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Representation of Multidimensional Stimuli: Quantifying the
Most Informative Stimulus Dimension from Neural
Responses

Victor Benichoux,! “Andrew D. Brown,' “Kelsey L. Anbuhl, and “Daniel J. Tollin"->>
Department of Physiology and Biophysics, 2Neuroscience Training Program, and *Department of Otolaryngology, University of Colorado School of
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A common way to assess the function of sensory neurons is to measure the number of spikes produced by individual neurons while
systematically varying a given dimension of the stimulus. Such measured tuning curves can then be used to quantify the accuracy of the
neural representation of the stimulus dimension under study, which can in turn be related to behavioral performance. However, tuning
curves often change shape when other dimensions of the stimulus are varied, reflecting the simultaneous sensitivity of neurons to
multiple stimulus features. Here we illustrate how one-dimensional information analyses are misleading in this context, and propose a
framework derived from Fisher information that allows the quantification of information carried by neurons in multidimensional
stimulus spaces. We use this method to probe the representation of sound localization in auditory neurons of chinchillas and guinea pigs
of both sexes, and show how heterogeneous tuning properties contribute to a representation of sound source position that is robust to

changes in sound level.

Key words: binaural hearing; Fisher information; ILD; multidimensional; neural coding

(s

ignificance Statement

Sensory neurons’ responses are typically modulated simultaneously by numerous stimulus properties, which can result in an
overestimation of neural acuity with existing one-dimensional neural information transmission measures. To overcome this
limitation, we develop new, compact expressions of Fisher information-derived measures that bound the robust encoding of
separate stimulus dimensions in the context of multidimensional stimuli. We apply this method to the problem of the represen-
tation of sound source location in the face of changes in sound source level by neurons of the auditory midbrain.
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Introduction

Sensory stimuli consist of multiple features, and thus occupy
multidimensional spaces: an approaching predator has size,
shape, and color; an aversive odorant has intensity and gradi-
ent; an acoustic communication signal has spectral, temporal,
and spatial properties. Despite such variations, perception is
remarkably invariant: that is, sensitivity to stimuli along a
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single stimulus dimension is robust to fluctuations in other
dimensions. For example, animals can recognize the shape of
an approaching predator at varied distances, in overcast or
bright sun, or identify the origin of a communication signal
whether loud or soft.

In many instances, populations of neurons have been identi-
fied whose responses are modulated by changes of a given stim-
ulus dimension, and thus are said to represent that dimension.
However, responses of sensory neurons are typically modulated
by several stimulus features simultaneously, such as in vision
(Lagae et al., 1993; Fiscella et al., 2015) or olfaction (Anderson et
al., 2003; Stopfer et al., 2003). In hearing, there is a vast literature
on this topic concerned with the encoding of sound frequency
(Kim et al., 1990), vowel spectral shape (Sachs and Young, 1979;
Blackburn and Sachs, 1990; May et al., 1998), sound source azi-
muth (Aitkin et al., 1984, 1985; Aitkin and Martin, 1987; Rajan et
al., 1990; Brugge et al., 1996; Irvine et al., 1996; Day and Delgutte,
2015), and spatial cues (Semple and Kitzes, 1987, 1993; Irvine and
Gago, 1990; Rice et al., 1995).
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Information about a single stimulus dimension. a, Sound localization in azimuth: color map with respect to the ear ipsilateral (blue) and contralateral (red) to a sound source.

b, Acoustical measurements of the ILD cue to sound location in the horizontal plane in a chinchilla. Data from Benichoux et al. (2016). ¢, Color-coded sound source azimuth as a function of level at
each ear (ipsilateral and contralateral). A sound at the same source location but different intensity will result in a different combination of ipsilateral and contralateral levels.

Sensitivity to multiple stimulus features means that single sen-
sory neurons are not robust to changes in secondary dimensions
of the stimulus, and complicates the question of which stimulus
dimension a neuron or a population of neurons “represents”.
Although this issue has been recognized across sensory systems,
theoretical tools that robustly address the problem of neural cod-
ing of multidimensional stimuli are lacking. This article provides
such tools to systematically analyze multidimensional receptive
fields, e.g., to quantify how much information can be recovered
about a single stimulus dimension in the face of changes in sec-
ondary dimensions. We use the sound localization system of the
mammalian midbrain as a case study; however, the techniques
can be applied more widely and generally to any sensory system.

Localizing sound sources relies on processing acoustical cues
that vary systematically with source location. In general, low-
frequency sources are localized via interaural time differences
(ITD), whereas high-frequency sources are localized via interau-
ral level differences (ILD; Rayleigh, 1907; for measurement of
cues in the species considered in the present paper, see Koka et al.,
2011; Greene et al., 2014). Sensitivity to ILD relies on comparison
of sound level at the two ears, which is also of course directly
affected by the level of the sound source (ABL; Fig. 1¢). Any given
binaural level combination is therefore the result of the source
being at a particular location and a particular intensity.

Despite this potential source of ambiguity, human and animal
sound source localization behavior is remarkably insensitive to
the level of the source signal: sounds are accurately localized pro-
vided they are loud enough to be heard. This is true of humans’
absolute localization (Macpherson and Middlebrooks, 2000; Su
and Recanzone, 2001; Vliegen and Van Opstal, 2004; Sabin et al.,
2005), but also in cats (Gai et al., 2013), or macaque monkeys
(Recanzone and Beckerman, 2004).

Altogether, available studies suggest that an ABL-independent
neural representation of location (or ILD) should be available
at some level of the auditory pathway. In the present article, we
seek to find this representation by estimating the information
available about ILD in auditory neurons whose response in
general also varies with ABL (Semple and Kitzes, 1987; Irvine
and Gago, 1990; Park et al., 2004; Tsai et al., 2010; Day and
Delgutte, 2015).

Materials and Methods

Experimental design and statistical analysis

Data were obtained from eight adult long-tailed chinchillas (Chinchilla
lanigera; males, 500—700 g), and six adult guinea pigs (Cavia porcellus; 2
females, 450—1170 g). Details of the statistical analyses for the experi-
ments can be found in the rest of Materials and Methods, as well as in the
legends of Figures 2, 3, and 5.

One-dimensional Fisher information and the Cramér—Rao bound
The Cramer—Rao bound (CRB) is a bound on the performance of unbi-
ased estimators (or decoder) of a stimulus dimension x (for background
on estimation, see the two chapters by Jansen and Claeskens, 2011; Reid,
2011). We assume that the response of the neuron is a random variable
conditional on the value of the stimulus, such that it can be described by
R|X, where X is the one-dimensional stimulus and R the rate. Of course,
the mean value of R|(X = x) depends on x, and is generally referred to as
the tuning curve, noted r(x). Letting £ be an estimator of x given the
observed rate: £ is a random variable (it is a function of the spike rate,
itself a random variable). An estimator £ therefore has an expected
value, and an unbiased estimator is one such that E [£] = x. This
assumption expresses the fact that the estimator does not make any
systematic errors, i.e., systematically underestimate or overestimate
the value of the stimulus.

In this context, the CRB states that the best achievable precision of
such an estimator is such that:

Var(x) = 1/](x).

That is, the variance of the estimator can be no smaller than the inverse of
the Fisher information (FI), noted J(x). The information is the second
moment of the score function:

_ ( d '
Jx) = —E[ Eﬂ&@) ],

where the log-likelihood function is derived from the rate distribution
conditional on the value of the stimulus R|X:

L(R; x) = log(fryx(r; x)).

