This often exposed a phenomenon referred to as the “initial response
enhancement” (IRE; see Rowland et al., 2007b). Multisensory ampli-
fication was further quantified by calculating the proportionate dif-
ference between the mean total multisensory response magnitude
(#impulses) and either the largest associated unisensory response mag-
nitude (“multisensory enhancement,” ME) or the sum of the unisensory
response magnitudes (“additivity index,” AI) (Meredith and Stein, 1983)
as follows:

VA — max(V, A)

ME = IOOXW (1)
3 VA — (V+ A)
Al = IOOXW (2)

All response magnitudes were corrected for levels of spontaneous activity
as in earlier studies (Alvarado et al., 2009). ME and Al were calculated for
the entire response and also within two windows, one representing the
early window of multisensory interaction which contained the IRE
(ETOC — 20 ms to ETOC + 30 ms) and the other the remaining portion
of the response. The deviation of ME and Al from zero and differences
between them across these windows of time were evaluated statistically
using f tests (Fig. 3). It is important to note that each of these empirical
analyses was conducted on each neuron in the sample to identify their
common principles.

CTMM. The principles inferred from the empirical analyses above
were tested for validity and completeness by embedding them in a neu-
rocomputational model (the CTMM) and evaluating whether this model
could predict accurately and reliably the multisensory response of a given
neuron in an unbiased fashion given only knowledge of the associated
unisensory responses of the neuron (Fig. 1). The model was designed to
be the simplest and most direct implementation of the principles of the
multisensory transform identified above and its use here parallels other
statistical regressions. For example, just as a simple linear regression
between two variables is used to support a (linear) model mapping from
variable X to variable Y according to some free parameters (slope and
intercept), here, a (nonlinear) model (the CTMM) maps from unisen-
sory responses to multisensory responses according to some internal
parameters (n = 3). In both cases, the validity and completeness of the
model is supported when the mapping errors are small and unpatterned.

A leaky integrate-and-fire single neuron model (I/F) is the simplest
model of a neuronal impulse generator. The output impulse train of a
model I/F neuron, R(t), produced by a continuous “net input signal,”
I(#), and stochastic zero-mean Gaussian-distributed “noise input,” N(0,
0), is determined by a membrane potential, V(¢), with time constant 7
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and a rule that clamps V() to rest (0) for some refractory period (1 ms)
after it exceeds an arbitrarily defined threshold of V(#) > 1 as follows:

3V
T, = ~V(O +1(0) + N, 0) 3)

if(V(£) > 1) {V(t + k) = 0) for k C (0:1 ms)); R(1) = 1;}
else(R(t) = 0) (4)

The “noise input,” N(0, o), represents random fluctuations of input and
is randomly sampled on each moment in time. Equations 3 and 4 were
simulated numerically from an initial condition to produce an output
impulse train in response to any arbitrary input, I(#). It was then simulated
many (10,000) times from randomly selected initial conditions, V(0) €
[0,1], and the resulting impulse raster convolved with a narrow Gaussian
kernel, N(0, 8 ms), and averaged across trials to estimate a mean response S
toarbitrary input I This is referred to as the “forward model transform™: S =
M(I|7, o). The prediction for the multisensory response Sy is generated
from I,,, which is calculated from the responses of the neuron to the
modality-specific components using an equation with three components:

Iyy = (Iy + I) X Hyy (5)

The first two components represent the input from the individual mo-
dalities (I, and I,) combined according to the simplest possible rule:
summation. Due to the way that they are estimated (see below), I,, and I,
already account for both excitatory and inhibitory influences. The third
component (Hy,,) is a delayed, “calibrating” inhibition in the multisen-
sory condition that is in addition to the inhibition already captured by
the unisensory inputs. Here, “calibrating” means that its magnitude is
dependent on the strength of the preceding response and it has the effect
of forcing the higher activity levels associated with the multisensory re-
sponse back to baseline.

