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Valence, Not Utility, Underlies Reward-Driven Prioritization
in Human Vision

Ludwig Barbaro, X Marius V. Peelen, and X Clayton Hickey
Center for Mind/Brain Sciences, University of Trento, 38068, Rovereto, Italy

Objects associated with reward draw attention and evoke enhanced activity in visual cortex. What is the underlying mechanism? One
possibility is that reward’s impact on vision is mediated by unique circuitry that modulates sensory processing, selectively increasing the
salience of reward-associated stimuli. Alternatively, effects of reward may be part of a more general mechanism that prioritizes the
processing of any beneficial object, importantly including stimuli that are associated with the evasion of loss. Here, we test these
competing hypotheses by having male and female humans detect naturalistic objects associated with monetary reward, the evasion of
equivalent loss, or neither of these. If vision is economically normative, processing of objects associated with reward and evasion of loss
should be prioritized relative to neutral stimuli. Results from fMRI and behavioral experiments show that this is not the case: whereas
objects associated with reward were better detected and represented in ventral visual cortex, detection and representation of stimuli
associated with the evasion of loss were degraded. Representations in parietal cortex reveal a notable exception to this pattern, showing
enhanced encoding of both reward- and loss-associated stimuli. Experience-driven visual prioritization can thus be economically irra-
tional, driven by valence rather than objective utility.
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Introduction
Visual stimuli associated with reward become salient and attention-
drawing. As a result, they are easy to find as targets of visual search
but hard to ignore when they act as task-irrelevant distractors (for
review, see Anderson, 2016; Le Pelley et al., 2016). This selective
bias sustains when it is counterproductive (Hickey et al., 2010)
and appears to rely at least in part on plasticity in visual cortex
(van Koningsbruggen et al., 2016), suggesting that it is a product
of implicit attentional and perceptual learning rather than ex-

plicit strategy. It may have evolutionary origins (facilitating the
search for food), and could underlie maladaptive selective behav-
ior observed in eating disorders and addiction (Robinson and
Berridge, 1993; Berridge, 1996).

This effect of reward on selection has been interpreted in two
ways. On one hand is the idea that reward may activate unique
and specific brain mechanisms that prioritize reward-predictive
stimuli in visual processing (Hickey et al., 2010; Roelfsema et al.,
2010). This is in line with ideas from the animal literature about
approach behavior and the function of reward-related dopamine
(Berridge and Robinson, 1998), and is reflected in a recent com-
putational model that proposes long-range neurochemical inter-
actions between the reward system and visual cortex (Roelfsema
and van Ooyen, 2005). But, on the other hand is the equally
compelling idea that attentional bias to reward-associated stimuli
might constitute one instantiation of a broader motivational
mechanism in vision (Gottlieb, 2012; Le Pelley et al., 2016). Using
a term from economics, this would act to maximize objective
utility, the absolute quality or usefulness of outcome, by priori-
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Significance Statement

Normative economic models propose that gain should have the same value as evasion of equivalent loss. Is human vision rational
in this way? Objects associated with reward draw attention and are well represented in visual cortex. This is thought to have
evolutionary origins, highlighting objects likely to provide benefit in the future. But benefit can be conferred not only through gain,
but also through evasion of loss. Here we demonstrate that the visual system prioritizes real-world objects presented in images of
natural scenes only when these objects have been associated with reward, not when they have provided the opportunity to evade
financial loss. Visual selection is thus non-normative and economically irrational, driven by valence rather than objective utility.
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tizing any informative object that can be acted on to create a
relative benefit, including stimuli that predict negative outcome
when this information can be used to evade greater loss or harm.

Here we test these accounts of reward’s influence on visual
selection. We designed a visual search task in which participants
could accumulate points with cash value by correctly detecting
examples of target categories in pictures of natural scenes. A given
category could be associated with rewarding outcome, neutral
outcome, or loss. Correct detection of an example of the reward-
associated category thus resulted in receipt of 150 points, but
failure to detect this target garnered only 50 points. In contrast,
correct detection of an example from the loss-associated category
resulted in the forfeiture of 50 points, but failure to detect this
target resulted in the greater loss of 150 points. Finally, detection
of a neutral target garnered only 1 point, and failure to detect this
target resulted in the loss of only 1 point. Accurate detection of
both reward- and loss-associated targets in our design therefore
had a consistent benefit of 100 points relative to incorrect perfor-
mance, making them more valuable than neutral targets, and
participants were made explicitly aware of this fact.

If selective bias for reward-associated stimuli reflects a ratio-
nal, utility-maximizing mechanism, reward- and loss-
associated targets should be prioritized equally in our task. This
motivates the set of predictions illustrated in Figure 1A, B, which

we refer to as the utility model. Targets
should draw attention and be well repre-
sented in visual cortex (Hickey et al., 2010;
Anderson et al., 2011), but reward- and
loss-associated targets should draw atten-
tion with greater strength than neutral tar-
gets (see Fig. 1A). When these objects act
as task-irrelevant distractors, their sa-
lience will cause them to interfere with
search for other targets and they will need
to be attentionally suppressed (Hickey
and Peelen, 2015, 2017; Sawaki et al.,
2015) (see Fig. 1B). But if selective bias for
reward-associated stimuli is not econom-
ically rational, it presumably reflects an
impact of the absolute valence of out-
come. By this valence model, targets that
predict reward should be visually salient
(see Fig. 1C), and reward-associated dis-
tractors should require strong attentional
suppression (see Fig. 1D). Targets predict-
ing suboptimal outcome, however, may
not only fail to draw attention but be ac-
tively suppressed and poorly represented
in the visual system (Hickey et al., 2010;
Hickey and van Zoest, 2012; Hickey and
Peelen, 2017) (see Fig. 1C). If this is so,
loss-associated distractors may not inter-
fere with search, thus requiring little inhi-
bition (see Fig. 1D).

