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Discrete cues can gain powerful control over behavior to help an animal anticipate and cope with upcoming events. This is important in
conditions where understanding the relationship between complex stimuli provides a means to resolving situational ambiguity. How-
ever, it is unclear how cortical circuits generate and maintain these signals that conditionally regulate behavior. To address this, we
established a Pavlovian serial feature-negative conditioning paradigm, where male mice are trained on a trial in which a conditioned
stimulus (CS) is presented alone and followed by reward, or a feature-negative trial in which the CS is preceded by a feature cue indicating
there is no reward. Mice learn to respond with anticipatory licking to a solitary CS, but significantly suppress their responding to the same
cue during feature-negative trials. We show that the feature cue forms a selective association with its paired CS, because the ability of the
feature to transfer its suppressive properties to a separately rewarded cue is limited. Next, to examine the underlying neural dynamics, we
conduct recordings in the orbitofrontal cortex (OFC). We find that the feature cue significantly and selectively inhibits CS-evoked activity.
Finally, we find that the feature triggers a distinct OFC network state during the delay period between the feature and CS, establishing a
potential link between the feature and future events. Together, our findings suggest that OFC dynamics are modulated by the feature cue
and its associated conditioned stimulus in a manner consistent with an occasion setting model.
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Introduction
Animals routinely learn to anticipate events by extracting infor-
mation from their environments. However, this can be particu-
larly challenging when individual cues only provide partial
predictive information as is often the case in naturalistic scenar-

ios. In these situations, animals will attempt to use disambiguat-
ing “features” to accurately predict outcomes (Schmajuk and
Holland, 1998). A good example of this type of learning is
feature-negative conditioning because behavioral success re-
quires an animal to learn the pattern of cues that best predicts
reward (Holland, 1984; Lamarre and Holland, 1987; Bueno and
Holland, 2008). In the serial version of this task, animals learn
that a single conditioned stimulus (CS) predicts a reward but
when this same cue is preceded (with a temporal delay) by a
separate feature cue, the trial goes unrewarded. Thus, the single
cue elicits anticipatory behavior, but animals withhold their re-
sponses when the same cue is presented in feature-negative trials.
Studies have shown that the ability to conditionally discriminate
between rewarded and unrewarded trials can occur in a wide
range of species, from insects to humans (Pace et al., 1980; Nallan
et al., 1981; Pace and McCoy, 1981; Abramson et al., 2013), and
under a variety of stimulus conditions (Holland, 1997). In the
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Significance Statement

The ability of patterned cues to form an inhibitory relationship with ambiguously rewarded outcomes has been appreciated since
early studies on learning and memory. However, it was often assumed that these cues, despite their hierarchical nature, still made
direct associative links with neural rewarding events. This model was significantly challenged, largely by the work of Holland and
colleagues, who demonstrated that under certain conditions cues can inherit occasion setting properties whereby they modulate
the ability of a paired cue to elicit its conditioned response. Here we provide some of the first evidence that the activity of a cortical
circuit is selectively modulated by such cues, thereby providing insight into the mechanisms of higher order learning.
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mammalian brain there is evidence that these functions are me-
diated by specific circuits, including the retrosplenial cortex
(Robinson et al., 2011), striatum, and orbitofrontal cortex
(Meyer and Bucci, 2016). Despite these studies, there is still a
relatively poor understanding of the relationship between feature
cues and their associated conditioned stimuli that function to
bias behavioral decisions.

There are two contrasting models that attempt to account for
how neural circuits solve this problem. One model views the
animal’s ability to discriminate rewarded and unrewarded trials
as a basic function of elemental conditioning, where a CS acquires
a positive associative relationship to the reward to promote condi-
tioned responding, and the feature acquires a negative relationship
to suppress responding (Rescorla, 1969; Rescorla and Wagner, 1972;
Rescorla and Holland, 1977). On trials in which both cues are
present, the feature cue’s inhibitory influence simply overrides
the CS’s excitatory influence, due to the feature cue’s direct neg-
ative association with the reward representation (conditioned
inhibition model). In the opposing model, the feature cue func-
tions as a negative occasion setter that does not make a direct
association with the reward representation (Holland, 1984, 1989,
1995a; Lamarre and Holland, 1987). Instead it modulates the
ability of the CS to retrieve the reward association by acting as a
kind of inhibitory gate (Holland, 1989, 1995a).