To maintain conceptual parallels with other regression techniques and
to mitigate concerns of overfitting, a simple formula for its a priori cal-
culation is provided based only on the observed unisensory responses
(i.e., without knowledge of the multisensory response). This formula was
constructed to offset amplification in the multisensory response and
includes a low-pass filtering convolution to introduce a delay as follows:

Hyy = (1 +
(6)

In Equation 6, « represents an « function with a rate parameter of 15 ms
that delays and smooths the predictive error calculation in the numerator
(* denotes the operation of convolution). It scales with the amplification
of the multisensory response. Parameter i controls the strength of this
inhibitory component. Equations 3—6 represent a complete system for
predicting the multisensory response given estimated unisensory inputs
I, and I, and according to parameters 7, 0, and h. They are simulated
numerically with temporal resolution At = 0.1 ms using the solution of
Equation 3 under the assumption that input is approximately constant
within a time step (Koch and Segev, 2003, Chapter 9).

Conceptually, the unisensory inputs are estimated by applying the
inverse model transform to the overt unisensory spike density functions
as follows:

h X ((15 ms) = (M(Iy + L7, 0) — (M(Iy|7, o) + M(Iy|7, 0))))\ '
)

I, = M Y(FR|r, 0) (7)
I, = M '(FRy|T, 0) (8)

This is accomplished numerically by applying an iterative algorithm to
the recorded unisensory spike density functions. In generic form, this
algorithm infers input I(¢) from observed spike density function FR(t)
according to parameters T and o.

The algorithm is predicated on the idea that the instantaneous firing
rate of a neuron depends not only on the instantaneous input magnitude,
but also on its recent history. Therefore, it begins with an initial estimate
of input magnitude. It then moves forward in time, estimating at each
subsequent time step the most likely input value that would produce the
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Table 1. List of parameters of the C(TM model, a description of what each
represents, and the range of their optimal values

Parameter

name Description Optimal range

T Time constant controlling the speed with which 5-10 ms
the model reacts to changing input

o Random fluctuations of input 1.5-2.5

h Strength of delayed, calibrating inhibition 0.0064-0.0128

observed firing rate. To estimate the initial input magnitude (I, the
algorithm starts with an assumption that the spontaneous firing rate is
constant (as measured —100 to 0 ms before stimulus onset). Iy, is
identified as the constant input magnitude that will produce the observed
“output” firing rate FR,,, of the neuron. Operationally, I, is calcu-
lated by simulating Equations 3—4 for different levels of constant input
and identifying a value that produces an average firing rate within 0.2
impulses/s of FR,,,,.. Then, at each future time step T after stimulus
onset, I(T) is initially assigned value I(T — 1). Equations 3—4 are simu-
lated from t = —100 to t = T 10,000 times and the mean value of the
firing rate of the model at time T, S(T'), is calculated. I(T') is then raised or
lowered based on whether the mean S(T') underpredicts or overpredicts
the actual firing rate, FR(T) and the simulations are rerun. When the
mean of S(T') is within 1% or 0.5 impulses/s of FR(T'), then the value of
I(T) is fixed and the algorithm advances to time step 7'+ 1 (note that this
involves only unisensory responses).

Applying this procedure to the unisensory visual and auditory re-
sponses derives the unisensory input traces I,,(t) and I, (¢) for each value
of Tand o. Equations 3—6 were then simulated 10,000 times with random
initial conditions to derive a model-predicted multisensory response
trace based only on the unisensory responses for each combination of
parameters used in this study. Ideal or “optimal” values of the model
parameters for each sample (Table 1) were identified as those minimizing
the mean sum-of-squares difference between the model-predicted and
actual multisensory response trace over the entire response duration.

Evaluation of the CTMM. The model was evaluated for accuracy, reli-
ability, and bias. Accuracy was assessed by comparing, on a neuron-by-
neuron and moment-by-moment basis, the model-predicted firing rate
to the mean firing rate of the actual multisensory response normalized by
the SE (the error t-score). For an individual sample, if a model prediction
was within the central 95% of this distribution it was considered to be
“practically equivalent.” Reliability was assessed by the SE of the distri-
bution of error t-scores at each moment in time. Bias (i.e., whether a
model consistently overpredicted or underpredicted) was determined at
each time step by calculating whether the model-predicted response was
greater than (scored as +1), lesser than (—1), or equal to (within 10%)
the actual multisensory response (0). These scores were averaged across
neurons at each time step.