Provided that r(x) is the spike count of the neuron, and that it can be
modeled as Poisson distributed (the variance of the spike count is equal
to the spike count itself), the FI has a simple expression (Seung and
Sompolinsky, 1993) that only depends on the tuning curve:
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where 9r/dx(x) is the derivative of the mean count with respect to the
stimulus dimension x. Note that the denominator of this expression is the
variance of the spike count at x (equal to the mean count in a Poisson
model).

If, rather, we assume that the spike rate of the neuron is normally
distributed, with a constant variance across x values then:

()

0_2

Jx) =

>
where o2 is the variance of the spike rate reflecting neural noise.

If the variance is considered to change with the stimulus, it positively
contributes to the information, and the FI reads (Dayan and Abbott,

2001):
ar\? da? 2
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In this paper, we are only interested in how changes in the mean response
[i.e., r(x)] influence the information in the context of multiple stimulus
dimensions. To simplify later developments, we will assume that we can
estimate FI by omitting the second term (still using the stimulus-
dependent values of the variance). The validity of this assumption can be
quantified precisely, especially in the reasonable case where each neu-
ron’s response exhibits a constant Fano factor F, defined as follows:

o?(x) = Fr(x).
In this case, the FI can be written as follows:

(9r/dx)* F
= (1% a0

Thus our assumption leads to an error proportional to the inverse
squared spike count, and can therefore be considered valid provided they
are large enough.

FI in multiple dimensions

Fisher information from the marginalized rate distribution. In the one-
dimensional case, FI emerges from a comparison of the spike rate distri-
butions at neighboring stimulus parameter values. When dealing with
multiple tuning curves, there is not a single rate distribution R|X available
to the experimenter for a given stimulus parameter value, but rather all
distributions corresponding to different values of the second dimension
y: R|(X,Y = y) (Fig. 3i, colored distributions). To compute the FI when
decoding X, we need to consider the rate distribution conditional on X,
R|X, which is a compound distribution obtained by marginalizing Y out
of R|X, Y. Note that R|X, Y describes neural noise: its variance corre-
sponds to the variability of the neural response with fixed stimulus pa-
rameters, on the other hand R\X describes neural variability: it also
describes apparent response variability due to the uncertainty about Y.

To compute the marginal distribution R|X; it is useful to assume that
the random variables X and Y are independent. In the example developed
in the main text, it is clear that ILD and ABL are a priori independent,
because the loudness and spatial position of a sound should not be
strongly correlated. If more information about the non-independence of
X and Yis available, it can be useful to change the parametrization of the
stimulus space into independent dimensions (e.g., by independent com-
ponent analysis; Comon, 1994).

It should be noted that, when we are considering the R|X obtained by
marginalizing Y out, the estimation problem exactly reduces to the one-
dimensional case in which one is estimating the value of X from the
conditional distribution R|X. Therefore, the CRB still holds when FI is
evaluated using this likelihood derived from the marginalized condi-
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tional rate distribution. We compute the FI about X as the FI obtained by
numerically evaluating the second moment of the score function, from a
conditional rate distribution where y has been marginalized out.

2

J
Jux) = —E ox IOgJ fR|X,Y(r§ % Y)fy)dy
Y

At this point, no specific assumption as to the precise nature of the
conditional rate distribution was made (the neural noise R|X, Y), it is
thus for now impossible to provide a more compact expression.

A notable difficulty is that even if we assumed that the neural noise
(R|X, Y) had a specific nature (e.g., is Poisson or normal), the nature of
the variability distribution R|X would still not in general be the same as
the neural noise. It in fact depends in a complex way on the marginal
distribution of Y. In the next section we investigate methods to provide a
more compact expression of the FI about X under reasonable conditions
on the distributions of R|X, YandY.

Local marginal fisher information. Let R be the random variable de-
scribing firing of rate, and X and Y two random variables describing the
values of the stimulus. We will assume that neural noise is normally
distributed with a constant variance across X, such that:

R|X,Y ~ N(r(X,Y), o?).

To put it simply, the discharge rate of the neuron is assumed to depend
on the values of the stimulus parameters (X and Y) through the response
map r which we measure experimentally (the multidimensional analog of
the tuning curve). The discharge rate is variable because of neural noise,
and therefore there is some stimulus-independent variance to the distri-
bution of rates conditional on the stimulus values: o-*.

The motivation for this development presented here is to reduce the
rate distribution to the one-dimensional case in which mean rate only
depends on the value of one stimulus parameter, i.e., evaluating the
random variable R|X. We will do so by marginalizing out the contribu-
tion of Y. We will look at R|X as an instance of a compound distribution
(or mixture), in which the mean of a random variable (R|X) depends on
another random variable (Y; Seidel, 2011). Conveniently, when R\X, Y
and Y are normally distributed, so is R|X. This result allows us to find a
good expression of the FI about X locally in y.

First, we postulate that the uncertainty about Y is modeled with a
normal distribution. That is as follows:

Y~N(y0,8;.

Now, we can see the conditional rate distribution R|X as compounding
R|X,Y and Y. First, let us recall a basic result of compounded distribu-
tions. If A and B are random variables such that:

A~ N(0, 07),

Then the marginal distribution of B (the compounded distribution) is
also normal with w, mean and 0%, + o7 variance:

Second, we assume that 8, is small enough with respect to variations of
the response map, we can linearize the values of the mean rate r(x, y)
about y, and write:

1, yo + u) = r(x, yo) + udrfoy + ...

We are now ready to express R|X as the distribution resulting from com-
pounding:

U~ N(0,1)
RIX,U ~ N(rG, y,) + 8,0rlayU, 0?),

when U and X are independent. Applying the above result to our case we
obtain:
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RIX ~ N(r(X, yo), 0 + 8(3r/ay)?).

As above, by marginalizing out the contribution of Y we have reduced
our problem to the one-dimensional case. Therefore, we can still com-
pute the FI using the normal with constant variance estimate of FI, and
the CRB holds.

This expression is intuitive: assuming that Y'is distributed around y, a
good approximation of the rate distribution conditional on X = x is a
distribution of mean r(x, y,), whose variance is the neural noise o2 to
which is added a term proportional to (1) the uncertainty about Y: 8, and
(2) the magnitude of variations in mean rate when y is varied: 9r/9y)>.

Having found an expression for the distribution of the conditional rate
distribution R|X, we can now compute the FI with a closed form expres-
sion because R|X is a normal distribution. In the end, we define the local
marginal Fisher information as the FI associated with estimating X from

RIX:
ar\?
(&)
o+ 82< ar> 2
ay

This expression is again rather intuitive: the marginal information is
analogous to that obtained by computing FI with the tuning curve r(x,
¥o)> with an added positive term in the denominator accounting for the
additional variability due to y.

In the case where tuning curves are perfectly robust to changes
in y, then dr/dy = 0 and the local marginal FI expression reduces to the
one-dimensional FI. On the other hand, two effects can reduce the
amount of local marginal FI by making the denominator larger. First, if
tuning curves are more “separated” at different y values (the (3r/dy)
term), and second if we assume that Y values can span a larger range (the
&2 term).

To reach this simple expression we have assumed that neural noise is
normal with a stimulus-independent variance, that the values of Y are
normally distributed around a mean value, and that the variations of the
response map in y are linear. This expression should be understood as a
description of local (in stimulus space) information, in which case those
assumptions are more likely to be met.