To gain mechanistic insight into these opposing models at the
level of single-neuron spiking activity, we establish a Pavlovian
feature-negative conditioning paradigm in head-restrained mice,
which is compatible with large-scale neural recordings using
silicon-based microprobes. In our task, a CS predicts the delivery
of reward, but there is no reward when this CS is preceded by a
feature cue (Holland, 1995a,b). We find that mice predominantly
solve this task by using a strategy consistent with the second
model (negative-occasion setting), because the feature acquires
the ability to specifically inhibit the reward association of its
paired CS (Holland, 1984, 2008). Moreover, we find that neural
activity within the orbitofrontal cortex (OFC) is consistent with
this model because the feature appears to selectively modulate
cue-evoked firing in a manner that correlates with behavioral
performance. Finally, we also observe an “activity silent” state
(Stokes, 2015) in OFC network dynamics that could function to
relay information during the time gap between the feature and CS
cue. To our knowledge this is the first demonstration of a mod-
ulatory cortical circuit mechanism that specifically supports the
occasion setting model.

Materials and Methods
Animals and surgical procedures. All procedures were approved by the
University of California, Los Angeles Chancellor’s Animal Research
Committee. Singly housed male C57BL/6J mice (n � 8, 15–22 weeks old
at the time of recording, The Jackson Laboratory) were used in the ex-
periments. Animals underwent an initial head bar implantation surgery
under isoflurane anesthesia in a stereotaxic apparatus to bilaterally fix,
with dental cement, stainless steel head bars on the skull. After training,
animals underwent a second surgery under isoflurane anesthesia on the
recording day to make a single craniotomy for acute silicon microprobe
recordings. An additional craniotomy was made over the posterior cer-
ebellum for placement of an electrical reference wire. All behavioral
training and recording sessions were performed in fully awake head-
restrained animals.

Behavioral task. We started food restriction 1 week after the initial head
bar implantation surgery. Mice were fed daily after each training session
to maintain �90% of their baseline weight, whereas water remained
freely accessible in the home cage. To begin each training session, we
mounted animals on the head bar restraint bracket and placed them on a

polystyrene treadmill ball (200 mm diameter, Graham Sweet Studios)
that freely rotated in a forward/backward direction. Behavioral training
consisted of four successive phases: (1) habituation, (2) odor and air puff
conditioning, (3) feature-negative conditioning, and (4) behavioral test-
ing and electrophysiology. In the first phase, mice were initially habitu-
ated to the head restraint system and trained to consume a liquid reward
(5 �l, 10% sweetened condensed milk) delivered by actuation of an
audible solenoid valve (Neptune Research). Licking was continuously
monitored via an infrared lick meter placed in front of the reward deliv-
ery tube (Island Motion). During these sessions, animals were given
rewards and exposed to a constant stream of pure air through a tube with
a hole positioned in front of the nose [50 rewards per session, 13–21 s
intertrial interval (ITI), 1.5 L/min air flow]. After mice learned to lick to
at least 90% of the delivered rewards for 2 consecutive days, we began the
second training phase. Mice received trials containing one of either two
types of olfactory conditioned stimuli (CS1 or CS2, 1 s duration, 17–29 s
ITI), or a mild air puff to the vibrissal pad. The air puff was odorless and
thus provided a distinct (from the CS1 and CS2) but highly salient form
of stimulus, which has been effectively used in head-fixed mouse behav-
ioral paradigms (Guo et al., 2014). Aromatic compounds (isoamyl ace-
tate in CS1, citral in CS2, Sigma-Aldrich) were diluted 1:100 in mineral
oil (Sigma-Aldrich). Air (0.15 L/min) was bubbled through this liquid
and combined with the 1.5 L/min stream of pure air. An additional air
puff tube (which was separate from the odor delivery tubing system to
prevent odors being mixed with the air puff) delivered a pulse of pure air
to the vibrissal pad (0.5 s at 0.8 L/min) on the side contralateral to the
recording hemisphere. This intensity level did not evoke any noticeable
startle response such as blinking. CS1 and CS2 were always associated
with reward, which was delivered 2.5 s after odor onset. The 1.5 s gap
between the offset of the odor and the reward allows cue-evoked behavior
and neural activity to be examined in the absence of potentially con-
founding reward stimulus signals. The air puff was not followed by any
explicit outcome. Animals received 30 presentations of each trial type
(CS1, CS2, air puff) in pseudorandom order during daily sessions in the
second phase of training. The solenoid valves controlling the olfactory
cues were sound-isolated and thus inaudible to the animal. Typically,
within 2 d of training, animals began predicting the delivery of reward
following CS1 or CS2 cues by exhibiting anticipatory licking during the
interval between the cue and reward. After mice demonstrated anticipa-
tory licking on at least 90% of both CS1 and CS2 trials, we began the third
phase of training, in which the air puff was now set to serve as the feature
cue. On unrewarded trials the air puff was presented starting 2.5 s before
CS onset. The third training phase contained an equal proportion (33%)
of CS1 �, CS1 �, and CS2 � trials presented in pseudorandom order
(�100 trials per session; Fig. 1B, left). The superscript “�” denotes that a
CS was not preceded by a feature cue and was followed by reward,
whereas the superscript “�” denotes that a CS was preceded by a feature
cue and was not followed by reward. The minimum reaction time for
animals to initiate anticipatory licking was found to be �0.5 s. Through-
out the manuscript we define correct CS � trials as those containing
anticipatory licking (when licking occurred between 0.5 and 2.5 s follow-
ing odor onset), correct CS � trials as those in which animals withheld
licking during this time period, and incorrect CS � trials as those when
animals licked during this time period. When mice achieved at least 90%
correct CS � trials and �10% incorrect CS � trials, we began the last
training phase, comprised of a single session which coincided with elec-
trophysiological recordings. Here we introduced transfer trials (TT) in
which the CS2 cue was preceded by an air puff feature cue (a novel
pairing) and followed by reward (Fig. 1B, right). This last phase consisted
of 28% CS1 �, CS1 �, CS2 � trials, and 15% transfer trials. Since the
feature had never been previously associated with CS2, we used these
transfer trials to determine which of two models (see Introduction) are
implemented by the animals. To calculate the behavioral discrimination
score, we subtracted the percentage of incorrect CS1 � trials from the
percentage of correct CS1 � trials.