Successful prediction of the moment-by-moment dynamics of the
multisensory response should, in principle, also mean successful predic-
tion of net or total response metrics (e.g., total response magnitude) and
thus any higher-order features based on them: ME, Al, and sensitivity of
the multisensory response magnitude to SOA for individual samples.
This was evaluated by correlating the values calculated for individual
samples with the model predictions of them.

In addition, the performance of the CTMM was compared with that of
several referent models in which various CTMM components were “bro-
ken” or removed. These comparisons provided a way of evaluating the
relative importance of the manipulated CTMM parameters. Principal
among these other referents was an “additive” model formed by sum-
ming the unisensory responses. This represented a referent in which
integration took place in real time, but did not contain any of the
nonlinear components of the CTMM. CTMM performance was also
evaluated against another referent model in which only the delayed, cal-
ibrating inhibition was removed. Other referent models that were used
for comparison involved fixing one or more of the CTMM parameters in
a sensitivity analysis using a Bayesian information criterion (BIC) (Kass
and Raftery, 1995). The final analysis determined whether the CTMM
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parameters optimally fit for different neurons could be used to explain
the observed variation among their multisensory responses.

Results

Overview

The responses of individual visual-auditory multisensory SC
neurons (n = 86) were recorded and analyzed to determine each
neuron’s moment-by-moment unisensory-to-multisensory trans-
form. These 86 neurons were tested at three SOAs each, yielding
258 multisensory responses. Of these 258 responses, 172 (67%)
exhibited multisensory integration, defined here by multisensory
enhancement (the multisensory response was significantly greater
than the largest unisensory response). These 172 samples were
used for the majority of analyses, which revealed two operating
principles of the multisensory transform: (1) unisensory inputs
are integrated continuously and in “real time” (i.e., virtually in-
stantaneously) and (2) there is a delayed, calibrating inhibition.
To determine whether these principles represented a sufficient
and complete description of the multisensory transform, they
were then embedded into the neurocomputational model
(CTMM) as described in the Materials and Methods, which
used the unisensory visual and auditory responses of a neuron to
predict its moment-by-moment multisensory response. Finally, the
model was used to explain observed variation in multisensory
products.

Empirical analyses

Each of the neurons was studied with a battery of randomly in-
terleaved tests that included the component stimuli individually
and their spatially concordant crossmodal combination at three
different ecologically common SOAs: synchronous (VOA), visual
25 ms before auditory (V25A), and 50 ms before auditory (V50A).
The unisensory response latencies (visual = 68 * 10 ms, audi-
tory = 22 * 8 ms, mean = SD) and magnitudes (visual = 6.3 =
4.3 impulses/trial, auditory = 4.8 = 3.4 impulses/trial) and esti-
mates of the net ME (105 * 98%) and Al (36 * 46%) were all
consistent with previous reports (Stein et al., 1973a, 1973b; Stan-
ford et al., 2005; Yu et al., 2009; Pluta et al., 2011).

