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Adversity in early childhood exerts an enduring impact on mental and physical health, academic achievement, lifetime productivity, and
the probability of interfacing with the criminal justice system. More science is needed to understand how the brain is affected by early life
stress (ELS), which produces excessive activation of stress response systems broadly throughout the child’s body (toxic stress). Our
research examines the importance of sex, timing and type of stress exposure, and critical periods for intervention in various brain systems
across species. Neglect (the absence of sensitive and responsive caregiving) or disrupted interaction with offspring induces robust, lasting
consequences in mice, monkeys, and humans. Complementary assessment of internalizing disorders and brain imaging in children
suggests that early adversity can interfere with white matter development in key brain regions, which may increase risk for emotional
difficulties in the long term. Neural circuits that are most plastic during ELS exposure in monkeys sustain the greatest change in gene
expression, offering a mechanism whereby stress timing might lead to markedly different long-term behaviors. Rodent models reveal
that disrupted maternal-infant interactions yield metabolic and behavioral outcomes often differing by sex. Moreover, ELS may further
accelerate or delay critical periods of development, which reflect GABA circuit maturation, BDNF, and circadian Clock genes. Such factors
are associated with several mental disorders and may contribute to a premature closure of plastic windows for intervention following
ELS. Together, complementary cross-species studies are elucidating principles of adaptation to adversity in early childhood with molec-
ular, cellular, and whole organism resolution.
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Introduction
Decades of basic, developmental, clinical, and epidemiological
research demonstrate that adverse childhood experiences con-
tribute to increased risk of poor outcomes in cognitive, social,
and emotional functioning, as well as poor physical health in
childhood, adolescence, and adulthood (Felitti et al., 1998; Ed-
wards et al., 2003; Anda et al., 2006; Nelson et al., 2014). Yet, data
from both cross-sectional and longitudinal studies of human par-
ticipants are for the most part descriptive and correlational, often
including retrospective reporting of adverse life events (Nelson et
al., 2016; McEwen and McEwen, 2017).

Evidence from studies of human children now suggests that
different types of adversity may have different effects on brain

and behavior (Sheridan and McLaughlin, 2014). For example,
those exposed to violence or harsh punishment show distinct
changes in brain development and stress reactivity compared
with those exposed to neglect (Hart and Rubia, 2012). It appears
that neglect or deprivation is associated with reductions in corti-
cal thickness, particularly in prefrontal areas involved in complex
problem solving, whereas exposure to threat and violence is associ-
ated with perturbations in hippocampus and circuits (amygdala-
PFC) involved in fear learning. Specific timing of adverse events
further impacts the nature of brain development and behavior.

The Bucharest Early Intervention Project represents the first
and only randomized controlled trial of a foster care intervention
for infants and young children who were exposed to early psy-
chosocial adversity (Zeanah et al., 2003). The study began with an
assessment of a large group of young children living in institu-
tions across Bucharest Romania under conditions of neglect. Half
of these children were randomized to placement in families living
in Bucharest (the Foster Care Group; Smyke et al., 2009); the
other half remained in the institutions in which they were living
(Care as Usual). Both groups were followed prospectively across
childhood and adolescence. The intervention, which included
both psychological and material support to the foster families,
began at randomization (mean age 22 months) and ended when
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a child reached 54 months. At multiple time points, children
were assessed across a number of different domains, including
cognitive functioning, socio-emotional responses, brain activity
(measured with EEG), brain structure and connectivity (mea-
sured with MRI), and psychiatric status.

Initial results revealed significant impacts on all domains of
functioning in young children who were living in Bucharest
institutions. They were significantly delayed in intellect (IQ)
(Smyke et al., 2007), had abnormal attachment-like behaviors
toward caregivers (Zeanah et al., 2005), displayed significantly
reduced EEG alpha power (Marshall et al., 2004) (Fig. 1A), and
had multiple abnormal psychological behaviors, including ste-
reotypies and aggressive behaviors (Zeanah et al., 2009). EEG
alpha power reflects synchronous neural activity that is associ-
ated with visual attention and alertness. Low EEG power is con-
sistent with dampened brain metabolism (Buzsaki et al., 2007).
This pattern of findings is consonant with a long history of re-
ports regarding effects of institutionalization on infant brain and
behavioral development (Nelson et al., 2016).