Electrophysiological recordings. One recording was performed per ani-
mal with a microprobe containing a total of 256 electrodes divided across
four prongs that were spaced 0.2 mm apart. An array of 64 electrodes on
each prong spanned 1 mm along the dorsal-ventral axis. We recorded
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from the orbitofrontal region of the prefrontal cortex (2.3–2.5 mm an-
terior, 0.5–1.5 mm lateral, �2.0 to �3.0 mm ventral, relative to bregma).
The silicon prongs were coated with a fluorescent dye (DiD, Thermo-
Fisher) before insertion, to facilitate post hoc histological reconstruction
of the recording sites. Procedures for recording with silicon microprobes
are described previously (Shobe et al., 2015). After the recordings, ani-
mals were overdosed with isoflurane and perfused with 10% formalin
solution (Sigma-Aldrich). The brain was extracted and fixed for a mini-
mum of 24 h at 4°C. Tissue was cut into 100 �m sections on a vibratome
and stained for DAPI (4 �g/ml) to visualize cell nuclei. Confocal imaging
of DiD and DAPI fluorescence confirmed that recordings in all mice were
located in approximately the same subregions of the OFC.

Firing rate analysis, and identification of significantly discriminating or
modulated cells. Spike sorting was performed using custom, semiauto-
mated scripts written in MATLAB (MathWorks) for the identification of
putative single units. The analysis combined all types of units (putative
pyramidal cells and interneurons). The mean firing rate per unit was
calculated by binning spike count data into 5 ms time steps, convolving
with a Gaussian kernel (SD � 25 ms), and averaging across trials of the
same stimulus type (either CS1 �, CS1 �, CS2 �, transfer). To determine
whether a unit’s activity significantly discriminated between CS1 � and

CS1 � trials, we used a permutation test to de-
tect significant differences in observed firing
rate for each time step between these trials
(Bakhurin et al., 2016). The firing rate was
sampled from t � 0 to 1 s post-CS1 onset in
time steps of 5 ms. For each time step, the data
from CS1 � and CS1 � trials were shuffled, and
a new absolute difference in firing rate was cal-
culated. This was repeated 10,000 times to ob-
tain a distribution of permuted differences in
firing rates. A unit was defined as being
discriminating if the absolute value of
the observed rate difference was higher than
the 99th percentile of the permuted distribu-
tion ( p � 0.01). To calculate whether a unit’s
activity was significantly modulated we applied
the same permutation analysis to compare cue-
related firing with baseline activity. In each
case, we used a 1 s period, corresponding to the
duration of the cue, to determine cue-related
firing, and compared this to a 4 s within-trial
baseline period (�7 to �3 s, 4 s duration cho-
sen to provide a smooth baseline average).