Extension to N dimensions. Hereto we have treated the case of two
stimulus dimensions, but note that the foregoing developments are read-
ily extended to N dimensions. We assume that we are trying to decode
one dimensions out of N, so we let Y be a vector of N — 1 dimensions,
where each dimension is independent (and independent on X) and dis-
tributed according to normal distributions of different SDs 8. We can
again linearize the rate locally around (x,y,) and think of R|X as the
compounded distribution:

Julx) =

U, ~ N(0, 1)

N-1
RIX,U ~ N (0, yo) + . 8,0r/0y,U,, 02).

i=1

Where the U, variables are independent on each other and on X. Apply-
ing N — 1 times the compounding result stated above, we obtain:

N-1

RIX ~ N (X, yo), 0 + 2.8 3rlay,)),

i=1

()

o’ + EN 182 (ar/dy;)*>

and in the end:

Jnlx) =

Fisher information matrices
The problem of decoding from multidimensional neural response maps
is mathematically similar to that of decoding from one-dimensional tun-
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ing curves. In fact, it also admits a CRB analogous to that in one dimen-
sion, except it is expressed with Fisher information matrices (FIMs;
Cover and Thomas, 2012). We will present this concept in two dimen-
sions, but it extends in N dimensions. Consider an estimator T of two
parameters x and y, then all unbiased estimators T of (x,y) are such that:

(Jee, y)) "

Where the order is taken to mean that the matrix Cov(T) — ] '(x, y) is
positive semidefinite, and J(x, y) is the FIM, defined using the log-
likelihood L(R; x,y) = log(P(RIX = x,Y = y)), where R is the ran-
dom variable describing a neuron’s rate:

Cov(T) =

| 9L x, y)IL(R; x, Y)
](xJ/)—[E[ IxX ay ]

The exact expression of the FIM again depends on the nature of the
neural noise distribution (i.e., how is R distributed). If we again assume
that neuronal firing is normally distributed with constant variance o2,
the log-likelihood reads:

- r(x, y))

o

LR;x,y) = — %log(Zﬂ' — log(o) — 7<

With minor manipulations, the FIM can be shown to have elements:

ar ar
ou 9vlx,y

Ju, y) = ——5—

g

where the subscript u,v refers to entries in the matrix, corresponding to
the dimensions of the stimulus. More explicitly, if the response map
varies with two dimensions x,y:

ar\* or or
Jx dxdy

\Ya%s
Jo) =3 arar fory |T 20
dxdy dy
ar
. . 0x
where Vr is the gradient of the response map: Vr = or
dy

Note that the FIM assuming spike counts follow a Poisson distribution
of mean r(x, y) is very similar: VrV#'/r

The FIM matrix, as the outer product of the gradient, has unit rank and
thus only one non-zero eigenvalue equal to its trace:

<3r>2+ (m)z
dx ay) _IvrlP
])\(x>y): 2 = 2 >

g [oa

with the corresponding principal vector along the gradient Vr.

Local marginal FI in arbitrary directions

To obtain the marginal information for an arbitrary stimulus direction, we
use the definition of local marginal FI introduced above, and consider arbi-
trary rotations of the coordinate system Let us compute the local marginal
information in the (cos(6), sin(0))” direction by rotating the axes by an
angle — 0 (i.e., clockwise by an angle 6 such that the direction of the gradient
is along the x-axis). The gradient of the rate map in this new coordinate
system is equal to R_,Vr, given that R_ is the rotation matrix:

_( cosf sinf
R-y= i cosf /*

—sinf
The local marginal information around a given stimulus value can be
written as follows:
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0 ar 0 81’)2
cos( )ax-i-sm( )ay

Jolx, y) = or o\
o+ 8@( —sin(G)E + cos(G)Bf)

We can then use trigonometry relations (see next section) to show that
the local marginal information in any direction can also be written in a
more compact way:

\ cos* (60 — )
¥ 83 \(x, y) sin*(0 — @)

Tolx, y) = Ja(x,

Where @ = arctan((dr/dy)/(9r/dx)) is the angle between the direction
of best information (as provided by the FIM) and the x-axis.

We can now compare the behavior of this expression with the FIM-
derived values. We observe that when computing the local marginal
information in the direction of the gradient (i.e., when 6 = «), it reduces
t0 Jo+ %, ¥) = ]y, y). Furthermore, if we compute the local marginal
information in a direction orthogonal to that of the gradient, we get
Iat;(x, y) = 0 Therefore, it is the case that the eigendirection of the FIM

provides the direction of maximal information, and that locally the in-
formation in a direction orthogonal to the gradient is equal to zero.

Derivation of the local marginal information in arbitrary directions. This
section provides a detailed derivation of the local marginal information
in arbitrary directions presented in the previous section, which is not
essential to the comprehension of the paper. We use the trigonometry
relation below to reduce the linear combination of sines and cosines in
the expression of the local marginal information:

a cos® + b sinf = \Ja> + b* cos(6 — ),

ar
J
where a = arctan(b/a). In our case, let « = arctan ar be the angle

ax
between the direction of best information and the x-axis (i.e., the direc-
tion of the gradient). The numerator of the expression of the local mar-
ginal information is equal to:

08r+.08r_ 8r2+ ar\’ o
cos( )ax sin( )ay* P iy cos(0— ).
Where the term y/a* + b” is in fact equal to the magnitude of the
gradient J,(r).

Using the same trigonometry relation, we can reduce the denomina-
tor, even though it takes a bit more work:

) ar ar ar\? ar\?
*s1n(0)£+ cos(f))afy= ax + @ cos(0 - ),

where
ar ar
Jx ax
B = arctan arl = arctan ar I
dy dy
We can then use the relation:
7T .
7 ifx>0
arctan(1/x) + arctan(x) = - s
- 5 ifx <0
to show that:
B= —a=x w2

In the end, the denominator reduces in both cases to:
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.66r+ 98r27 6r2+ 61‘2.20
sin( )ax cos( )8)/ =5 3y sin(0 — ).
Numerical methods
Fitting the one-dimensional tuning curves. When dealing with the one-
dimensional ILD tuning curves (Fig. 1) we fitted the ILD tuning curves at

each ABL using a gradient descent algorithm to fit a sigmoidal function of
the form:

Tm — Tp
r(ILD) =Ty + W’
where ILD is the varied parameter, r, the baseline firing rate, r,, the
maximal firing rate, V;; , a measure of the steepness of the sigmoid, and
ILD* is the ILD of half-maximum of the sigmoidal function (inflection
point). The analytic expression of the rate is then used to evaluate the
slope, and thus the Fisher information.
The goodness of fit was evaluated using the r* measure, with the usual
sum of squares approach:

SSreg
88t

rr=1-

where SS,., is the sum of squared differences between the data and the
model, and SS,,, is the sum of squared differences of the data (i.e., pro-
portional to the variance of the data across ILDs).

Estimation of local response map gradients. The computation of Fisher
information relies on a robust estimation of the gradient of the response
map. Throughout this article, the gradients were estimated using a boot-
strapping method. Response maps were resampled 100 times according
to different trials, and the gradient estimated at each point. All gradients
used for FI computation are computed by taking the median of the
bootstrapped distributions of each component.

Electrophysiological recordings

Ethics statement. All experimental procedures complied with guidelines
set forth by the National Institutes of Health and were approved under a
protocol submitted to the University of Colorado Anschutz Medical
Campus Animal Care and Use Committee.

Brief description of the procedure. All procedures for electrophysiolog-
ical recordings used by the laboratory were described previously (Jones et
al., 2015; Brown and Tollin, 2016) and are only briefly outlined here.