Postrandomization, children were followed up at 30, 42 and
54 months, as well as at 8 and 12 years of age. Regarding cognitive
functioning, children randomized to Foster Care displayed
higher IQ scores compared with those remaining in Care as Usual
at each of the assessment points. Interestingly, at the early assess-
ments (30, 42, and 54 months), there appeared to be a critical
period for the impact of the intervention. Those children placed
before 24 months were more likely to have higher scores com-
pared with those randomized thereafter (Nelson et al., 2007).
This pattern of intervention and timing effects held true not only
for IQ but also for attachment behavior (Smyke et al., 2010) and
EEG alpha activity (Fig. 1A) (Vanderwert et al., 2010).

At age 12, intervention effects for IQ and EEG alpha activity
persisted, but the timing effects were lost (Almas et al., 2016;
Vanderwert et al., 2016). Some domains, such as white matter
development, psychiatric status, and socio-emotional respond-
ing, exhibited intervention effects across assessment points with-
out evidence of timing effects (Humphreys et al., 2015; Bick et al.,
2015). Other domains, such as measures of gray matter volume
(Sheridan et al., 2012), executive function (Bos et al., 2009), or
attention deficit hyperactivity disorder symptoms (Humphreys
et al., 2015), showed no signs of an intervention effect. In these
latter domains, all children with a history of institutionalization
had less gray matter volume, poor executive skills, and height-
ened symptoms of attention deficit hyperactivity disorder.

Attachment held particular importance for understanding
psychiatric outcomes. Children placed into foster homes who
established secure attachments with their foster caregivers were
less likely to develop such symptoms compared with those who
did not. In girls with a history of neglect and internalizing disor-
ders, the development of secure attachments at 42 months fully
mediated the effects of intervention (McLaughlin et al., 2012).
Subsequently, we determined that caregiving quality (the degree
of sensitivity and responsiveness of the caregiver to the child)
predicted psychiatric symptoms and degree of psychiatric impair-
ment at 54 months of age. Security of attachment at 42 months was
a mediator of this association with a path through secure attachment
to reductions in psychopathology at 54 months of age (McGoron et
al., 2012).

One overarching mechanism by which early adversity might
affect brain and behavior is through the stress response system,
influencing at least some aspects of human development. Exten-
sive evidence suggests that caregivers play a critical role in regu-

Figure 1. Impact of early life stress across species. A, Analysis of EEG in children randomized for Foster Care, or Care as Usual in the Bucharest Early Intervention Study. There is significant reduction
in alpha power in children randomized to Care as Usual in the institution, which reflects a disruption of normal developmental increases in information processing in frontal and central cortical
regions (Marshall et al., 2004; Vanderwert et al., 2010). These effects are largely corrected only if foster care begins younger than 24 months of age. B, Limbic structures, which are particularly
sensitive to ELS. C, 3D structure of GUCY1A3, and representative pseudocolored images depicting regional amygdala expression of GUCY1A3 mRNA in 3 animals: a control, maternally raised monkey,
a week, 1 week separated monkey, and a month, 1 month separated monkey (Sabatini et al., 2007). D, Stress experienced at different developmental stages results in distinct changes in neuronal
morphology. Depicted are dendritic arbors of neurons in prefrontal cortex. Early adversity in the form of disrupting infant-maternal interactions results in reduced arbors, whereas disruption later
in development generates a paradoxical increase in dendritic growth (Bock et al., 2005; Xie et al., 2013). E, ELS in the first postnatal week results in an accelerated timing of a critical period for limbic
circuit plasticity (Callaghan and Richardson, 2011; Bath et al., 2016). F, ELS in the first postnatal week in mice, followed by discovery-based comparative proteomics, yields both increased and
decreased expression of specific mitochondrial proteins that are involved in respiration and cellular metabolism. These changes in the hippocampus differ by sex.
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lating responses to stress in young children. Early regulation, or
lack thereof, may have a lasting effect upon stress response system
development. To examine this possibility, the stress systems of
children in the Bucharest Early Intervention Project were chal-
lenged (at age 12) with the Trier Social Stress Test. Those who
were randomized to Care as Usual displayed a blunted stress
response as measured both by autonomic and hypothalamic-
pituitary-adrenal axis reactivity. A blunted stress response is also
observed in postinstitutionalized children adopted into United
States homes (Gunnar et al., 2009). Instead, children randomized
to the Foster Care intervention had more normative responses,
and those randomized before 24 months of age were no different
from typical community controls of that age (McLaughlin et al.,
2015).