Onset/offset cell and population overlap anal-
ysis. Latency to peak firing during the period
between the feature cue and CS (t � �2 to 0 s
from CS onset) was estimated from the maxi-
mum average firing rate using 5 ms time bins
and a Gaussian kernel convolution. Firing rate
was calculated from the average of both CS1 �

and transfer trials (i.e., all trials containing a
feature cue). The observed latency distribution
across all recorded cells (see Fig. 4C) showed a
good fit to the sum of two Lorentzian distribu-
tions. We defined the cutoff between onset and
offset cells at the local minimum in the latency
distribution, which occurred at t � �1.9 s
from CS onset. The range of latency values was
bounded from �2.5 to �1 s. To determine
the overlapping population size predicted by
chance between the feature, CS1 � and CS1 �

cues, we first calculated the percentage of neu-
rons per animal (n � 8) that was significantly
modulated in response to these three individ-
ual cues. We then multiplied these three per-
centage values together to determine each
animal’s percentage of overlapping cells pre-
dicted by chance. This, in turn, was statisti-
cally compared with the observed overlap

value of the corresponding animal using a paired t test.
Network state prediction analysis. Analysis of cortical network state (see

Fig. 5 B, C) was performed separately for each animal, using both CS1 �

and transfer trials (i.e., all trials containing a feature cue). For the
network state analysis, these two trial types were behaviorally indistin-
guishable because during the delay period, the animal had no prior
knowledge of which CS it would subsequently receive. For each trial, the
spike count for each unit was calculated for the 1 s period before the
feature presentation [defined as the baseline (BL)], and for the 1 s period
occurring before the odor stimulus presentation [defined as the delay
(DL)]. This resulted in two paired population rate vectors for each trial to
be used in the classification algorithm. We used a binary support vector
machine (SVM) classifier with a linear kernel, implemented in the
LIBSVM library v3.21 (Chang and Lin, 2011). The classifier was trained
to distinguish between population rate vectors on BL and DL periods
(Fig. 5B). We used a repeated fivefold cross-validation strategy, so that
each training set contained four folds of trials, leaving the remaining fold
for testing. Each fold of the data was used once for testing, ensuring that
each trial was tested exactly once. During testing, each population rate
vector in the tested fold was classified as belonging to either BL or DL
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Figure 1. Distinct associations form from feature-negative conditioning. A, Schematic of the four distinct trial types used during
training and recording sessions. In rewarded trials (CS1 � and CS2 �), different conditioned odor stimuli (CS1 or CS2, 1 s duration)
predicted the delivery of reward. In unrewarded trials (CS1 �), when the same odor stimuli were preceded by a feature cue (mild
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behavioral and electrophysiological results are from the final day. C, D, Average lick rate as a function of time during all rewarded
and unrewarded trials. Dashed lines represent the onset and offset times of the indicated cue. Data represent mean � SEM (n �
8 mice). E, The feature significantly reduces the likelihood that animals express anticipatory licking (t � 0 –2.5 from odor onset) in
CS1 trials ( p � 0.0001, paired t test). F, The feature significantly suppresses the likelihood of anticipatory licking in transfer trials
( p � 0.03, paired t test).
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periods. The classifier’s performance was de-
fined as the percentage of correctly classified
BL and DL periods across all tested folds. We
repeated this procedure 500 times, each time
shuffling the order of trials allocated to the
folds, to account for potential variability across
trials in the population and to ensure the most
accurate estimate of classifier performance.
The average of all 500 accuracy scores was de-
fined as the decoder accuracy score for each
dataset. To maximize decoder performance,
we determined the optimal SVM misclassifica-
tion cost parameter, C, via an iterative search
across a range of parameters (also using five-
fold cross-validation). The final value of C
ranged from 0.002 to 0.0625. To determine the
chance level of performance for each popula-
tion, we shuffled the BL and DL labels on the
data. We then applied the binary classifiers that
were trained on observed data to the random-
ized datasets in a parallel cross-validation pro-
cedure. The mean decoder accuracy score on
the randomized data (�50%) was used as
chance level for each dataset.