Materials and Methods
We conducted two experiments to test the pre-
dictions illustrated in Figure 1. Experiment 1
relied on the use of multivariate pattern analy-
sis (MVPA) of human fMRI data to index the
quality of visual representations in the brain.
While in the scanner, 23 participants searched
for examples of real-world object categories in
images of city and landscapes (see Fig. 2A). The

target category (cars, trees, buildings, or people) was indicated at the
beginning of each block of trials, and for each participant one object
category was associated with reward when it acted as target, one to loss,
and the others to neutral outcome (see Fig. 2B). Importantly, when
search was for one of the neutral categories, examples of the reward-
associated, loss-associated, and other neutral category appeared in the
scenes as irrelevant distractors.

To maximize our power to detect potentially subtle effects on distrac-
tor representations, Experiment 1 adopted a design where examples of all
distractor categories were present in every scene. We therefore conducted
a second behavioral experiment to determine how the association of
reward or loss to distractors impacted search behavior. Here, 101 partic-
ipants completed a variant of the task in which outcome was manipulated
independently of target identity. Each block thus began with a cue indi-
cating both target category and pay scheme and scenes only occasionally
contained outcome-associated distractors. By looking at performance
within each block, we were able to examine how outcome association
impacted target detection, whereas by looking across blocks we were able
to see how examples from object categories that had recently been asso-
ciated with reward or loss came to interfere with detection of neutral
targets.

Participants. Twenty-four volunteers (9 female; mean � SD age, 25 �
4 years) gave informed consent before completing Experiment 1. One
participant reported the target as present in �90% of trials and was
excluded from analysis. A total of 105 volunteers gave informed consent
before completing Experiment 2 (79 female, 23 � 4 years). Three partic-
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Figure 1. Predictions from the utility and valence models. A, By the utility model, reward- and loss-associated targets should
draw selective resources, and thus be better represented than neutral targets. B, During search for neutral targets, reward- and
loss-associated distractors should require the same degree of attentional suppression, and thus be poorly represented relative to
neutral distractors. C, By the valence model, reward-associated targets should draw selective resources, whereas loss-associated
targets may be actively suppressed and poorly represented in the visual system. D, Reward-associated distractors should require
attentional suppression, but loss-associated distractors should not.
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ipants were excluded because of low accuracy (�3 SD from group mean)
and one because of inconsistent responses on a screening questionnaire.
For both experiments, sample size was guided by observed effect sizes in
our prior work using similar methodology. All methods were approved
by the University of Trento ethical committee and adhered to the Decla-
ration of Helsinki.

Experiment 1: object selective cortex (OSC) localizer. The OSC localizer
involved 2 scanner runs of 317 s duration, each comprised of 16 blocks of
20 trials and 3 fixation blocks. Each run started with a 15 s fixation period
followed by a 2 s reminder of task instructions and ended with a 15 s
fixation period. Each trial began with fixation (400 ms) followed by a
central image of an isolated everyday object (e.g., telephone, alarm clock,
blender; 350 ms, n � 20) or a pixel-scattered version of one of these
images. Participants monitored for image repetition, which occurred
once per block. Every fifth block was a fixation block, where for 15 s only
the fixation cross was presented.

Experiment 1: category pattern localizer. The category pattern localizer
involved 2 scanner runs of 392 s duration, each comprised of 20 blocks of
20 trials and 4 fixation blocks. Each run started with a 15 s fixation period
followed by a 2 s reminder of task instructions and ended with a 15 s
fixation period. In each block, images of isolated examples of one of the
four relevant stimuli categories (cars, trees, buildings, or people) were
presented (n � 40 per category). Each trial began with fixation (400 ms)
followed by image presentation (350 ms). As in the OSC localizer, par-
ticipants monitored for image repetition, which occurred once per block,
and every fifth block was a fixation block where for 15 s only the fixation
cross was presented. Localizer images of people were headless because
faces in the primary experimental task were commonly too small to
visually resolve. We did not want the localizer pattern to reflect the en-
coding of faces if this was not possible in the experiment itself.

As an internal check, we conducted a split-half correlation analysis of
category patterns in OSC. This correlated the pattern for each category as
derived from half the data with the pattern for each category as derived
from the other half of the data. Patterns for the same categories were
similar, and thus positively correlated on average (0.73), whereas the
patterns across categories were dissimilar and thus negatively correlated
(�0.23).

Experiment 1: design. The primary experiment involved 4 scanner runs
of 590 s duration, each comprised of 8 blocks of 24 trials. Each run started
and ended with a 15 s fixation period. At the beginning of each block,
central text indicated the target category for the coming block for 10 s
(cars, trees, buildings, people) alongside the number of points that had
been accumulated to that point in the experiment. The trial sequence is
illustrated in Figure 2A. In half of the trials, the scene contained examples
of all relevant object categories. In remaining trials, the target was absent,
and the order of target-present and target-absent trials was randomized
within each block. Participants reported the presence or absence of the
target with the right index and middle fingers, respectively. Late re-
sponses (�750 ms) and missing responses were incorrect. When the
target was present and response was accurate, feedback was determined
by the target category (see Fig. 2B). The association of specific categories
to reward, loss, and neutral outcome was counterbalanced across partic-
ipants, and participants were explicitly informed at the beginning of the
experiment about the relationship between each target category and its
associated outcome. All participants completed a short training proce-
dure before entering the scanner and were able to report this relationship
before beginning the experiment itself. Participants were paid based on
the number of points they accumulated during the experiment (€0.0018/
point), and each received between €25 and €40.

Experiment 1: fMRI data acquisition, preprocessing, and analysis.
Whole-brain Imaging was conducted using a Bruker BioSpin MedSpec
4T scanner with an eight-channel head coil (functional data: T2*-weighted
echo-planar images, 31 slices with 0.45 mm gap, 3 � 3 � 3 mm voxel size,
TR � 2.2 s, TE � 33 ms, flip angle � 76°; structural data: T1-weighted
MPRAGE, 256 slices, 1 � 1 � 1 mm voxel size). Functional data were
motion corrected, slice time corrected, smoothed using a 6 mm FWHM
Gaussian kernel, high-pass filtered at 0.008 Hz, coregistered to the
structural image, and spatially normalized to the MNI template. Pre-
processing and subsequent data analysis were conducted with SPM12

(University College London) and the CoSMo-MVPA toolbox (Ooster-
hof et al., 2016).