Data were obtained from adult chinchillas and guinea pigs anesthe-
tized with intramuscular and intraperitoneal (respectively) injections of
ketamine hydrochloride (22.5 mg/kg, 80 mg/kg, respectively) and xyla-
zine hydrochloride (5 mg/kg, 8 mg/kg, respectively). Body temperature
was maintained at 37°Cby use of a heating pad and thermal probe, and all
vital signs were monitored over the duration of the experiment.

All recordings occurred in a double-walled sound-attenuating cham-
ber. The head was immobilized using a stereotactic apparatus, and a
midline incision was made to expose the skull. The pinnae were reflected
laterally to expose the bony ear canals. Custom insert earpieces were
inserted in the ear canals and sealed with acoustical foam and cyanoac-
rylate. Microphone probe tubes for stimulus calibration were inserted to
within ~2 mm of each tympanum (chinchillas: probes were inserted via
small holes drilled in each bulla ventral to the external canal; guinea pigs:
probes were routed through custom insert earpieces). Finally, a craniot-
omy was made on the dorsal aspect of the skull exposing the cortex
overlying the inferior colliculus (IC) and a tungsten microelectrode (2—3
M) lowered into the central nucleus of the IC (ICC). All stimuli were
presented at a nominal 100 kHz sample rate by Tucker-Davis Technolo-
gies System 3 hardware. Each earphone was calibrated for tones between
0.1 and 30 kHz in 0.1 kHz intervals using probe microphones (Type 4182,
Bruel and Kjaer). Calibration data were then used to compute 256-tap
digital filters (2.5 ms long finite impulse responses) providing a virtually
flat acoustic response (=2 dB at frequencies =16 kHz). Auditory neu-
rons were located and isolated by presenting sweeps of 50 ms tone pips
increasing in frequency (0.1-16 kHz) at ~40 dB SPL to the ear contralat-
eral to the electrode (in general, contralateral sound presentation is ex-
citatory). Auditory-driven responses were typically encountered ~4-6
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Tuning curves and Fisher information. a, Example tuning to ILD of a neuron in the chinchilla ICCat constant ABL = 60 dB. Shaded area is mean == SEM. Solid curve is a sigmoidal fit to

the tuning curve (r* = 0.96). Dashed curve is the one-dimensional Fl computed from the tuning curve. b, Same as a for a different ILD-sensitive ICC neuron. ¢, Tuning curve (blue) and distribution
of rates (green and yellow) for two stimulus values. When the distance between the distributions increases (as a result of increased tuning curve steepness), the distributions are more significantly
separated. d, Similar to ¢, if the rate distributions get narrower, the distributions are also more significantly separated. As a result of ¢ and d, the Fl is proportional to the slope and inversely

proportional to the rate variance.

mm ventrally from the surface of the cortex. In addition to referencing
stereotyped electrode coordinates, the success of the penetration in the
ICC was assessed using electrophysiological signatures: ICC neurons ex-
hibit strong, nonadapting responses to auditory stimuli, and are typically
organized with a clear dorsoventral tonotopy [such that low-characteristic fre-
quency (CF) neurons are encountered dorsally and high-CF neurons
ventrally; Merzenich and Reid, 1974]. Neural signals were amplified,
filtered, digitized, and recorded using TDT hardware before offline anal-
ysis. The CF of an isolated neuron was estimated by presenting 100 ms
tones at 0—90 dB SPL across a ~2 octave range of frequencies, forming a
response area curve (Ramachandran et al., 1999).

Subsequently, ILD sensitivity of an isolated neuron was assessed by
varying the sound intensity of 100 ms CF tones presented to both ears.
For each unit, an ILD “map” was obtained where the sound level of the
tones presented to the ipsilateral and contralateral ears were varied. In
general, contralateral and ipsilateral levels were varied from ~10 dB
below the threshold of the unit (elicited via contralateral-only stimula-
tion), up to 70-90 dB SPL in 5 dB steps. Every level combination was
presented 50 times. It should be noted that because the sampling of
sound levels differed across the measured neurons, when we compare
spatially averaged information across neurons (Fig. 5f~i) we restrict the
range of ipsilateral and contralateral level to a common range over which
we have data for all the neurons of each species (40-90 dB for chinchilla,
40-70 dB for guinea pig; Fig. 5¢,d).

Results

Neural information about ILD in the auditory brainstem
Neurons sensitive to differences in sound level presented to both
ears (ILD) are present in the auditory brainstem as well as in other
downstream sites (Semple and Kitzes, 1987; Irvine and Gago,
1990; Davis et al., 1999; Tollin, 2003; Jones et al., 2015). One such
site is the ICC, a nearly obligatory synapse in the ascending audi-
tory system at the level of the midbrain. An example ILD tuning
curve for an ICC neuron is given in Figure 2a (in which the ABL
has been kept constant at 60 dB SPL). This neuron responds
strongly when the sound level at the contralateral ear (driving its
excitatory inputs) is greater than the level at the ipsilateral ear
(driving its inhibitory inputs), but responds much less when the
ipsilateral ear intensity is strong enough. The firing rate of an-

other example neuron on Figure 2b obtained under the same
conditions is also modulated by ILD, yet its tuning curve is
steeper.

A common approach to compare the tuning of each of the
example neurons in Figure 2 is to assess the information carried
by those neurons about ILD, for example using FI (Seung and
Sompolinsky, 1993; Butts and Goldman, 2006). FI provides a
measure of the reliability of the representation of a stimulus pa-
rameter by the response rate of a neuron. It was used in early
auditory studies investigating the lower bounds on the perfor-
mance of pure-tone frequency discrimination (Siebert, 1970) or
binaural discrimination of ITDs (Colburn, 1973). As a result,
there now exists a large body of research using FI in the context of
binaural cue encoding by auditory neurons: for ITD (Dabak and
Johnson, 1992; Harper and McAlpine, 2004; Gordon et al., 2008)
and ILD (Johnson et al., 1990; Jones et al., 2015; Brown and
Tollin, 2016). Other aspects of hearing have been analyzed
using receiver operating characteristic (ROC) curves, a paradigm
closely related to FI, for example in the context of ITD discrimi-
nation (Shackleton et al., 2003), tone detection in noise (Young
and Barta, 1986; Relkin and Pelli, 1987), or intensity discrimina-
tion (Viemeister, 1988; Winslow and Sachs, 1988).

Consider the response of a neuron presented with a given
stimulus: it follows a probability distribution (rate distributions
on vertical axis of Fig. 2¢,d) whose width reflects neural noise. FI
quantifies how easy it is to distinguish spike rates drawn from
response distributions at neighboring stimulus values (Fig. 2¢,d,
colored dots and distributions). If the tuning curve is steep (Fig.
2¢, right), the overlap between rate distributions at neighboring
values is small, and thus information (FI) is high. Similarly, FI
increases if neural noise decreases, i.e., rate distributions condi-
tional on the stimulus parameter are narrower (Fig. 2d). Both
effects are captured by the classical expression of the FI (Seung
and Sompolinsky, 1993; see Materials and Methods). Computed
for the tuning curves in Figure 2a,b (dashed lines), FI is clearly
higher for the neuron in Figure 2b at positive ILDs. That is, close
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Figure 3.