We used a similar approach to classify
whether delay period activity before incorrect
CS1 � trials, was more similar to the baseline
period before correct CS1 � trials, or the delay
period before correct CS1 � trials (see Fig. 5 D, E). For each trial, the spike
count for each unit was calculated for the 1 s baseline period before the
odor presentation during correct CS1 � trials [defined as the baseline
before licking (BLL)], the 1 s delay period occurring before the odor
stimulus presentation during correct CS1 � trials [defined as the delay
before lick withholding (DLW)], and the 1 s delay period occurring
before the odor stimulus presentation during incorrect CS1 � trials [de-
fined as the delay before errant licking (DLL)]. This resulted in a popu-
lation rate vector for each trial of each class to be used in the classification
algorithm. Because there were an uneven number of correct trial obser-
vations (unlike in the paired situation described for the BL vs DL activity
classification) we equalized the numbers of correct trials by randomly
subsampling the larger population down to the size of the smaller pop-
ulation. This ensured that classification would not be biased toward the
type of trial that contained a greater numbers of observations. After
training the classifier on balanced data from the two correctly performed
trial types, we then tested all of the DLL observations on the model and
asked whether the classifier was more likely to identify activity in the DLL
period as a BLL or DLW period. We repeated this procedure 500 times,
each time shuffling the order of trials before subsampling, thus creating a
new classifier on new combinations of training trials. To maximize de-
coder performance, we determined the optimal SVM misclassification
cost parameter, C. The optimal parameter for each dataset was deter-
mined by first subsampling from BLL and DLW trials, and performing
fivefold cross validation decoding while systematically varying C. This
procedure was performed 100 times, with each iteration containing a
new combination of subsampled trials. Thus, we chose the C parameter
that resulted in the highest BLL and DLW separation. The final values of
C ranged from 0.001 to 0.125.

Experimental design and statistical analyses. All statistical tests were
performed in MATLAB or Prism (GraphPad) software. The sample size,
type of test used, and probability value is reported in the text and figure
legends. All p values � 0.0001 are reported as p � 0.0001. One subject
(animal 1) was excluded from the analysis of Figure 5E for having only
one DLL trial, which prevented a statistically sound analysis.

Results
Behavioral responses reveal a negative occasion
setting strategy
In the feature-negative conditioning task, mice (n � 8) are ex-
posed to conditioned odor stimuli (CS1 and CS2, 1 s duration)

that are either followed by reward if no feature cue (mild air puff)
was present, or not followed by reward if a feature cue was present
before the odor stimulus (Fig. 1A). Therefore, the presence or
absence of the feature cue determines the outcome on that trial.
On training sessions, we presented three trial types with equal
likelihood: CS1�, CS1�, and CS2� (Fig. 1B, left). Thus, during
this training period, the feature cue was presented in half of the
CS1 trials, but never paired with the CS2 trials. The final training
session, which coincided with electrophysiological recordings,
included transfer trials in the form of the same feature cue fol-
lowed by the CS2 cue (Fig. 1B, right).

On the final training session, the percentage of CS1� trials
with licking was significantly reduced relative to CS1� trials (Fig.
1C,E; p � 0.0001, paired t test). Thus, mice learned that the
feature predicts an unrewarded outcome with respect to the CS1
cue. To determine the specificity of the feature-CS association, we
introduced a small percentage (15%) of transfer trials, which
animals encountered for the first time during the recording ses-
sion. Animals showed a reduction in licking on transfer trials
relative to CS2� trials (Fig. 1D,F; p � 0.03, paired t test). How-
ever, the inhibitory effect of the feature on licking in CS1� trials
[62% median reduction, 28% interquartile range (IQR)] was sig-
nificantly greater than its effect on transfer trials (9% median
reduction, 21% IQR, p � 0.0001, paired t test). Thus, the feature
cue primarily suppressed CS1 elicited anticipatory licking behav-
ior (compared with CS2), as predicted by the negative occasion
setting model. This selectivity also suggests that information
about the feature cue’s presence is maintained during the delay
period, to guide the animal’s decision about whether to lick fol-
lowing the CS presentation.

Feature cues selectively inhibit OFC encoding of
conditioned stimuli
Previous studies suggest that the OFC regulates feature-negative
behavior (Meyer and Bucci, 2016). However, the neural activity
correlates of this behavior have not been studied in this brain
area. We used silicon-based microprobes (4 silicon prongs with

lateral 
orbital

ventral
 orbital

medial
 orbital

1 mm

A B

1 mm

Figure 2. Silicon microprobe recordings in the OFC. A, Representative confocal image of a coronal section showing the recording
position of the silicon microprobe containing four prongs. Before insertion, the prongs were painted with DiD (red) to facilitate
visualization. The section was stained with DAPI (blue). B, Coronal section from the Franklin and Paxinos (1997) mouse brain atlas
(2.35 mm anterior to bregma) annotated with the estimated position of each putative unit (red dot) in relation to the OFC structure.
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64 electrodes each) to simultaneously re-
cord from dozens of orbitofrontal units
during the final training session (n � 8
mice, 48 –119 single units per animal). Af-
ter each recording, we verified the silicon
prong locations using confocal micros-
copy (Fig. 2A), and used these images to
estimate the recording site and corre-
sponding unit positions. We found that
the measurements were primarily located
in the ventral and lateral subregions of the
OFC (Fig. 2B).