A separate GLM was created for each of the OSC localizer, category
localizer, and visual search task. In each GLM, all regressors of interest
were convolved using the canonical hemodynamic response function
implemented in SPM12, and all models contained six regressors of no
interest obtained from the realignment procedure to account for head
motion.

In the OSC localizer, the BOLD signal for each voxel was modeled
using two regressors of interest: one for intact and one for scrambled
objects. OSC was functionally defined in MNI space for each participant
by contrasting responses evoked by the intact and scrambled images and
identifying reliably activated voxels in occipital or temporal cortex ( p �
0.001, uncorrected). Mean OSC size was 1491 � 845 voxels. In the cate-
gory localizer, four regressors of interest were used, reflecting the presen-
tation of people, cars, buildings, or trees. In the visual search task, four
regressors of interest were used, reflecting the block target. All regressors
of interest spanned whole experimental blocks.

Experiment 1: MVPA. Category patterns were derived from the cate-
gory localizer data by identifying the set of t values elicited for each voxel
in OSC by each of the four object categories. Similar patterns were iso-
lated for each condition of interest in the visual search experiment. All
voxelwise t values were normalized within each experiment by subtract-
ing the mean t value observed across experimental conditions from each
conditional value (Haxby et al., 2001). This removes voxel variance
unrelated to experimental manipulations while retaining conditional
variance. OSC patterns observed in the visual search experiment were
subsequently correlated with OSC patterns observed in the category lo-
calizer to generate a 4 � 4 correlation matrix. These values were Fisher-
transformed and organized in terms of category outcome association and
whether the category acted as target or distractor. As an internal check, we
determined that OSC patterns elicited by scenes correlated more strongly
with the benchmark pattern corresponding to the target (mean � 0.125)
than they did with the other benchmark patterns (�0.041; p � 0.001).

The correlation values computed in this way are on an interval rather
than a ratio scale, with a zero point that is not informative. This is the case
because of the normalization procedure (Haxby et al., 2001; Misaki et al.,
2010). When all pairwise correlations are calculated for the conditions of
two individually normalized datasets, the resulting set of normalized
correlations are centered on zero. Negative values are thus negative only
in relationship to the mean of all possible cross-correlations between the
datasets. Raw, non-normalized correlation values in Experiment 1 were
consistently positive because scene and localizer stimuli evoked a similar
visual response in many OSC voxels. The normalization procedure iso-
lated conditional differences in this signal.

Each category type acted as distractor in three block types. For exam-
ple, if a category was associated with neutral outcome, it could act as
distractor when the target category was also neutral, when the target
category was associated with reward, and when the target category was
associated with evasion of loss. However, to isolate changes in distractor
representation that were produced solely by the association of specific
outcome to the distractor category, we focused analysis of distractor
categories on results observed when the target was associated with neu-
tral outcome. The general pattern of distractor information emerges in
much the same way if analysis includes conditions where the target could
be associated with reward or evasion of loss.

Experiment 1: regression analysis. To statistically assess the ability of the
utility and valence models to account for our OSC and searchlight results,
we conducted multiple linear regression analyses for each participant
dataset (and, in the case of searchlight analysis, for each searchlight
sphere). The first regressor described the difference in task relevance
between targets and distractors, positively weighting targets and nega-
tively weighting distractors (i.e., 1, 1, 1, �1, �1, �1). The second de-
scribed the valence model, positively weighting reward-associated targets
and loss-associated distractors and negatively weighting loss-associated
targets and reward-associated distractors (i.e., 1, 0, �1, �1, 0, 1). The
final regressor described the utility model, positively weighting both
reward- and loss-associated targets and negatively weighting both reward-
and loss-associated distractors (i.e., 1, �2, 1, �1, 2, �1). Each regressor
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vector is orthogonal to the others and has a mean value of zero, and
distractor weights are an inverted version of target weights. Regressor
vectors were z-scored before linear regression was conducted. This anal-
ysis garnered a coefficient for each participant that was positive in value
when the regressor predicted dataset variance. The sets of coefficient
values observed across participants were tested against a null hypothesis
of zero.

Experiment 1: correlation between univariate activity and information.
We approached the experiment with the idea that reactivity in the dopa-
minergic midbrain might predict the quality of object representation in
OSC (Hickey and Peelen, 2015, 2017). To test this hypothesis, we began
by conducting a separate event-related GLM analysis with a predictor for
the presence of reward-associated, loss-associated, and neutral targets.
We subsequently used a probabilistic anatomical MRI atlas (Maldjian et
al., 2003) to define two midbrain regions of interest (ROIs), one describ-
ing the bilateral red nuclei and the other the bilateral substantia nigra
(SN) (see Fig. 4A). We extracted activity in each of these ROIs as observed
when a reward-associated, loss-associated, and neutral target was present
in the scene. Following the logic of our regression analysis of OSC cate-
gory information, we conducted a regression analysis of this univariate
activity with predictors for the utility (i.e., 1, �2, 1) and valence models
(i.e., 1, 0, �1).

This analysis, and the preceding GLM, was limited to activation elic-
ited by the presence of targets because all distractors were consistently
present in each trial in the design of Experiment 1. To maintain equiva-
lence between univariate and multivariate results, we calculated new
regression coefficients for OSC category information with utility and
valence predictors modeling the representation of only targets (and thus
ignoring variance in the representation of distractors). The target-only
univariate midbrain coefficients were then correlated with these target-
only category information coefficients (see Fig. 4B).