Fisher information in multiple dimensions. a, Tuning curves (shaded area), of the neuron presented in Figure 2a as measured at different ABL values (color) alongside sigmoidal fits to

the tuning curves (all r2 = 0.9). b, Response map of the neuron, color coded rate as a function of ipsilateral and contralateral level. Right: gray shade represents spike rate in hertz (darker gray is
higher spike rate). ¢, SD of the rate at each ILD, measured across ABLs. d, Fisher information measured independently at each ABL value. e—h, same as a—d for the neuron in Figure 2b. i, Blue curves:
tuning curves to x at different y values. Shaded area on y-axis represents spike rate distributions. In multiple dimensions, there are now several tuning curves that contribute to the rate distribution
atone xvalue. As a result, the actual distribution of spike rates widens. When the separation of tuning curves at different y values increases, the rate distribution increasingly widens and therefore
the information decreases. j, Fisher information computed by taking into account the uncertainty about ABL (i.e., by marginalization) for the neuron of a—d (dashed line) and eh (solid line). Inset,
Color-coded distribution of rates as a function of ILD, where the influence of ILD has been marginalized.

to the steepest point in the tuning curve of the neuron in Figure
2b, smaller changes in ILD (around ~20 dB ILD) can be distin-
guished based on its firing rate than that of the neuron on Figure
2a. This is because the tuning curve is much steeper and neural
noise is lower (despite lower absolute firing rate modulation
across ILDs). In this sense, the response of the neuron in Figure
2b could be said to carry more information about ILD than that of
Figure 2a.

However, in most instances, the stimulus dimension being
studied (here, the ILD) is not the only stimulus property that
modulates the response of a sensory neuron, which should be
reflected in the information it carries. In the next sections, we
develop a framework to quantify the amount of information that
the response of a neuron (or population of neurons) carries about
a given stimulus dimension across variations in other stimulus
dimensions.

The problem with one-dimensional sensitivity analyses

Single neuron ILD tuning curves such as those shown in Figure 2
often depend on ABL, as previously observed at many stages in
the auditory pathway: the brainstem [lateral superior olive (LSO);
Benevento and Coleman, 1970; Park et al., 2004; Tollin et al.,
2008; Tsai et al., 2010], the midbrain [(ICC) Geisler et al., 1969;
Benevento and Coleman, 1970; Stillman, 1972; Semple and
Kitzes, 1987; Irvine and Gago, 1990; Park et al., 2004; Mokri et al.,
2015)], and auditory cortex (Semple and Kitzes, 1993; Brugge et
al., 1996; Middlebrooks et al., 1998; Reale et al., 2003; Zhou and
Wang, 2012; Kyweriga et al., 2014; Lui et al., 2015). Although the
response of the neuron in Figure 2a changes very little with
changes in ABL (Fig. 3a), the tuning curve of the neuron on
Figure 2b dramatically shifts with ABL (Fig. 3e). Thus, although
the neuron of Figure 2b is ILD-sensitive and has relatively high FI
at each ABL (Fig. 3h), its firing rate cannot unambiguously be
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mapped to ILD at all ABLs; a firing rate of 20 Hz maps to —10 dB
ILD atlow ABL (47.5 dB SPL; Fig. 3¢, red dot) but +20 dB ILD at
high ABL (65 dB SPL; Fig. 3e, orange dot). In contrast, despite
shallower modulation at each ABL, the neuron depicted in Figure
3a—d, has a much more robust tuning across ABLs (Fig. 3e-g),
such that its firing rate maps to ILD similarly at all ABLs. That is,
despite having smaller FI at each ABL value (Fig. 3d), this neuron
represents ILD more faithfully than the neuron in Figure 3e—h.

Neurons such as the one in Figure 3a—d are thought to be
sensitive to ILD because they are binaural: excited by stimulating
the contralateral ear and inhibited by stimulating the ipsilateral
ear (Tollin, 2003). By color-coding the spike rate against the value
of the ipsilateral and contralateral level (Fig. 3b, f, darker colors
are higher firing rates), it becomes apparent that the neuron in
Figure 3, eand f, is in fact a monaural neurony; its firing rate is only
modulated by the sound level at the contralateral, excitatory ear.
Rather, this neuron only appeared to have a binaurally modu-
lated response because when keeping ABL constant and varying
ILD, the intensity at the contralateral ear changes (thus changing
the excitatory drive of the neuron; Semple and Kitzes, 1987;
Irvine and Gago, 1990). In contrast, the firing rate of the neuron
in Figure 3a—d is modulated by ipsilateral level even when con-
tralateral level is held constant (Fig. 3b). Although binaural phys-
iologists have long recognized the specific pitfall highlighted here
(Semple and Kitzes, 1987; Irvine and Gago, 1990), we use the case
of ILD versus ABL to illustrate that blind measurement of re-
sponses along one dimension (ILD in the neuron shown in Fig.
3e,f) can lead to erroneous conclusions about the origin of re-
sponse modulation and the information that it carries.

Information in one stimulus dimension can be quantified
using FI

The tuning properties of a sensory neuron to a given stimulus
dimension x (ILD in our example), in the presence of a secondary
dimension y (ABL in our example) can be fully captured with a set
of tuning curves (Fig. 31, blue curves). The key insight in this
analysis is that added uncertainty due to secondary dimensions
will appear to the external observer as an increase in response
variability (Tsai et al., 2010, see their Appendix). Consider a sin-
gle sensory neuron: when its rate changes, it is impossible to know
if it was caused by a change in the first stimulus dimension (x,
abscissa), or the second (y, the secondary dimension). To account
for this uncertainty, all tuning curves must be analyzed collec-
tively; the distribution of firing rates of a neuron at any given x
value is obtained by compounding the distributions across dif-
ferent y values (Fig. 31, bold lines). The additional uncertainty
about y, thus results in an apparent increase in neural noise; i.e., a
wider rate distribution corresponding to increased response vari-
ability. The magnitude of this effect depends on the spread of
tuning curves across y: the more tuning curves vary with y, the
wider the compound distribution becomes (Fig. 37, right).

The obtained compound rate distributions can be used to
derive a Fl-like quantity, which we term the local marginal FI
(mFI; see Materials and Methods), representing the amount of
information available to decode x in a context where nothing is
known about y. We applied this analysis to the responses of the
two neurons presented in Figure 3, computing the compound
rate distributions as a function of ILD (Fig. 3j, insets), and the
corresponding mFI values (Fig. 37). This analysis reveals that mFI
for the ILD is in fact much larger for the binaural neuron (Fig. 3,
dashed line) than the monaural neuron (Fig. 3j, solid line), re-
flecting the fact that the ILD sensitivity of the binaural neuron is
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robust to changes in ABL, whereas that of the monaural neuron is
not.

The application of the present analysis of course is not con-
strained to determining the binaurality of an auditory neuron.
Rather, the information measure we propose, mFI, overcomes
the general problem of erroneous overestimation of information
in a single-stimulus dimension by allowing correct quantification
of information about the dimension of interest across changes in
secondary dimensions.

The stimulus direction of best information can be computed
using FI matrices

Although mFI enables us to quantify information within a given
stimulus dimension across changes in a secondary dimension, we
may instead be interested in characterizing which direction of
stimulus space is best represented by a neuron. Note that this
direction can in general be any linear combination of the phys-
ical dimensions that were experimentally varied. The com-
plete treatment of this problem requires the introduction of
FIMs, which describe the best achievable covariance matrix of
estimators of the dimensions of a response map (the multidi-
mensional equivalent of a tuning curve; see Materials and
Methods). For a single neuron, the FIM for two stimulus di-
mensions x and y can be easily derived from the map r; letting
Vr be the gradient vector of the response map, the FIM is a
matrix expressed as ] = (VrVr')/o? (when neural noise is
normally distributed; see Material and Methods).