Based on the finding that the feature
cue predominantly diminished levels of
anticipatory licking in response to the
CS1, we hypothesized that the feature cue
would modulate odor stimulus-evoked
cortical activity. Consistent with this pre-
diction, we observed that the presence of
the feature, on CS1� trials, suppressed the
OFC population’s mean firing rate rela-
tive to CS1� trials during the CS presen-
tation period (n � 585 units pooled across
8 mice; Fig. 3A). We then separately ex-
amined the mean firing rate in each ani-
mal and found that the feature caused a
significant reduction in firing rate during
the 1 s CS1 presentation period (Fig. 3D;
p � 0.016, paired t test). In contrast, we
did not see any feature effect on mean
CS2-evoked firing rate during transfer
trials (Fig. 3B,E; p � 0.46, paired t test).
Furthermore, we found a small but statis-
tically significant difference (p � 0.045,
paired t test) between the feature-induced
reduction in firing rate on CS1 compared
with CS2 cues, demonstrating that the fea-
ture selectivity inhibits the encoding of
the CS1 representation. We also found the
OFC does not appear to encode choice,
because we did not observe any difference
in mean firing rate between CS1� trials
with anticipatory licking and CS1� trials
without licking (Fig. 3C,F; p � 0.30,
paired t test).

To further examine the feature cue’s
effect on OFC neuronal responses to CS1
cues, we compared the firing rates be-
tween the CS1� and CS1� trials for each
individual neuron during the 1 s cue pre-
sentation period (n � 585 units pooled
across 8 mice). We found that a significant
fraction of neurons had a lower firing rate
in the CS1� trials (Fig. 3G; p � 0.0001,
paired t test), suggesting that the feature
suppressed the response of a large propor-
tion of OFC neurons. We also found that
the percentage of cells per animal that
could discriminate between CS1� and
CS1� trials during the 1 s CS presentation
period was significantly correlated with
behavioral discrimination (Fig. 3H; n � 8
mice, Pearson r � 0.86, p � 0.012). Thus,
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the greater the proportion of OFC units that distinguished be-
tween non-feature and feature trial types, the better the animal
was at correctly licking to CS1� trials and correctly withholding
to CS1� trials. Therefore, these electrophysiological measure-
ments, together with the corresponding behavioral tests, support
the negative occasion setting model by showing that the feature
cue selectively suppresses OFC activity and anticipatory behavior
following CS1 cues, but not CS2 cues.

Temporally specific feature encoders have unique
discriminatory properties
To further understand the encoding properties of feature and
CS1 cues, we examined the firing patterns of individual neurons
under different stimulus conditions. Across the recorded popu-
lation, we found that a large proportion of cells appeared to
respond to individual cues (feature, CS1�, or CS1�), or a com-
bination of these cues (Fig. 4A). To quantify this relationship, we
calculated the proportion of units that were significantly modu-
lated by single cues or different cue combinations. We found that
across n � 8 mice, 53% (median, 20% IQR) of the neurons re-

sponded to the feature, whereas 51% (median, 15% IQR) and
42% (median, 28% IQR) of neurons responded to the CS1 in the
CS1� and CS1� trials, respectively (Fig. 4B). Notably, 31%
(median, 19% IQR) of the neurons responded to all three cues.
This overlap is significantly higher than chance levels (10%,
11% IQR), based on the total number of identified units in the
OFC (paired t test, p � 0.0001), suggesting a common repre-
sentation of the cells that encode these stimuli. These results
suggest that not only is OFC encoding of a reward-associated
stimulus (CS1) modulated by the feature cue, but that this
circuit is strongly tuned by stimuli that activate overlapping
neuronal subpopulations.

In the population of feature responsive cells, we found evi-
dence for heterogeneous response properties, with some cells re-
sponding early, and others later to the feature cue (Fig. 4A). We
calculated each unit’s latency to peak firing during the feature
period, and found that the latency values appeared to cluster into
two distinct firing groups (Fig. 4C). One group of neurons fired
maximally around the feature onset time (onset cells), whereas
another group preferentially fired around the feature offset time
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(offset cells). We separately examined the mean CS1-triggered
firing rate of the onset and offset cells, and found that they ap-
peared to show different responses during the CS1 presentation
period (Fig. 4D). Specifically, the mean firing rate of onset cells
appeared markedly reduced in CS1� relative to CS1� trials (Fig.
4D, top). This suggests that the CS1 representation associated
with the onset population is highly susceptible to suppressive
properties of the feature. In contrast, the response of offset cells to
CS1 was less perturbed by the feature (Fig. 4D, bottom). To quan-
tify these differences, we compared the number of cells within
each group that significantly discriminated between the CS1�

and CS1� trial types during the 1 s CS1 presentation period. We
found that the onset group contained a significantly larger pro-
portion of discriminating cells relative to the offset group (Fig.
4E; p � 0.0001, paired t test).