We conducted a whole-brain analysis based on the same logic as this
ROI-based analysis (Hickey and Peelen, 2015). For each voxel, coeffi-
cients for the valence model were calculated based on univariate activity
observed in that voxel in response to scenes containing reward-associated,
loss-associated, and neutral targets. The resulting values were correlated
across participants with target-only category information coefficients.
These correlation values were Fisher transformed and assigned to the
voxel location in a new brain volume.

Experiment 1: whole-brain searchlight analysis. Searchlight analysis be-
gan with the identification of brain regions where scene-evoked patterns
contained more information about targets than distractors. For each
voxel in the brain, we defined a surrounding sphere with 21 mm diameter
(7 voxels). We subsequently computed voxelwise correlations between
scene-evoked activity in each of these spheres and spatially equivalent
mean benchmark patterns evoked in our category pattern localizer.
These correlation values were Fisher transformed and assigned to the
center voxel of each sphere. Target category information (i.e., the corre-
lation between the scene-evoked pattern and the benchmark pattern for
the object category currently acting as target in the scene) was subse-
quently contrasted with nontarget category information (i.e., the cor-
relation between the scene-evoked pattern and the benchmark
pattern for the object categories currently acting as distractors in the
scene). For each voxel, this difference was tested for statistical reli-
ability across participants.

Voxels showing selectivity at p � 0.001 were selected for further anal-
ysis when they were part of a cluster with minimum size of 50 voxels. This
identified three clusters. Figure 5A illustrates OSC, as identified in our
OSC localizer experiment. The first and second clusters identified in this
searchlight analysis are illustrated in Figure 5B, and are approximately
equivalent in size and location to bilateral OSC. The third cluster was
located in posterior parietal cortex and is illustrated in Figure 6A.

Further analysis was constrained to the parietal cluster, where we ex-
amined variance in category information in each sphere as a function of
outcome association. To test the degree to which category information
for each sphere followed the utility or valence model, we isolated category
information for reward-associated, loss-associated, and neutral category
examples when these were the target of search, and for reward-associated,
loss-associated, and neutral category examples when these were distrac-

tors and the target of search was an example of one of the two outcome-
neutral object categories. We conducted multiple linear regression for
category information at each voxel using the same regressor weights
described above. All regression coefficient values corresponding to voxels
falling within the parietal ROI were mean averaged to generate a single
value describing the explanatory power of the task relevance, utility, and
valence models for information in the parietal cluster as a whole. These
values were subsequently tested across participants against a null hypoth-
esis of zero.

Experiment 2: design. As in Experiment 1, the stimulus set for Experi-
ment 2 consisted of a set of black-and-white pictures of natural scenes
(n � 384). However, the set of images used in Experiment 2 only partially
overlapped with the set of images used in Experiment 1. This is the case
because, in Experiment 1, scenes contained examples of either 3 or 4 of
the possible target categories. In Experiment 2, scenes contained exam-
ples of either 2 or 3 of the categories. Four groups of scenes (n � 48) each
contained all possible combinations of three categories. Six more groups
of scenes contained all possible combinations of two categories. Of these
six groups, we had trouble finding life-like examples of car/tree and
people/building combinations in the absence of the other categories. As a
result, these groups of images contained only 24 examples; all other
groups contained 32 images. Scenes were masked using the same images
as used in Experiment 1.

Experiment 2 took place in a quiet room and was comprised of 48
blocks of 16 trials. Each block began with a text cue indicating both the
target category for the coming block and the pay scheme. This means
that, in contrast to the design of Experiment 1, the association of out-
come to object categories could be counterbalanced within participants
in Experiment 2. For each participant, two object categories (cars and
trees) were paired with each of the possible outcomes in an equal number
of experimental blocks, with the order of pairing counterbalanced across
participants. Two other target categories (people and buildings) were
consistently associated with neutral feedback. Blocks were organized in
pairs, such that blocks in which participants searched for one of the two
outcome-varying categories (cars or trees) were always followed by
blocks where they searched for one of the two always-neutral categories
(people or buildings). In these neutral-target test blocks, examples of the
target category from the immediately preceding block could appear as
task-irrelevant distractors.

All blocks contained 8 target-present and 8 target-absent trials. In
target-present trials, in addition to the target, the scenes contained an
example of 1 of the 3 nontarget categories in half of the trials and exam-
ples from 2 of the 3 nontarget categories in the remainder. In target-
absent trials, the scenes contained examples of 2 of the 3 nontarget
categories in half of the trials and examples from all 3 nontarget catego-
ries in the remainder. This was manipulated such that examples of each
nontarget category were present and absent an equal number of times in
both target-present and target-absent conditions, allowing us to deter-
mine how the presence of each distractor type impacted performance in
the neutral test blocks. The trial sequence in Experiment 2 was as illus-
trated in Figure 2A but with different latencies. Fixation (833 ms) was
followed by presentation of the scene (40 ms), a mask (260 ms), the
reappearance of fixation (300 ms), and feedback (533 ms).

For 54 participants in Experiment 2, the payoff scheme was identical to
that used in Experiment 1. For 47 participants, detection of reward-
associated targets garnered 100 points and failure to detect resulted in
0 points, detection of neutral targets resulted in 1 point and failure to
detect resulted in the loss of 1 point, and detection of loss-associated
targets resulted in 0 points and failure to detect resulted in the loss of
100 points. Payoff for target-absent trials remained as in Experiment 1.
Statistical analysis demonstrated no difference in performance across
these groups (for all effects involving this difference, p � 0.211). Partic-
ipants were paid based on the number of points they accumulated during
the experiment (€0.0011/point), and each received between €7 and €12.

Experiment 2: analysis. Blocks with varying-outcome targets (cars and
trees) were analyzed separately from blocks with consistent-outcome
targets (people and buildings), with the former focusing on variance as a
function of target association (i.e., accuracy for reward- vs loss-associated
targets) and the latter focusing on variance as a function of distractor

Barbaro et al. • Valence Underlies Reward-Driven Prioritization in Human Vision J. Neurosci., October 25, 2017 • 37(43):10438 –10450 • 10441



association (i.e., accuracy for neutral targets in the presence of distractors
that served as reward-, neutral- or loss-associated targets in the preceding
block).