Intuitively, it is impossible to unambiguously decode two
stimulus dimensions from the response of only one neuron: there
are two unknowns for only one equation; each rate value maps to
a continuum of possible stimulus values (Fig. 3¢). Equivalently,
the single neuron FIM is singular: it only has one non-zero prin-
cipal value. The combination of stimulus dimensions that is best
encoded by the neuron is along the response map gradient (the
FIM principal vector, Vr; Fig. 4a, green arrow); the correspond-
ing information magnitude equals the gradient magnitude di-
vided by the variance of the spike rate (the FIM principal value).
The orthogonal direction is 0 because locally the response map is
flat (Fig. 44, gray direction); consequently, estimators of the or-
thogonal dimensions will necessarily be biased (or suffer infinite
variance; Stoica and Marzetta, 2001). The insights of the two-
dimensional FIM are a natural extension of the one-dimensional
FI; the information magnitude equals the magnitude of the de-
rivative of the response map (i.e., the norm of the gradient in two
dimensions) divided by the variance; the stimulus dimension of
best information follows the gradient, i.e., the stimulus direction
along which the tuning surface is steepest. FI matrices thus make
it possible to quantify the stimulus dimension direction and mag-
nitude of information from any sensory neuron’s response map.

To illustrate the use of FIMs, Figure 4, b and ¢, represent the
information vectors for the putative “monaural” and “binaural”
neurons of Figures 2 and 3 (arrows), overlaid on the information
magnitude (color-coded). As expected, the information vector
magnitude is maximal in regions where the rate varies maximally
(i.e., where the gradient is highest), and the best information
direction follows along the direction where the tuning surface is
steepest (Fig. 3b,f). Consistent with the intuition that the regions
of higher slope in the response map yield higher information; the
putative binaural neuron (Fig. 4b) carries information in the di-
rection of ILD for a large range of stimuli, particularly at negative
ILDs (Fig. 4b, below the first diagonal). On the other hand, the
putative monaural neuron (Fig. 4¢) carries the most information
in the contralateral level direction at levels near the contralateral
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Directional information in single neurons. a, Intuition of the FIM. Locally around xy, the response map is approximated as a plane (gray plane). The gradient (green arrow) points in the

direction where the rate varies the most and magnitude of maximum information follows along the gradient (blue arrow). The gray arrow points in the direction where the response map does not
vary, and therefore information vanishes. b, Magnitude of best information (color-coded) overlaid with direction of maximal information (arrows, length is proportional to the magnitude of
information) for the neuron of Figure 2a. ¢, Same as b for the neuron in Figure 2b. d, Directions of dimensions of interest in the ipsilateral-contralateral level space (clockwise): ILD, contralateral level;
ABL, ipsilateral level. Blue curve is a depiction of local marginal Fl assuming that the maximal information vector (from the FIM) is along the ILD dimension (blue arrow). e, Each panel is the local
marginal information about specific dimensions of the stimulus over the space color-coded over the same range as b. f, Local marginal Fl averaged over space (center polar plot, blue curve), with the

direction of maximal information (green line). g, h, Same as e, fexcept for the neuron in c.

threshold (across a wide band of ipsilateral levels). Although the
responses of both neurons are clearly modulated by ILD, and
could thus be considered “ILD coders” on the basis of a single ILD
tuning curve measured at fixed ABL (Fig. 2), this analysis reveals
the stark difference in directionality of information carried by
each neuron.

FI in arbitrary directions of stimulus space

So far we have quantified information globally along a given dimen-
sion using mFI, and then the directions of best information using
FIMs. We now describe how to evaluate information locally in arbi-
trary stimulus directions. For each stimulus parameter combination,
we compute a local measure of mFI, which quantifies encoding of a
given dimension locally invariant on the secondary dimension. We
assume that the secondary dimension (y) values are normally distrib-
uted around a given point, and then linearize the rate map at that
point (see Materials and Methods). As a result, we obtain an expres-
sion of the mFI that is local in stimulus parameters, and can be
computed in arbitrary directions; we illustrate its behavior as a func-
tion of stimulus direction in Figure 4d (blue lines on both a polar and
Cartesian panels), where we are assuming that ILD is the direction of
maximal information. The local mFI expression resembles that of
one-dimensional FI, and depends on both components of the gra-
dient (see Materials and Methods for numerical details). Further-
more, this local mFI is equal to the magnitude of the FIM vector
obtained when computing information in the direction of maximal
information, and to 0 in the direction orthogonal to it. A y-scale

parameter controls the range over which the secondary dimension is
assumed to be distributed, therefore when it is increased, the reduc-
tion of information for directions away from the dimension of max-
imal information is steeper (Fig. 4d, polar and Cartesian panels).
Indeed, the rate distribution at any given x (the primary dimension)
is wider as the secondary stimulus parameter is allowed to span a
wider range.

We computed the marginal information in the example neurons,
in the four dimensions of interest, and as a function of each ipsilat-
eral and contralateral level (Fig. 4e,g, color-coded panels). As ex-
pected, information for the putative monaural neuron was maximal
about contralateral level at low contralateral levels (Fig. 4¢). On the
other hand, the putative ILD-sensitive binaural neuron contains in-
formation predominantly about ILD, for a wider domain of con-
tralateral and ipsilateral values (Fig. 4e, top left). Notably, the
information about contralateral level in the binaural neuron, or ILD
in the monaural neuron, does not completely vanish: there is some
residual information about both dimensions. When averaging local
mFI over all stimulus parameter values (Fig. 4f,h, blue curves), each
neuron is found to have a direction of maximal mFI, with informa-
tion rapidly decreasing to almost zero in its orthogonal direction.
This direction coincides with the highest valued principal direction
of the averaged FIM (green lines).

We have shown that the information carried by single neurons
can be characterized using the FIM framework, which relies on
evaluating the gradient of the response maps. This FIM-derived
information can also be linked back to the local marginal FI in-
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Information across the population. a, Directionality of the population tuning. A population (boxed) comprises two neurons with the same tuning (homogeneous): represented are the

FIM vector (colored arrow) and local marginal FI (colored solid line) as a function of direction. The population mFl reflects information in a single direction (black line). b, Same as a for a population
with heterogeneous tuning: neurons have different direction and magnitude (boxed). The population has information in all directions, and the principal directions of the FIM (black arrows) span the
full stimulus space. ¢, Response maps of 28 auditory driven neurons recorded in the chinchilla ICC. d, same as ¢ for 21 guinea pig ICC neurons. e, Top, Magnitude and direction of best information
obtained from the local marginal Fl metric (averaged across space). Each point is a different neuron: green, guinea pig; blue, chinchilla. Bottom, Histogram of best direction for all neurons in each
species. f, Local marginal Fl as a function of stimulus space direction for all neurons bearing ILD information, and (g) contralateral level information. Colors indicate the species. h, Averaged local
marginal Fl for all chinchilla (N = 28) ICC neurons (plain blue line) and model symmetrical ICC (dashed blue curve). Arrows represent the principal vectors of the pFIM. Black curve: averaged local
marginal Fl for the bilateral ICC. i, Same as h for guinea pig ICC neurons (N = 21; colored curve), as well as principal directions and magnitudes of the population FIM.

tuition as developed in Figures 2 and 3, providing a complete
picture of the information carried by the neuron about all stim-
ulus dimensions, across all stimulus values.