Feature cues trigger a distinct network state in the
delay period
If the feature cue influences subsequent OFC encoding of reward-
conditioned stimuli, we hypothesized that information about
whether the feature cue was present is maintained in the OFC
throughout the delay period. Previous work suggests that delay
periods in working memory tasks often coincide with persistent
firing patterns in the prefrontal cortex (Fuster and Alexander,
1971; Goldman-Rakic, 1995; Fuster, 2005; Riley and Constantini-
dis, 2015). However, our data revealed that the average firing rate
in the OFC returns to baseline levels before the CS1 onset (Figs.
3A, 4D), suggesting that the feature cue does not trigger persistent
changes in mean spiking activity. In support of this observation,
there was no significant difference in mean firing rate between the
final 1 s of the DL period, and a 1 s BL period before feature cue

onset (Fig. 5A; n � 8 mice, p � 0.11, paired t test). We therefore
wondered whether the OFC could still maintain the information
about the feature cue’s presence during the delay period without
any significant persistent activity signal. We speculated that if the
OFC is maintaining this information, it does so through an ac-
tivity silent but distinct network state (Stokes et al., 2013; Stokes,
2015), that does not give rise to an overt change in mean firing
rate. An alternative possibility is that another region outside the
OFC is exclusively responsible for maintaining the feature cue
information. To determine whether OFC networks exhibit dy-
namics during the delay period that are distinct from the BL
period, we used a decoder to distinguish between population
activity in the DL and BL periods from the same trial containing
a feature cue (Fig. 5B). The decoder was applied to simultane-
ously recorded populations of cells from individual animals. Our
results reveal that for all animals tested, the decoder performed
significantly above chance levels in discriminating between activ-
ity in the BL and DL periods (Fig. 5C; n � 8 mice, p � 0.0001,
paired t test). The average accuracy was 69 � 2% (mean � SEM,
dashed black line). To rule out any differential interaction be-
tween the paired BL and DL periods and the previous trial, we
also compared the BL and DL periods from separate trials: CS1�

and CS1�, respectively. In this case, the decoder also performed
significantly above chance levels in discriminating between activ-
ity in the BL and DL periods (n � 8 mice, p � 0.0001, paired t test,
data not shown). The average accuracy was 69 � 3% (mean �
SEM), which is very close to our value using the paired period
method. A direct comparison revealed no significant differences
(n � 8 mice, p � 0.96, paired t test), indicating that both ap-
proaches produce the same result. Together, these findings
suggest that, despite the absence of an overt change in mean
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population firing rate, the feature induces a distinct network
state in the OFC during the delay period.

Finally, we examined whether OFC network dynamics during
the delay period also provide information about the subsequent
behavioral choice of the animal on that trial. In other words, is
there a prospective code during the delay period that predicts
whether or not the mouse will lick? To test this, we took advan-
tage of the observation that mice sometimes licked incorrectly
during CS1� trials (Fig. 1C). We trained a classifier to distinguish
between population activity occurring during the baseline period
before correct CS1� trials (BLL), and the delay period before
correct CS1 - trials (DLW). First, using cross-validation, we found
that the classifier could distinguish these periods above chance
levels (n � 8 mice, p � 0.0001, paired t test, data not shown),
consistent with a distinct network state during DL and BL periods
shown in Figure 5C. We next examined whether OFC population
activity in the delay period before incorrect CS1 - trials (DLL) was
classified more frequently as a BLL or DLW period (Fig. 5D).
There was a significant preference for the classifier to label DLL as
a DLW period (Fig. 5E; n � 7 mice, p � 0.018, paired t test). The
average accuracy was 64 � 4% (mean � SEM, dashed black line).
Thus, it appears that in the OFC, the feature rather than the
behavioral outcome (i.e., licking) dictates the delay period net-
work state. This is consistent with our earlier findings showing no
significant difference in mean firing rate between correct and
incorrect CS1� trials (Fig. 3C,F). These findings suggest that the
feature triggers a network state that is maintained throughout the
delay period, which could function to downregulate the net-
work’s response to the CS1 stimulus.