This work illustrates the need to understand the effects of early
adversity on developmental outcomes, the importance of inter-
vention early in life, and the long-term perturbations by adversity
on brain and behavioral development.

Biological impact dependent upon stress timing, neural
development state, and poststress parental interaction
Nonhuman primate models have long been used to undertake
mechanistic studies of how early life stress (ELS) impacts behav-
ior and brain development, in part because they exhibit many
behavioral and physiological characteristics comparable with
those of children experiencing ELS. These include increased
anxious behaviors, aberrant attachment patterns, and changes in
central neurotransmitter levels, including serotonin, norepineph-
rine, and dopamine, adrenal axis regulation, and social behavior and
brain structure in the long term (Harlow and Zimmerman, 1959;
Harlow and Suomi, 1974; Suomi et al., 1975; Coplan et al., 1998;
Sánchez et al., 2001; Winslow, 2005; Knudsen et al., 2006;
O’Connor and Cameron, 2006; Sabatini et al., 2007; Spinelli et al.,
2009, 2010; de Campo et al., 2017). We focus here on limbic
circuitry (Fig. 1B), which is particularly sensitive to ELS.

Impact of the timing of exposure on brain and behavioral
responses to stress was explored in a series of studies with mon-
keys (Knudsen et al., 2006; O’Connor and Cameron, 2006; Saba-
tini et al., 2007; de Campo et al., 2017). Rhesus macaques were
reared from 1 week of age with their mothers in social housing
with penmates of various ages and both sexes. The social stress
was removal of their mother from the pen environment at either
1 week, 1 month, 3 months, or 6 months of age. Monkeys whose
mothers were removed from the social group at 1 week of age
initially showed self-comforting behaviors, such as rocking and
thumb-sucking, and decreases in social interaction with other
monkeys. They later continued to have low levels of social contact
and displayed increases in anxious behavior.

In contrast, monkeys whose mothers were removed from the
social group at 1 month of age initially showed social withdrawal
but soon thereafter exhibited a large increase in seeking social
interaction which remained apparent throughout development
into adulthood. They showed increased levels of vigilance in re-
sponse to social cues. Monkeys whose mothers were removed
from the social group at 3 months of age showed no significant
differences in social behavior from the control group, whose
mothers were removed at 6 months of age, an age when female
monkeys typically leave their offspring to form consortships with
males in the next breeding season. For 1 week and 1 month sep-
arated monkeys, behavioral differences persisted stably into
adulthood (Knudsen et al., 2006; O’Connor and Cameron, 2006).

We further examined the brains of a second group of monkeys
at 3 months of age after separation at 1 week or 1 month of age as

described above. Gene microarrays were used to look for differ-
ences in transcript expression in the amygdala (Sabatini et al.,
2007). This structure is established as having a clear role in social,
anxious, and depressive behaviors in the nonhuman primate
(Baron-Cohen et al., 2000; Emery et al., 2001; Drevets et al., 2002;
Amaral, 2003; Bauman et al., 2004; Etkin et al., 2004; Lorberbaum
et al., 2004). Comparing gene expression in the same monkeys in
which behavior was carefully characterized throughout develop-
ment enables a genes-to-behavior approach to directly examine
linkages (Nelson et al., 2002).