Quantifying multidimensional information in populations

of neurons

Last, we seek to characterize how multiple stimulus dimensions
are represented by populations of sensory neurons. By definition,
FI for a population of conditionally independent neurons is the
sum of the FIs for each neuron because log likelihoods sum
(Seung and Sompolinsky, 1993; Cover and Thomas, 2012); pop-

ulation FIM (pFIM) is thus obtained by summing the FIM for
each neuron. As a result of summing, the pFIM is no longer
singular provided that there are more neurons than stimulus
dimensions, and there is sufficient heterogeneity in their re-
sponses. In contrast to the single-neuron case, it is generally pos-
sible to decode all dimensions of the stimulus space from a
population response.

Consider the population of two neurons depicted in Figure 5a
(box, arrows: direction of best information; solid lines: marginal
information), in which both neurons carry information about
the same dimension of the stimulus space. The population FIM is
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therefore twice that of each individual neuron, collectively sum-
ming in the direction of best information, yet remaining null in
the orthogonal stimulus direction. On the other hand, if each
neuron in the population carries information about different
dimensions of the stimulus space (Fig. 5b), the FIM has two non-
zero principal values (black arrows, right). Therefore, the princi-
pal vectors are no longer collinear, enabling representation of
both stimulus dimensions simultaneously by the population.
Correspondingly, the mFI (computed as the sum of the mFI of
each neuron) is now nonzero in all directions (Fig. 5b), and the
singular points of the mFI curve are well predicted by the pFIM.
These observations suggest that tuning heterogeneity plays a key
role in the context of simultaneous encoding of multiple dimen-
sions. Note the property that the population FI equals the sum of
individual FIs requires neuronal responses to be conditionally
independent (given a stimulus value).

Thus far, we have shown two dramatic examples of auditory
brainstem neurons: a binaural neuron for which most informa-
tion is about the ILD, and a monaural neuron, for which most
information is about the contralateral level. The question re-
mains, however, whether all neurons fall into either category. To
tackle this issue we computed FIMs and mFI carried by single
neurons obtained in the ICC of two mammalian species: the
chinchilla (n = 28; Fig. 5¢) and guinea pig (n = 21; Fig. 5d). In
these experiments, we generally targeted neurons in the deep,
high-frequency regions of the ICC that tend to respond most
strongly to sound in the contralateral hemifield (Day and Del-
gutte, 2013, 2015), and thus are modulated by ILD. Interestingly,
we do not observe any obvious clustering of neurons into distinct
categories. Rather, in both species neurons tended to carry the
most information in a direction between contralateral level and
ILD (Fig. 5e, top), whereas neurons carried little information in
other directions (ipsilateral level and ABL; Fig. 5e, bottom).
Nonetheless, roughly the same numbers of neurons were prefer-
entially ILD coders and contralateral level coders (Fig. 5d). For
visualization purposes we divided recordings into two groups:
preferentially sensitive to ILD (binaural; Fig. 5f), or contralateral
level (monaural; Fig. 5¢). We observe that the direction of best
information is very prominent for each neuron, and its orthogo-
nal dimension has little to no information associated with it. In
other words, all neurons in the population carry information
preferentially about one stimulus dimension, and those dimen-
sions tend to be in the ILD/contralateral level quadrant.

We compute both the population FIM and population mFI by
summing across neurons, and averaging across space. In Figure 5,
h and i, we represent the population mFI and pFIM-derived in-
formation vectors for either population of ICC neurons (green or
blue solid lines). As expected, the highest eigenvalue of the pop-
ulation FIM indicates the direction of maximal m FI (Fig. 5¢),
whereas the lowest indicates the direction of poorer mFI. Collec-
tively, the populations of ICC neurons carry information in all
dimensions of the stimulus space, with a strong emphasis evenly
distributed between ILD and contralateral level. Very little mar-
ginal information is carried about ABL or ipsilateral level, which
reflects the fact that our population consists of clearly monaural
(carrying information about contralateral level), or clearly bin-
aural neurons (carrying information about ILD).

The IC is a bilateral structure, receiving inputs from symmet-
ric neural pathways on each side. We represent the information
carried by the ICC population on the other side of the midbrain
(Fig. 5h,i, dashed lines), and the summed contribution of both
ICs (Fig. 5h,i, black line). The contribution of a symmetrical ICC
population is a clear increase in marginal information about ILD.
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Strikingly, the information remains very anisotropic, with little to
no information being carried about the ABL, and the bulk of the
information being carried about ILD. The observation that there is a
large amount of FI in the ILD direction suggests that the heteroge-
neity in responses of ICC neurons (which includes monaural neu-
rons), as well as symmetrical ICC populations allow for a robust
representation of ILD in the presence of fluctuations of ABL.

Higher-dimensional stimulus spaces and

tuning heterogeneity

Of course, stimulus spaces are neither one- nor two-dimensional,
but rather have many more physical dimensions. As an example,
sound stimuli have frequency content in addition to level and source
position, and ICC neurons respond to sounds within a given fre-
quency band. In fact, although we have only treated an example of
two-dimensional stimulus space, the key insights presented in this
article readily generalize to higher-dimensional spaces.

This information carried by single neurons is maximal in one
direction, and quickly decreases to vanish in the orthogonal di-
rection (Fig. 6a). As a result, more heterogeneous populations of
neurons will exhibit more uniformity in population information
across stimulus dimensions (Fig. 6b—d). In N-dimensional stim-
ulus spaces the response map becomes an N-dimensional surface,
and the local marginal FI can be computed using its gradient
(provided that the response variance is constant; see Materials
and Methods). Any neuron still locally carries maximal informa-
tion in the direction of the gradient, which quickly decreases as a
function of the difference in directions (in 3 dimensions; Fig. 6e,
top). With one neuron, marginal information is thus zero about
any direction in the orthogonal plane (Fig. 6e, bottom, plane);
with two, only one direction has zero information (Fig. 6f, black
line). When the best information directions of at least three neu-
rons span the full space (Fig. 3g), information is nonzero in all
stimulus directions. A sufficiently large population with uni-
formly distributed best information directions (Fig. 6k, black
arrows) represents all directions equally well (such that the pop-
ulation marginal information is spherical; Fig. 6h).

Discussion

Neural tuning in a multidimensional context

In this study we have emphasized the limitations of single stim-
ulus dimension tuning curve analyses, and provided a framework
to quantify information within more ecological multidimen-
sional stimulus spaces. The main message of this article is that
inferring the function of sensory neurons (or populations thereof)
generally requires the simultaneous manipulation of multiple
stimulus dimensions. Then, using local marginal FI and FI ma-
trices, it becomes possible to accurately quantify information
within a single dimension, or to estimate the dimension(s) of
highest information. Toward rigorous characterization of sen-
sory coding, identifying stimulus dimensions that do not modu-
late neural responses can be just as important as identifying ones
that do. In that respect, the present study demonstrates that it is
important to distinguish sensitivity and coding when it comes to
analyzing single neuron responses (Brette, 2010). A counterintui-
tive insight is that assigning a specific dimension of the stimulus
that a neural population “cares about” is more complex than
merely establishing that the responses of neurons are modulated
by that dimension.