Behavioral results from Experiment 2 were analyzed using the same
regression approach used in Experiment 1. Detection accuracy was iden-
tified for conditions where the target was associated with reward, loss, or
neutral outcome, and also for conditions where the target was associated
with neutral outcome, but the distractor was associated with reward, loss,
or neutral outcome. These six values were regressed to predictors repre-
senting the utility and valence models for each participant, and the re-
sulting � coefficients were tested against a null hypothesis of zero.

Statistics. All statistics reported in the paper are a product of permuta-
tion analysis with two exceptions: the GLM models used to generate
parametric fMRI maps and the whole-brain correlation analysis. For
permutation tests against the null hypothesis of zero, data-driven distri-
butions were generated by randomly sampling from the relevant dataset
10 6 times with replacement. The likelihood of observed data given the
null was calculated compared with these distributions. Tests of multifac-
tor results were conducted by randomly relabeling conditional data over
10 4 iterations to create a data-driven distribution of F values for each
main effect and interaction. The likelihood of observed F values given the
null was calculated compared with these distributions. Tests of correla-
tion were conducted using a Studentized bootstrap analysis (with 10 4

iterations in the outer loop and 100 permutations in the inner loop).

Results
The impact of reward and loss on stimuli representations in
OSC and behavior
Our first aim was to determine whether the association of reward
or loss impacted the visual representation of experimental stimuli
in a manner predicted by the utility or valence models. We began
by analyzing fMRI results from Experiment 1, deriving measures
of category information from voxelwise patterns in object se-
lective visual cortex (OSC). To do this, we first isolated OSC
by comparing cortical responses to objects versus scrambled ver-
sions of these objects. We then correlated voxelwise patterns
evoked in this area during scene viewing with benchmark pat-
terns identified in a separate localizer experiment (in which
participants viewed isolated examples of our relevant object cat-
egories; Fig. 2C). The degree to which the scene-evoked OSC
pattern matched each of the individual category benchmarks
provided a measure of the strength with which each of these
categories was represented in ventral visual cortex (Peelen et al.,
2009; Seidl et al., 2012).

As illustrated in Figure 3, category information was greater for
targets than distractors, even though targets were only present in
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Figure 2. A, Schematic illustration of the trial sequence. Participants reported the presence of examples of the cued category in briefly presented scenes. Of four possible target categories: one
was associated with reward, one to loss, and two to neutral outcome. Image and font sizes are not to scale, and the block cue here indicates only the target category for the coming trials, whereas
in the experiment itself the total number of points earned to that point in the experiment was also presented. B, Feedback schedule. The association of category to outcome in the actual experiment
was counterbalanced across participants. Feedback indicated here was for target-present trials. Correct performance in target-absent trials garnered a single point in neutral blocks and 0 points in
reward and loss blocks. Incorrect performance in target-absent trials resulted in the loss of a single point in neutral blocks and the loss of 50 points in reward and loss blocks. C, Analytic approach.
Scene-evoked activity patterns in OSC were correlated with benchmark patterns. High correlation indicates increased information for that category in visual cortex during scene perception.
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half of the trials whereas all distractors were present in every trial.
The effect is evident in a scale shift in category information in
comparison with Figure 3A, B. This strong modulation by top-
down set replicates prior studies using this technique to investi-
gate naturalistic visual search (Peelen et al., 2009; Seidl et al.,
2012; Hickey and Peelen, 2015). Variance in category informa-
tion as a function of outcome association closely followed the
valence model: OSC carried more information about reward-
associated targets than loss-associated targets (Fig. 3A), but this
pattern reversed for distractors, with OSC carrying less informa-
tion about reward-associated distractors than loss-associated dis-
tractors (Fig. 3B).

Behavioral analysis of Experiment 1 was focused on target
detection accuracy when the target was present in the scene (i.e.,
hit rate) as an analog of the target OSC information effect de-
scribed above. As illustrated in Figure 3C, hit rate paralleled the
pattern observed in target category information, and thus also
closely followed predictions from the valence model. Impor-
tantly, no corresponding effect was observed in accuracy when
targets were absent from the scene (i.e., correct rejects; 69%, 72%,
and 71% accuracy, respectively), suggesting that outcome associ-
ation impacted the ability to detect the target rather than increas-
ing the overall propensity that the target would be reported as
present.

To statistically assess the ability of the valence and utility mod-
els to predict our results, we conducted linear regression analyses.
In analysis of imaging data, these had three factors: the first pre-

dicted that category information for task relevant stimuli would
be greater than for distractors (Peelen et al., 2009; Seidl et al.,
2012; Hickey and Peelen, 2015), the second that results would
follow the utility model (as illustrated in Fig. 1A,B), and the third
that results would follow the valence model (as illustrated in Fig.
1C,D). This garnered 3 regression coefficients for each partici-
pant reflecting the degree to which the data varied according to
each of these hypotheses. The coefficients corresponding to the
task-relevance model were significantly positive (p � 10�6), as
were the coefficients corresponding to the valence model (p �
0.003), demonstrating that these factors reliably predicted our
results. However, coefficients for the utility model did not differ
from zero (p � 0.789). Follow-up contrasts revealed that OSC
carried more information about reward-associated targets than
loss-associated targets (p � 0.002) but less information about
reward-associated distractors than loss-associated distractors
(p � 0.018). In OSC, the valence model better characterized the
pattern of category information than did the utility model.