The fundamental operating principles of the moment-by-
moment multisensory transform were immediately evident from
inspection of the unisensory and multisensory responses (spike
density functions; see Materials and Methods) of several repre-
sentative exemplars (Fig. 2). First, when responses were aligned
by stimulus onset, there was a strong correlation between the
dynamics of the summed unisensory and multisensory respons-
es: when the former rose or fell, there were similar changes in the
latter even though their magnitudes differed, suggesting that the
unisensory inputs were being synthesized immediately upon ar-
rival at the target neuron. This observation may seem somewhat
counterintuitive for two reasons. First, multisensory integration
isknown to depend on descending inputs from association cortex
(Wallace and Stein, 1994; Jiang et al., 2001; Alvarado et al., 2009;
Yu et al,, 2013), which, by being multiple synapses downstream
from primary tectopetal sources, would be expected to introduce
a delay in the emergence of this transform (Cuppini et al., 2010).
Second, its immediacy would not be expected if that transform
required intrinsic SC circuit dynamics for processing (Deneve et
al., 2001). Indeed, the enhancement visible in the multisensory
response was largest near the ETOC (producing the IRE; Row-
land et al., 2007b), but rapidly diminished thereafter. Although
there are several ways to interpret the post-IRE downward trend
(see Discussion), the most plausible is that it is due to a delayed
inhibitory influence.
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responses were shifted earlier in time by
Actual ~15-20 ms. This finding is consistent
i with a model in which the SC neuron in-
tegrates inputs as soon as they arrive, even
when they are subthreshold, and converts
them to output using standard mecha-
nisms for action potential generation.
Taken together, these observations reveal
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out delay.

The difference in magnitude between
the multisensory and summed unisensory
responses was greatest around the ETOC
where the IRE was largest (85% of samples
were net superadditive during the IRE; Fig.
3(C). This feature was consistent across neu-
rons despite variation among the temporal
profiles of unisensory responses, did not de-
pend on SOA, and remained robust at the
population level (Fig. 3D). Within the IRE,
the average (median) raw multisensory re-
sponse enhancement was 40 impulses/s and
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sory responses (Fig. 3E). After the IRE, this
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Figure 4.

remained high even for neurons with atypical response profiles.

These two operational principles were robustly represented in
the population. Across the entire response window, significant
correlations (see Materials and Methods) were identified between
the magnitudes and slopes of the mean multisensory and associ-
ated summed unisensory responses for virtually every sample
(100% of magnitude correlations and 99.4% of slope correlations
were significant). In a second analysis involving comparing the
moment-by-moment responses pooled over samples grouped by
SOA, significant ( p < 0.05) correlations in response magnitude were
evident at all time steps after the ETOC (Fig. 3A) and these did not
change significantly at different stages of the response. Significant
(p < 0.05) correlations in the slopes of the responses were also
identified throughout, but these diminished as responses became
less robust and more variable late in the discharge train, dropping
below significant correlation at 165-169 ms after ETOC. There
was also high consistency in the results at the different SOAs, so
that no significant differences in any of these metrics were noted
across SOA groups. A cross-correlational analysis compared the
multisensory and summed unisensory responses. Presumably
because multisensory responses are speeded relative to their uni-
sensory counterparts (Rowland et al., 2007b), the maximum tem-
poral correlation was identified when the summed unisensory

CTMM accuracy at the single neuron level. 4, Actual response rasters (purple) are plotted along with model output
(green) for a representative neuron at three SOAs. Each dot represents an action potential and each row of dots represents a
response of the neuron to a single crossmodal presentation. Twenty trials are plotted for both actual responses and model output,
although more were collected/produced. B, Actual multisensory responses (purple) and model responses (green) of the same
exemplarneuron asin A plotted in spike density function form. Multisensory responses were matched by the predicted response at
each SOA, whereas the additive prediction (dashed gray) had very poor performance near the ETOC (vertical line), when the most
robust integration was taking place (i.e., the IRE). Note that model accuracy was high for both total ME and Al. ¢, Model accuracy

dropped to 19 and 5 impulses/s, respec-
tively. This trend is consistent with the influ-
ence of a delayed, calibrating inhibition.

These two operational principles (real-
time integration and delayed, calibrating in-
hibition) alone proved to be sufficient to
understand the multisensory transform.
This was established quantitatively us-
ing the simplest possible neurocomputa-
tional model (CTMM; see Materials and
Methods) that would encompass these
principles. The model was then used to
predict each individual moment-by-moment multisensory re-
sponse given only knowledge of the associated unisensory
responses.