The realization that neural coding must be considered in the
context of multiple dimensional spaces suggests that neural tun-
ing should be measured by varying all dimensions of the stimulus
that affect the response of the neurons under study. Assuming
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Higher dimensional Fl. a, Top, A neuron with best information along the x-axis (blue arrow), and its local marginal Fl (blue line, arbitrary units). Bottom, the population consisting of

one neuron has the same marginal information (gray line). b, A second neuron with best information along the y-axis (green arrow; and its marginal information profile, green line) is added to the
population. The population now has information inall (two) stimulus directions, yet reduced in directions bisecting the maximal information of each neuron. ¢, Same as b with one additional neuron
(red arrow and line). d, With alarge number of neurons (black arrows) in the population, the information is equal in all directions, as a result the mFl profile s a circle. e, In 3D stimulus spaces, a neuron
has information in the z direction (blue arrow). The population mFlis equal and its marginal information profile resembles that of the 2D case (top, blue surface; bottom, gray surface). Itis nonzero
inall directions except that orthogonal to the direction of best information (x—y, black plane). f, Adding a second neuron (green arrow and line) to the population reduces the dimensionality of the
space with zero information to one (bottom, black line). g, A third neuron ensures that information is non-zero in all directions. h, Similar to the one dimensional case, a large population of
heterogeneously tuned neurons (top, black arrows) has an equal amount of information in all directions (gray sphere).

that each stimulus dimension is discretized in K stimulus values,
then it takes K~ stimulus values to sample an N-dimensional
stimulus space. This causes an exponential increase in the num-
ber of stimulus values that are to be considered to assess the
function of a single neuron, and therefore may appear experi-
mentally infeasible. However, recent developments of electro-
physiological techniques with high throughput (multichannel
electrodes, calcium imaging, etc.), can mitigate that effect by in-
creasing the number of simultaneously recorded neurons. In-
deed, it is now possible to sample large stimulus spaces because
many neurons are recorded for each stimulus presentation, and
although such multiunit recordings do not reduce the dimen-
sionality of the stimulus space, they do reduce the “cost” of re-
cording per cell.

Practical issues encountered when sampling high-dimen-
sional stimulus spaces aside, we have shown in this article that
conventional sampling of single-dimensional subspaces can lead
to false conclusions concerning the informational content of the
neural population; this fact should be of concern to investigators
interested in understanding neural information coding.

Marginalization

Several previous studies have considered the problem of decod-
ing a primary stimulus dimension from the responses of neurons
that vary with secondary dimensions that are assumed to be ir-
relevant. We refer to this problem as the marginal decoding prob-

lem. In the context of the encoding of ILD and ABL, Day and
Delgutte (2015) discuss maximum likelihood estimation of ILD
from a population of ICC neurons. The authors show that one
canrecover ILD ata fixed ABL, but also regardless of variations in
ABL with little added complexity. It should be noted the pro-
posed model assumes that ABL is known to the decoder, which
therefore requires an additional estimation step to recover
ABL and does not directly address the marginalization decod-
ing problem.

In a direct attempt to solve the marginal decoding problem in
the context of probabilistic population codes, Ma et al. (2006)
and Beck et al., (2011) provide an exact implementation of opti-
mal marginalization in a biologically plausible context with non-
linear interactions (divisive normalization). More recently, Kim
etal. (2016) showed that a simpler mechanism only using linear
interactions to represent the marginalized likelihood could ap-
proximate that operation with good success. These approaches
are based on maximizing a form of marginalized likelihood func-
tion reminiscent to that introduced in this article to derive the
local marginal FI. As such, it is likely (although it remains to be
proven) that the information measure that we derive here pro-
vides the bounds on decoding performance of the model they
propose. In addition, consistent with our study, the authors stress
importance of heterogeneity in tuning properties across neurons
and stimuli to solve the marginal decoding problem.
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Neural and behavioral sensory thresholds

It has long been known that the response of a single sensory
neuron can in some instances predict the performance limits of
the complete organism; i.e., the information it carries is enough
to perform as well as the complete organism. In addition, infor-
mation scales with the number of neurons in a population and
thus the information available at the level of populations of neu-
rons greatly exceeds that necessary to explain behavioral perfor-
mance (although in the presence of noise correlations population
information may saturate [Pitkow et al., 2015]). This counterin-
tuitive observation was made in many modalities (for review, see
Parker and Newsome, 1998), e.g., in the macaque visual system
(the MT; Britten et al., 1992, 1996), but also in the context of the
encoding of ILD (Tollin et al., 2008; Tsai et al., 2010) or ITD
(Skottun et al., 2001; Shackleton et al., 2003) by brainstem and
midbrain neurons. A significant effort has thus been dedicated to
explain this discrepancy: either the brain does not optimally use
all information available (Gu et al., 2014; Pitkow et al., 2015), or
noise correlations between neurons limit the information in-
crease of neural populations (Moreno-Bote et al., 2014).

Here we argue that a limiting factor is the fact that sensory
systems operate to process multidimensional stimuli. Consider a
behavioral experiment probing discrimination abilities along a
single dimension, while secondary dimensions are kept constant.
One typically gathers neural recordings for the same stimulus
combinations, and compares neural and behavioral thresholds.
This comparison carries the implicit assumption that the values
of the secondary stimulus dimensions are known to the subject,
which is not the case of all experiments, especially when the sec-
ondary dimension values are roved (e.g., in psychophysics exper-
iments). Because neural responses are not in general invariant to
changes in secondary dimensions, discriminating values of the
primary dimension requires either marginalization of the sec-
ondary dimensions (in which case information is measured by FI
computed from the marginalized rates), or joint estimation of all
dimensions (in which case information is measured by FIMs).
Either way, characterizing the information requires the measure
of neural responses in which secondary dimensions are also var-
ied, and the use of the more complete information measures we
introduced here. Because the information available can only de-
crease when secondary dimensions are allowed to vary (because
of the negative effect of covariation of each dimension’s esti-
mates), we argue that this effect may cause the apparent discrep-
ancy between behavioral and neural thresholds.

Assumptions and limitations of the Fisher

information approach

Our development relies on estimation theory and the FI frame-
work with a number of assumptions that may limit its applicabil-
ity. Notably, we only considered rate coding in this paper,
although there also is information in the temporal patterns of
spikes of auditory neurons (Chase and Young, 2006; Narayan et
al., 2007). In addition, F is criticized for not always agreeing with
other measures of neural information based on information the-
ory (such as stimulus-specific or mutual information; Yarrow et
al., 2012), especially in small populations of neurons (<~100
units). Our argument should, at minimum, be understood as
qualitative: variations of responses with secondary stimulus di-
mensions impact the estimation of relevant aspects of the stimu-
lus. In addition, the argument we make with FI is valid for larger
population sizes, for which all information measures agree.
Therefore, taking into consideration those secondary dimensions
should also reduce the amount of information as computed with
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other measures because it increases the neural noise from the
point of view of an observer. Finally, we have assumed for sim-
plicity that neural noise is normal with stimulus-dependent vari-
ance, yet we have intentionally neglected the contributing of this
stimulus dependence to the information (see Materials and
Methods). This simplification enables us to provide simple ex-
pressions relating the variations of the response map with infor-
mation loss in a multidimensional context.

The covariation of the rate among neurons in the same sen-
sory population can impact information content both negatively
(Moreno-Bote etal., 2014) and positively (Hu et al., 2014; Franke
et al., 2016; Zylberberg et al., 2016). Here we have omitted con-
sideration of the effect of the correlations, due to the specifics of
the system under study (in which noise correlations are very small
and do not seem to contribute to the encoding of ILD; Seshagiri
and Delgutte, 2007; Belliveau et al., 2014). However, our frame-
work, because it is based on FI, should lend itself to the inclusion
of noise correlations in future developments. Further work could
therefore extend our developments to information-theoretic
measures, and relax assumptions we have made about the distri-
bution of neural noise.
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