Because all distractor types were present in every scene, anal-
ysis of behavioral data from Experiment 1 was limited to the effect
of outcome association with target stimuli. Regression analysis
therefore had two factors: the first predicted that hit rate would
follow the utility model (as illustrated in Fig. 1A) and the second
that it would follow the valence model (as illustrated in Fig. 1C).
Coefficients corresponding to the valence model were signifi-
cantly positive (p � 0.002), but coefficients for the utility model
did not differ from zero (p � 0.360). Follow-up analysis demon-
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Barbaro et al. • Valence Underlies Reward-Driven Prioritization in Human Vision J. Neurosci., October 25, 2017 • 37(43):10438 –10450 • 10443



strated that the effect of target-outcome
association on hit rate reliably differed
from its effect on correct rejects (interac-
tion, p � 0.017). As was the case in analy-
sis of OSC category information, the
valence model better characterized detec-
tion accuracy than did the utility model.

To gain further perspective on the re-
lationship between brain activity and
behavior, we examined individual differ-
ences in how the valence and utility mod-
els fit OSC category information and
behavior. Our expectation was that those
participants showing a strong fit of the va-
lence model in brain activity should also
show a strong fit of the model in behavior.
To test this hypothesis, we Pearson corre-
lated the valence model coefficients de-
rived from brain data (Fig. 3A,B) with the
valence model coefficients derived from
hit rate data (Fig. 3C). As illustrated in
Figure 3D, a reliable relationship emerged
(r � 0.439, p � 0.002). No corresponding
relationship was evident when utility model
coefficients for OSC category information
and behavior were correlated (r � 0.075,
p � 0.351). Expression of the valence pat-
tern in brain activity therefore predicted a
valence pattern in behavior, demonstrat-
ing a close relationship between brain ac-
tivity and behavior.

Midbrain activity as a predictor of
representational quality in OSC
Our study was motivated in part by theo-
ries of dopamine’s role in attentional se-
lection and approach behavior (Berridge
and Robinson, 1998; Ikemoto and Pank-
sepp, 1999), alongside results relating re-
ward’s impact on selection to activity in
the dopaminergic midbrain (Hickey and
Peelen, 2015, 2017) and the release of do-
pamine in the striatum (Anderson et al.,
2016). To test the relationship between
midbrain activity and OSC representa-
tions in the current data, we used an MRI
atlas to define an ROI describing the bi-
lateral SN (Fig. 4A). The dorsal aspect of
this SN ROI, encompassing pars com-
pacta and including voxels in the ventral
tegmental area (VTA), contains dopa-
minergic neurons that project to the
striatum and frontal cortex (Williams and
Goldman-Rakic, 1993; Haber et al., 2000).
As a functionally distinct proximal con-
trol area, we additionally isolated the
bilateral red nuclei, which are located
slightly medial and rostral to the SN but
do not contain dopaminergic cells and
have different connectivity than the SN
(Fig. 4A) (Nioche et al., 2009).

Our expectation was that participants
showing greater responsivity in SN to
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reward- versus loss-associated targets would also show increased
category information for these stimuli in OSC. To test this, we
conducted a univariate regression analysis of voxel activation in
the SN and red nuclei ROIs with predictors representing the util-
ity and valence models. The parameter values identified in this
univariate analysis of SN and red nucleus were subsequently cor-
related with valence model coefficients from multivariate analysis
of target information in OSC. As illustrated in Figure 4B, partic-
ipants showing a valence pattern in the SN also showed this pat-
tern in OSC category information (r � 0.387, p � 0.030). This
relationship was not evident for the red nucleus (r � 0.054, p �
0.397), and correlation of utility model coefficients for OSC in-
formation and SN activity identified no relationship (r � �0.019,
p � 0.538). These findings demonstrate that, when the valence
pattern discretely expressed in the SN, it also expressed in OSC
category information.

We conducted an additional whole-brain analysis using this
analytic approach. Here, coefficient values were extracted for
each participant based on univariate activation of each voxel in
brain space and subsequently correlated with OSC category in-
formation coefficients. After FDR correction for multiple com-
parisons (Benjamini and Hochberg, 1995), this analysis revealed
a set of small voxel clusters where a good fit of the valence model
to univariate activity predicted a good fit of the valence model to
OSC category information. Supporting the ROI analysis detailed
above, a set of voxels was identified in the midbrain (Fig. 4C).
These were located bilaterally in the SN (left: 2 voxels; peak: �9,

�25, �11; right: 1 voxel; 12, �25, �11) and in the vicinity of the
ventral tegmental area (1 voxel; 0, �29, �15). Other clusters
emerged in the posterior cingulate cortex (Fig. 4D; 15 voxels;
peak: �9, �46, 16), left superior frontal gyrus (Fig. 4E; 10
voxels; peak: �21, �1, 65), and left medial frontal gyrus/dorsal
anterior cingulate (Fig. 4F; 3 voxels; peak: �6, 5, 58). The supe-
rior frontal, anterior cingulate, and midbrain clusters are similar
to those that we have identified using similar methodology in
earlier investigation of incentive salience (Hickey and Peelen,
2015).

Beyond OSC: whole-brain analysis of category information
In the imaging analyses described to this point, we have measured
representational quality based on consideration of voxel patterns
in OSC, which constitutes a large portion of ventral visual
cortex spanning the occipital and temporal lobes (Fig. 5A).
However, other brain areas are known to also carry multivoxel
information about naturalistic visual stimuli and their task
relevance (Konen and Kastner, 2008; Jeong and Xu, 2016). To
test the ability of the valence and utility models to describe
variance in the quality of object representation outside OSC,
we conducted a whole-brain searchlight analysis of the fMRI
data (Kriegeskorte et al., 2006).