100 200 300

Time (ms)

CTMM evaluation
The CTMM predictions are shown in Figure 4 for a highly repre-
sentative neuronal exemplar tested at multiple SOAs (Fig. 4 A, B),
as well as for neurons with more idiosyncratic response profiles
(Fig. 4C). In all cases, the CTMM was highly accurate in predict-
ing the temporal dynamics of the multisensory response. There-
fore, it also predicted the total magnitude of each response
accurately, and thus the net enhancement of the response (ME
and Al), as well as variations in its magnitude at different SOAs.
The CTMM had low error scores (mean error t-score = 1.1 *
0.9) throughout the response window, but error was lowest
(0.9 = 0.7) around the ETOC, when the strongest multisensory
products were observed (Fig. 5A). The foil additive model be-
haved quite differently: its error was not only higher throughout
the response, but particularly high around the ETOC (mean error
t-score = 2.3 £ 1.4), when the integration process was most
productive. As shown in Figure 5B, the CTMM-predicted multi-
sensory responses were often statistically indistinguishable from
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and Al (right). Each point in these plots represents a different sample, with the line of unity indica
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ting an exact match between the CTMM and the empirical data. B, CTMM also predicted accurately

the temporal tuning of the multisensory products in each neuron at each SOA tested, as illustrated by these four exemplars with different SOA-tuning preferences.

the actual multisensory responses, with 85% of them being prac-
tically equivalent around the ETOC and 78% practically equiva-
lent across the entire response (versus 46% and 61% for the
additive model). Furthermore, the small CTMM errors were gen-
erally unbiased (Fig. 5C), even around the ETOC (—0.01 versus
—0.53 for the additive model) and the CTMM was equally accu-
rate for all response efficacies, whereas the additive model errors
were especially high when responses were weak (Fig. 5D).

Because the CTMM could predict the moment-by-moment
firing rate of the multisensory response reliably, it could also
predict its total response magnitude reliably (R* = 0.98). There-
fore, it could also predict the traditional quantified products of
multisensory integration reliably [ME (R* = 0.91) and AI (R* =
0.89); Fig. 6A] and could also predict the tuning of these products
to SOA in individual neurons accurately (Fig. 6B) (Rowland et al.,
2007b; Miller et al., 2015).

The accuracy of the CTMM was, of course, best when all three
model parameters were selected optimally for each sample
(BIC = 1689 = 19; see Materials and Methods). However, Tcould
be fixed to its population-optimal value (8 ms) and there was only
aminor increase in mean error (BIC = 1743 = 19) across the pop-

ulation. However, even when all parameters were fixed to their
population-optimal values (7 = 8 ms, o = 1.5, h = 0.0016), the
CTMM was still significantly more accurate (BIC = 1960 * 21) than
the additive model (BIC = 2000 * 22) (Fig. 7B). In this circum-
stance, the CTMM outperformed the additive model 75% of the
time in the region around the ETOC and 70% of the time overall
(Fig. 7A), revealing the importance of its nonlinear components.

The importance of the delayed inhibitory component of the
CTMM was further assessed by comparing its performance with
another foil model, one identical to the CTMM but lacking the
delayed inhibitory component (i.e., setting parameter h to zero).
This reduced model exhibited a BIC of 1863 = 22, substantially
worse than the intact CTMM.

The model parameters were also found to represent consistent
and predictable features of a given neuron’s multisensory inte-
gration capabilities. This was tested by using best-fit parameters
for a neuron at a particular SOA and then testing those parame-
ters for the same neuron at a different SOA. If the parameters
represent actual features of a neuron’s multisensory integration
capabilities, then this should produce a more accurate prediction
than if the parameters are instead taken from a randomly chosen
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Figure7.  Parameter sensitivity. A, Fixing various numbers of free parameters (3, 2, 1, 0) shows that, even with no free parameters, the CTMM is better at predicting the multisensory response

than an additive prediction for ~70% of neurons and this is true regardless of SOA. B, BIC error is similarly better than for the additive model regardless of the number of free parameters. All bars
differ significantly from each other [paired t test, p << 0.005. BIC = n = In(RSS/n) + k= In(n)]. C, Fixing all parameters based on the best parameters found using the same neuron but at a different
SOA (second bar) was far better than simply using the best parameters for the overall population (third bar) or choosing the parameters from a random unit/SOA (fifth bar). Using the tau and noise
parameters from the same unit/other SOA and allowing only the inhibition scale to vary freely further reduced the error. All bars differ significantly (paired t test, p << 0.005). D, Exemplar neuron
demonstrating the impact of changing the three parameters within our tested range: 7 (left), o (middle), and h (right). Note how changing each of the parameters primarily affects the magnitude
and actually has a relatively small impact on the shape of the model output, particularly at the beginning of the multisensory response (IRE).