Discussion
This is, to our knowledge, the first study to show the neural
dynamics that may underlie an occasion setter’s ability to modu-
late behavior. A key insight that this study reveals is the selective
nature of the association between the feature cue and the condi-
tioned odor stimulus (Holland, 1984). The feature causes ani-
mals to suppress their conditioned responding in the form of
anticipatory licking to a trained stimulus (CS1). However, the
ability of the feature to suppress conditioned responding does not
transfer to another stimulus (CS2) that had never previously been
paired with the feature. Neural recordings in the OFC comple-
ment this finding by showing that the feature-negatively modu-
lates activity triggered by CS1, but this modulation effect does not
transfer to the CS2 cue. This lack of transfer, observed in both our
behavioral and neurophysiological data, rules out the simple Re-
scorla–Wagner model because this model posits that the feature’s
inhibitory properties should transfer to any CS paired with that
reward. The fact that we did not observe transfer thus provides
strong evidence against a direct inhibitory link between the fea-
ture cue and reward. Furthermore, our data suggest that the OFC
may be involved in the task, because a measure of the level of OFC
modulation by the feature (percentage of cells per animal that
discriminate between CS1� and CS1� trials) significantly corre-
lates with an individual animal’s behavioral discrimination. To-
gether, our findings provide strong evidence for the negative
occasion setting model (Holland, 1984; Lamarre and Holland,
1987) in which a feature cue can modulate the ability of a separate
cue to retrieve its reward association.

Our data also suggest a possible OFC information transfer
mechanism between the feature and conditioned odor stimu-
lus during the delay period. Many studies on working memory
have found persistent changes in mean population firing ac-
tivity that accompany the delay period (Fuster and Alexander,

1971; Goldman-Rakic, 1995; Miller et al., 1996; Miller and Co-
hen, 2001; Pasternak and Greenlee, 2005; Liu et al., 2014). Al-
though we found that many cortical neurons were activated
within �1.5 s of the feature cue’s presentation, this activity did
not appear to persist into the final 1 s of the delay period, suggest-
ing that the OFC subregions that were targeted here do not ex-
hibit sustained changes in activity. Of course, this observation
does not rule out the possibility that persistent activity occurs in
other brain areas. On the other hand, a number of studies suggest
that sustained activity is not necessary to retain task-relevant in-
formation (Jensen and Tesche, 2002; Howard et al., 2003; Riggall
and Postle, 2012; Ester et al., 2015; Lundqvist et al., 2016). In-
triguingly, an activity silent model of working memory raises
the possibility that information is retained in the patterns of
network-level activity (Stokes et al., 2013; Stokes, 2015). To ex-
amine whether such an effect could be taking place in the OFC
during the final 1 s of the delay period in our task, we used a
machine learning-based decoding algorithm to assess whether
this time period coincides with a distinct network state. In all
mice tested the decoder was able to accurately distinguish delay
from baseline period activity at above chance levels, consistent
with the activity silent working memory model (Stokes et al.,
2013; Stokes, 2015). Thus, our data indicate that the OFC has the
potential to transfer information about the feature cue across the
delay period.

Our results suggest that the OFC uses the feature as a source of
rule information to regulate behavioral responses. As discussed
above, the degree to which the feature cue suppresses anticipatory
licking correlates with its ability modulate neural activity to the
conditioned odor stimulus. In contrast, we found no change in
OFC activity during trials when animals incorrectly lick during a
feature-negative trial. Moreover, our classifier results suggest that
the network state during the delay period before incorrect CS1�

trials (DLL) is significantly different from the state during the
baseline period before correct CS1� trials (BLL), even though
both types of trials contain licking. These two pieces of evidence
suggest that the OFC code is relatively insensitive to behavioral
choice. Thus, our data are consistent with a number of other
studies indicating the importance of rule encoding in the OFC
(Buckley et al., 2009; Tsujimoto et al., 2009, 2012; Johnson et al.,
2016; Sleezer et al., 2016).

The information coding properties revealed here provide in-
sight into how the brain could quickly manipulate information at
more abstract levels to regulate behavior. The feature appears to
trigger a distinct network state that specifically interacts with its
trained conditioned odor stimulus. This may occur by inducing a
temporary functional reweighting of synaptic connections within
OFC microcircuits (Fujisawa et al., 2008; Stokes, 2015). As a
whole, this model fits well with the viewpoint that the OFC pro-
vides the animal with a cognitive map of task space (Roesch et al.,
2006; Wilson et al., 2014; Cooch et al., 2015; Sharpe et al., 2015;
Lopatina et al., 2016; Wikenheiser and Schoenbaum, 2016) be-
cause the extent to which the conditioned odor stimulus alters
neural activity is mediated by the network state set by the feature.
Together, our observations provide a potential mechanism that
helps to explain how animals can rapidly interpret the mean-
ing of a conditionally rewarded cue to make timely behavioral
decisions.
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