This began with the identification of brain areas that carried
more information about the target of visual search than about
task-irrelevant distractors, such that category information in
these areas could be subsequently examined for the effect of out-

Figure 5. A, OSC as defined in the OSC localizer. Voxels identified here were present in the OSC of 16 or more of the 23 participants in Experiment 1. B, Results from the searchlight contrast of
information for targets versus distractors. Voxels identified here constitute the center of spheres that carried more information for targets than distractors at p � 0.001 with a cluster threshold of
50 voxels.
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come association. We defined spheres
around each voxel in the brain, testing
whether the pattern of voxelwise activity in
each area correlated with corresponding
values from benchmark data generated in
our localizer task. This identified three areas
that carried more information about targets
than distractors. Two of these were in the
bilateral ventral visual cortex, approxi-
mately equivalent in location and size to
OSC as discussed above (Fig. 5). Consistent
with other recent work (Bettencourt and
Xu, 2016; Jeong and Xu, 2016) a third clus-
ter emerged in right posterior parietal cor-
tex, notably containing aspects of the
intraparietal sulcus and superior parietal
lobule (Fig. 6A) (compare Peck et al., 2009).

We constrained subsequent analysis to
this parietal cluster, extracting category
information for targets and distractors as
a function of outcome association. In a
reversal of the pattern we saw in OSC,
mean category information here paral-
leled the utility rather than valence model:
category information was equal for
reward- and loss-associated targets, in
both cases larger than for neutral targets
(Fig. 6B), but this reversed in analysis of
distractor information, with parietal cor-
tex carrying less information about both
reward- and loss-associated distractors
than neutral distractors (Fig. 6C).

We once again used linear regression to statistically assess
these results. For each participant and searchlight sphere, we
modeled category information with predictors for task relevance,
the utility model, and the valence model. We subsequently gen-
erated a set of mean coefficients for each participant that de-
scribed the degree to which information in the parietal cluster
was characterized by our models. The parietal cluster was defined
based on its sensitivity to task relevance, so coefficients corre-
sponding to the task relevance predictor were unsurprisingly pos-
itive (p � 10�6). Utility model coefficients were also positive
(p � 0.002), demonstrating the explanatory power of this model,
but valence model coefficients did not differ from zero (p �
0.511).

Follow-up contrasts revealed that parietal cortex trended to-
ward carrying more information about a reward-associated tar-
get than a neutral target (p � 0.108) and about a loss-associated
target than a neutral target (p � 0.143). Equivalent analyses of
distractor information garnered more reliable effects, with less
information about a reward-associated distractor than a neutral
distractor (p � 0.015) and less information about a loss-
associated distractor than a neutral distractor (p � 0.010).

Personality as a predictor of representational quality in OSC
We have previously found that selective biases to reward-
associated stimuli, as evident in behavior (Hickey et al., 2015)
and OSC category information (Hickey and Peelen, 2015,
2017), can vary across individuals as a function of personality
traits related to reward sensitivity. With this in mind, we ap-
proached the current study with the idea that personality traits
related to the valuation of reward and loss might predict the
degree to which representations in OSC followed the utility

and valence models, and participants in Experiment 1 com-
pleted a native-language version of the behavioral inhibition
score (BIS)/behavioral activation score (BAS) personality
scale (Carver and White, 1994; Leone et al., 2002) immediately
after the scanning session. This scale generates two primary
values: BIS, reflecting sensitivity to punishment; and BAS, re-
flecting sensitivity to reward.

We correlated BIS and BAS scores across participants with
OSC coefficients for the valence model. This identified a negative
correlation between BIS and OSC valence coefficients (Fig. 4G;
r � �0.501, p � 0.021), and a nonsignificant relationship with
BAS (r � �0.122, p � 0.294). It is important to point out, how-
ever, that the significance of the relationship between BIS and
OSC valence coefficients did not sustain when the single participant
with a BIS score of 13 was removed from analysis (r � �0.370, p �
0.056). This finding suggests that the overall propensity for stron-
ger OSC representation of reward-associated rather than loss-
associated targets (and vice versa for distractors) may be reduced
in participants with high sensitivity to negatively valenced out-
come. But the pattern should be interpreted with caution given
the marginal statistics.

The impact on behavior of reward and loss associations
to distractors
Experiment 1 identified a difference in detection accuracy for
reward- and loss-associated targets. However, because all distrac-
tor categories were present in every trial, there was no opportu-
nity to determine how distractors impacted task performance.
We accordingly conducted a second behavioral experiment to
further examine the effect of reward- and loss-associated distrac-
tors on search behavior. In Experiment 2, each block began with
a cue indicating both the target category and pay scheme for the
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coming trials. Blocks were organized in pairs such that blocks
involving reward-associated, loss-associated, or neutral targets
were consistently followed by a block where the target was neu-
tral. In these test blocks, examples of the target category from the
immediately preceding block could appear as task-irrelevant dis-
tractors, allowing us to determine how distractors recently asso-
ciated with reward or loss impacted the search for the neutral
target.

As illustrated in Figure 7A, B, response accuracy in Exper-
iment 2 paralleled the pattern of OSC information observed in
Experiment 1, thus also closely following predictions from the
valence model. Once again, per-participant regression analy-
ses were used to assess the predictive power of the models.
Coefficients corresponding to the valence model were positive
( p � 10 �4), but coefficients corresponding to the utility
model were negative ( p � 0.036), reflecting an inverse rela-
tionship between the model and experimental results (and
thus a very bad fit). Follow-up contrasts demonstrated that
detection of reward-associated targets was better than of loss-
associated targets ( p � 10 �4), but that detection of neutral
targets was degraded more by a reward-associated distractor
than by a loss-associated distractor ( p � 0.045).