neuron. Indeed, this was found to be true; using the best param-
eters from the same neuron but at a different SOA produced an
average BIC error of 1849 * 22 (Fig. 7C, second bar), whereas
using the best parameters from a randomly chosen neuron pro-
duced an average BIC error of 2250 * 17 (Fig. 7C, fifth bar). This
indicated that the optimal parameters for a given multisensory
response were not arbitrary, but were a highly predictable feature
of each neuron. The impact of different parameter variations on
the model output is shown in an exemplar in Figure 7D. Notably,
the enhancement early in the response window (i.e., during
the IRE) was less sensitive to these parameters than were later
portions.

Using the CTMM to predict new relationships

One long-standing puzzle is how so-called “nonintegrating” SC
neurons can be responsive to inputs from multiple sensory mo-
dalities and yet be unable to produce enhanced responses to their
combined inputs (cf. Stein and Meredith, 1993; exemplars in Fig.
8A). In other words, how can two independent excitatory inputs
yield a response that is no more robust than one of them alone?
One possibility is that, at the time of testing these neurons, the
visual and auditory input traces were mismatched in some way so
as to preclude facilitatory interactions. Another possibility is that
these neurons lack some critical internal multisensory ma-
chinery. Interestingly, the CTMM predicts the multisensory

responses of integrating (n = 172) and nonintegrating (n = 86)
samples with approximately equal accuracy (¢ test, p = 0.12). This
was initially surprising given that one of the premises of the
model is the linear real-time synthesis of the crossmodal inputs.
However, examination of the temporal profiles of enhancement
(i.e., the “nonlinearity” or difference between actual response
and additive estimate) in integrating and nonintegrating samples
revealed very similar patterns, except that the nonintegrating
samples exhibited what could be interpreted as much larger sup-
pressions later in the response (Fig. 8B). Consistent with this,
nonintegrating samples were found to be fit optimally by larger
values of the parameter h (Fig. 8C). The mean fit h parameter
value for integrating samples was 0.009 * 0.011 (mean *= SD)
and for nonintegrating samples was 0.017 * 0.015. (Mann—
Whitney U, p < 0.001). This suggests that interneuronal variabil-
ity in the amount of inhibition (or sensitivity to it) within the SC
may be principally responsible for variation in the products of a
multisensory response. This observation challenges the common
notion that integrating and nonintegrating neurons are engaged
in fundamentally dissimilar behaviors and computations. Rather,
the CTMM reveals that neurons typically categorized as “integrat-
ing” or “nonintegrating” exist along a continuum of enhancement
as predicted by the optimal i parameter. Whether the same re-
sults would be obtained for nonintegrating SC neurons in differ-
ent populations in which they constitute the majority of samples
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(TMM explains variations in enhancement magnitude among neurons. 4, Four atypical exemplar neurons are shown: the top two show subadditive multisensory enhancement and the

bottom two show no multisensory enhancement. Nevertheless, both groups show similar trends, although with more subadditivity in the nonintegrating samples. Conventions are the same as in
Figure 5. B, These similarities are also apparent at the level of the population of integrating or nonintegrating neurons. The most apparent difference between integrating and nonintegrating
samples appears to be the stronger delayed inhibition in the latter. ¢, Magnitude of the CTMM inhibitory scaling parameter (h, y-axis) was highly predictive of the neuron’s integration capabilities
as measured by the Al (the higher the h factor, the lower the Al). Also shown is the best fit line (dashed) to the relationship.

(e.g., neonatal animals, those raised in the darkness or in omni-
directional noise, or those with compromised cortical inputs;
Wallace and Stein, 2000; Yu et al., 2010; Xu et al., 2014) is cur-
rently unknown.

Discussion

In 1952, Hodgkin and Huxley derived a nonlinear, continuous-
time model of action potential generation from careful study of
the statistical principles of this phenomenon in the squid giant
axon. That study provided a framework for studying and predict-
ing neuronal behavior. It was followed by a number of other
influential works in which the basic biophysical properties of
individual neurons, inferred from empirical study, were then
tested for their completeness via forward simulation (Church-
land and Sejnowski, 1992; Rieke, 1997; Koch, 1999; Dayan and
Abbott, 2001; Gerstner and Kistler, 2002; Koch and Segev, 2003).
The present study attempted to continue in that spirit with the
objective of predicting the products of multisensory integration.
Two basic principles of the individual SC neuron’s multisensory
transform proved to be essential for this purpose: (1) crossmodal
inputs (visual and auditory) are synthesized continuously in real
time as they converge on their common target neuron and (2) later
portions of the multisensory response are reduced by a delayed,
calibrating inhibition. These principles governing the underlying
biological process were exposed via statistical analysis of neural
responses to the presentation of visual and auditory cues individ-
ually and in combination. To ensure that these two principles
were sufficient to describe the multisensory transform accurately
and completely, they were embedded within a simple neurocom-
putational model (CTMM), which was used to predict the actual
magnitude and timing of a neuron’s moment-by-moment mul-
tisensory (visual-auditory) response based only on its two uni-
SEeNnsory responses.

The predictions of the CTMM proved to be highly accurate,
producing the typical response profile in which the transform
yields superadditive products during the early phase of unisen-
sory input convergence and then gradually transitions to additive
products thereafter. Indeed, most of its predictions were practically
equivalent to the empirically observed responses. The CTMM was
consistently accurate for neurons with differently shaped re-
sponse profiles, as well as for responses obtained from different
SOAs from the same neuron. The few predictive errors that were
observed were small and unbiased. On this basis, it was concluded
that the identified principles capture the most reliable aspects of

the multisensory transform; that is, they constitute a sufficient
description of the underlying biological process. It is important
to note that the CTMM only uses the strength and timing of the
unisensory responses in making predictions about multisensory
products. This is consistent with the empirical literature sug-
gesting that these factors are the principal determinants of a
multisensory product. Although other stimulus and organismic
features (Meredith et al., 1987; Wallace and Stein, 1997; Wallace
etal., 1998; Kadunce et al., 2001; Miller et al., 2015) have thus far
been found to have little influence over this process, the possibil-
ity that other factors than those explored here could also have an
impact cannot yet be excluded.

The current approach derives the structure of the CTMM
directly from elemental neural response properties. By doing so,
it avoids the need to speculate about which of many possibilities
are actually at work. It also goes beyond reproducing general
relationships between the averages of unisensory and multisen-
sory responses across large populations of neurons to reproduc-
ing the moment-by-moment yield of the multisensory transform
in each individual neuron. This, of course, also allows for more
global predictions of net multisensory magnitude of a response
(i.e., the proportional enhancement of the multisensory response
relative to the unisensory responses) and the sensitivity of this
enhancement to other factors such as the SOA. In short, the
CTMM can be used to predict how a neuron will respond to any
combination of visual and auditory cues at any SOA and (pre-
sumably) under any environmental condition based only on its
unisensory responses. Further, it can also be used as a tool to
parameterize the transform implemented by each neuron and
compare it across different neurons, cohorts, and manipulations.

As a specific demonstration of how the predictive power of the
CTMM can be used as a tool in data analysis, it was used here to
understand how so-called “nonintegrating” neurons could be
responsive to multiple sensory modalities yet fail to produce a net
enhanced response to their combination. The responses of these
neurons were predicted with the same accuracy as were those of
integrating neurons. The only difference was higher values for A,
the parameter controlling the strength of the delayed inhibitory
dynamic. This result suggested that these neurons have the same
basic capabilities as their counterparts, but for unknown reasons
are more strongly affected by delayed inhibition.