More detailed analyses of behavior are presented in Figure
8. Our prior work with reward-associated stimuli has demon-
strated that nonstrategic reward-driven prioritization ex-
presses in accuracy, response latency, or both measures,
depending on task confines (Hickey et al., 2010; Hickey and
Peelen, 2015) but is short-lived and can be followed by atten-
tional suppression (Hickey and van Zoest, 2012; Hickey and
Peelen, 2015). With this in mind, participants in Experiment 2
were required to respond within 600 ms of stimulus onset. This
created two types of task error: explicit errors, when participants
incorrectly reported the presence or absence of the target; and
time-out errors, where they failed to respond in the critical inter-
val. Separating these, we found that participants made fewer ex-
plicit errors when scenes contained a reward-associated rather
than loss-associated target (Fig. 8A). This did not reflect a re-
sponse bias: if participants were simply more likely in the reward
condition to report the target-present, they would have made
many errors when the target was indeed absent. But participants
were also nominally more accurate in reporting the absence of a
reward-associated target (Fig. 8B). Accordingly, signal detection
analysis shows a greater d� in the reward condition than in the loss
condition (Fig. 8C) with no concomitant change in criterion (Fig.
8D). When participants responded within the time limit, they

were slower to do so for a loss-associated target rather than a
reward-associated target (Fig. 8E), and the cost in accuracy cre-
ated by the presence of a reward-associated distractor (Fig. 7B)
was not a product of speed-accuracy tradeoff, as target responses
were not any faster under this circumstance (Fig. 8F). Consistent
with the reaction time slowing, participants were less likely to
respond within the time limit in this loss condition (Fig. 8G).
This effect on time-out errors was significantly greater when
the target was present than when it was absent (Fig. 8H; inter-
action, p � 0.004), suggesting that this reflects a difficulty in
target processing rather than a more general slowing of re-
sponse in the loss condition.

Discussion
Economically rational preferences are defined by their logical
consistency: they remain the same across irrelevant changes to
circumstance and context (Arrow, 1982; Tversky and Kahne-
man, 1989; Glimcher, 2010). Here we ask whether selective
bias for visual stimuli associated with economic benefit meets
this criterion. We designed a naturalistic visual search task in
which participants earned points with cash value by detecting
examples of object categories in images of scenes. Detection of
reward-associated targets resulted in a gain of 150 points with
misses garnering 50 points, whereas detection of loss-associated
targets resulted in the forfeiture of 50 points but saved partici-
pants from the greater loss of 150 points. Correct detection of
both reward- and loss-associated targets therefore had a benefit
of 100 points, but this was couched in the irrelevant context of
absolute gain or loss.

If the ability of reward-associated stimuli to draw attention
reflects a normative visual preference for objects that can be used
to maximize utility, this design should cause reward-associated
and loss-associated stimuli to draw attention equally well. But
results from analysis of category information in OSC (Experi-
ment 1) and task performance (Experiment 2) show no hint of
this pattern. Consistent with prior work, reward-associated
stimuli were easy to detect and well represented in OSC
(Hickey and Peelen, 2015). But loss-associated stimuli were
not prioritized in the same way. Selective bias for reward-
associated object categories in natural scenes thus appears to
reflect an irrational visual preference for objects associated
with positive-valence outcome, not a rational sensitivity for
stimuli that maximize utility.

This bias in visual representation parallels known effects in
economic decision-making. Tversky and Kahneman (1981)
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famously showed that the perceived
utility of a choice is sensitive to the con-
text in which the options are presented,
with change in this “choice frame”
strongly impacting decision-making
and behavior. As a result, people are
more likely to choose an option pre-
sented in a positive frame than a negative
frame, even when the value of outcome
does not change. This has been inter-
preted as reflecting the use of simplifying
heuristics, such as reliance on emotional
content, that forego effortful reasoning
and valuation of options (Loewenstein et
al., 2001).

By framing the benefit of correct per-
formance in the irrelevant context of ab-
solute loss, we may therefore have caused
participants to devalue this outcome
altogether. However, results from whole-
brain searchlight analysis of our fMRI
data argue against this possibility. This
identified rational, utility-maximizing stimuli
representations in the intraparietal sulcus
and superior gyrus of the parietal lobe.
This is broadly consistent with existing
neurophysiological and fMRI studies sug-
gesting that IPS may code the true value of
environmental stimuli (Leathers and Ol-
son, 2012; e.g., Kahnt et al., 2014). But in
the current results, these utility-driven
representations did not influence en-
coding in OSC and did not drive task
performance.

One possibility is that development
of these parietal representations was
slower than the impact of valence and
thus could not influence the representa-
tion of stimuli before the preparation
and execution of response. The idea that
valence may have an earlier impact on
attentional control than does strategy is
consistent with existing work using
time-sensitive measures (Hickey et al.,
2010; Hickey and van Zoest, 2012;
Buschschulte et al., 2014) and in line
with the broad idea that prioritization of
reward-related stimuli may reflect long-
term plasticity in visual cortex triggered
by neuromodulatory signals (Roelfsema
et al., 2010; Hickey and Peelen, 2015,
2017). Our results further support the
idea that OSC representations may be
influenced by neuromodulatory sys-
tems by showing that these representa-
tions vary as a function of signaling in
midbrain nuclei known to contain do-
paminergic cells.

At first glance, our results appear at
odds with a literature demonstrating at-
tentional bias toward negatively va-
lenced stimuli associated with threat or
pain (Pessoa and Adolphs, 2010; Tami-
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etto and de Gelder, 2010). However, this bias is thought to be
unique, perhaps relying on a distinct subcortical route for
visual information (Tamietto and de Gelder, 2010). There are
relatively few studies investigating attentional bias to stimuli
associated with economic loss, and these have garnered mixed
results (Schacht et al., 2012; Wang et al., 2013; Wentura et al.,
2014). Studies using disgusting images, however, show that
these are rapidly suppressed and subsequently ignored (e.g.,
Zimmer et al., 2015). The emotion evoked by stimuli associ-
ated with small, unavoidable economic loss strikes as poten-
tially more similar to disgust than fear, and it is perhaps reasonable
that the visual representation of our loss-associated objects is similar
to that of stimuli associated with disgust.

In conclusion, we show an economically irrational influ-
ence of prior experience on search for naturalistic environ-
mental stimuli and the encoding of these stimuli in ventral
visual cortex. Normative models of economic behavior pro-
pose that human preferences are consistent and rational, but
results from studies of decision-making and behavioral eco-
nomics show that this is commonly not the case (for review,
see Glimcher, 2010). Here we demonstrate that this economic
irrationality in human cognition begins as early as during per-
ceptual encoding of our environment.
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