The delayed inhibitory component is an abstract entity here
and does not have a 1:1 relationship with any single biological
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aspect, but it is likely to be dependent upon preceding portions of
the (multisensory) response, as is common among neurons else-
where in the brain. In many cases (e.g., olfactory cortex and visual
cortex), principal neurons are reciprocally connected with local
inhibitory circuits that enforce a homeostatic “reset” to baseline
activity levels after sensory-processing events (Francis et al., 1994;
Koch and Davis, 1994; Ren et al., 2007). However, it is also pos-
sible that the mechanism of delayed inhibition represents a more
local effect, one dependent on adapting ionic channels within
the multisensory SC neuron’s membrane (Brette and Gerst-
ner, 2005).

It is important to note that, in the current analysis, the visual
and auditory inputs are each considered as singular inputs even
though they are known to derive from a number of sources (Ed-
wards et al., 1979) and may play different roles. For example, the
anterior ectosylvian sulcus is known to provide a major input to
the SC and to play a critical role in SC multisensory integration
(Wallace and Stein, 1994; Wilkinson et al., 1996; Jiang et al., 2001,
2006). Each of the other inputs to the SC may contribute in their
own way to the strength and timing of multisensory integration,
but how these various inputs operate within the current context
remains to be determined. However, the model does assume that
the input channels are independent and have a net excitatory
influence. In its current form, it makes no predictions about re-
sponses to other stimulus conditions (e.g., multiple cues from
within the same modality), but it can be extended to do so.

It is also important to note the ubiquity of the superadditive
computation observed here. This shows that SC multisensory
integration is not, as has been previously considered, a minor
phenomenon limited to a few samples or specific conditions,
thereby limiting its behavioral role (Holmes and Spence, 2005;
Fetsch et al., 2013). The presence of superadditive computations
around the ETOC is a highly characteristic feature of integrated
SC multisensory responses, being seen in nearly all such neurons
under all conditions (Fig. 3). However, this IRE (Rowland et al.,
2007b) is not limited to the time at which the visual and auditory
inputs first converge on their common target neuron and initiate
activity, but continues for some time (e.g., 40 ms) thereafter,
when the unisensory inputs are already superthreshold. There-
fore, it not only represents the period of greatest enhancement,
but also encompasses the most active phase of the multisensory
response. Additive computations, in contrast, are mostly ob-
served in the response’s declining phases. The timing of these
superadditive and additive computations in this structure also
has important functional implications. Given that SC-mediated
behavioral responses (e.g., saccades) are often initiated 80-180
ms after stimulus onset (Fischer and Boch, 1983; Sparks et al.,
2000), the IRE may be the response phase most important for
SC-mediated behavioral decisions (Rowland et al., 2007b). The
additive/subadditive computations that take place later in the
multisensory response as the result of the calibrating inhibition
may have little to do with these immediate decisions and reac-
tions, but may support later-occurring processing aims or pro-
vide a resetting mechanism.

In sum, the present observations reveal the underlying mech-
anism by which neurons integrate information across the senses
on a moment-by-moment basis and suggest that the biophysical
mechanisms underlying this process are likely to be much simpler
than previously thought (Anastasio and Patton, 2003; Rowland et
al., 2007a; Cuppini et al., 2010). The CTMM explains not just the
general relationship between canonical multisensory and unisen-
sory responses, but also the observed variation in the actual out-
comes of multisensory integration over time and across neurons.
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Therefore, it can be a useful tool moving forward by quantita-
tively parameterizing the multisensory transform implemented
and has been used here to suggest a resolution to a long-standing
puzzle in the field regarding “nonintegrating” multisensory SC
neurons. It seems reasonable to expect that this approach will be
effective with multisensory neurons in other areas of the brain
and with other sensory modality combinations, but this remains
to be determined.
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