Guanylate cyclase 1�3 (GUCY1A3), the gene that was most
differentially expressed between 1 week and 1 or 6 month sepa-
rated monkeys (Sabatini et al., 2007), showed a strong positive
correlation to normal social behaviors, along with a negative cor-
relation to self-comforting behaviors (Fig. 1C). Notably in the
mouse, knockdown of GUCY1A3 in the amygdala is associated
with increased anxiety (Werner et al., 2004) and also disrupts
migration and neurite outgrowth of developing inhibitory neu-
rons (Mandal et al., 2013), key determinants of critical periods of
brain plasticity (see below).

Follow-up studies were performed in the para-laminar nu-
cleus of the amygdala, which develops later and would therefore
be likely to show altered neuronal maturation genes in response
to stress. Indeed, selective downregulation was found there for
tbr1 (de Campo et al., 2017), a transcription factor directing neu-
roblasts to differentiate into glutamatergic neurons (Hodge et al.,
2012). Thus, maternal separation has differential effects on
amygdala gene expression reflecting specific trajectories of brain
maturation, reinforcing the concept that a circuit’s developmen-
tal stage contributes essentially to its response to ELS.

Likewise, the ability of an intervention (adoption by an atten-
tive mother) to remediate aberrant behaviors resulting from ELS
is also dependent upon the timing of the intervention (Knudsen
et al., 2006; O’Connor and Cameron, 2006). One week separated
monkeys paired with an experienced mother at 25 d of age displayed
completely normal social behavior as they grew up, whereas pairing
at 35 d of age only partially restored normal social behavior and those
paired at 45 d showed virtually no restoration of normal social be-
havior (Knudsen et al., 2006; O’Connor and Cameron, 2006). These
studies in the monkey provide clear evidence that the timing of stress
exposure, or the interventions to remediate it, is a significant factor
in determining the long-term consequences of ELS.

Neurobiological signatures of windows of vulnerability
Multiple rodent models have addressed short- or long-term be-
havioral and neuronal structural changes due to ELS (Walker et
al., 2017). Most have focused in adults on changes in emotion
regulation, cognition, risk for obesity, immune dysregulation,
cardiovascular disease, or cancer. Specific cellular and molecular
mechanisms through which ELS influences health remain rela-
tively elementary, with the physiological consequences defined as
allostatic load (Ellis and Boyce, 2011; Danese and McEwen, 2012;
McEwen et al., 2015). In the brain, region-specific “critical peri-
ods” in infancy and childhood are developmental windows of
opportunity/vulnerability characterized by high rates of synapto-
genesis and synaptic plasticity (Hensch, 2004; Marín, 2016). In
both human and animal species, such circuit rewiring occurring
early in life imposes long-term effects that persist into adulthood.
Ultimately, the proper timing and sequence of these critical peri-
ods across brain regions orchestrate the emergence of higher cog-
nitive functions, such as language or sensory integration.

Synaptic pruning is a hallmark of critical period plasticity.
This can be quantified physiologically, and anatomically at the
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ultrastructural level or by counting dendritic spines on excitatory
pyramidal cells of the cerebral cortex. Importantly, the extent and
direction of experience-induced synaptic changes in cortical ar-
eas correlate with time windows of neuronal as well as endocrine
development (Mataga et al., 2004; Elston et al., 2009). Repeated
brief maternal separation in newborn rats before a stress hypore-
sponsive period of the hypothalamic-pituitary-adrenal axis sig-
nificantly reduces dendritic spine density in layer II/III pyramidal
neurons of the prefrontal cortex (Fig. 1D). Instead, separation
during this hyporesponsive period has no effect and, after this
period in young rats, results in spine increase (Fig. 1D). In con-
trast, spine densities in adolescent somatosensory cortex are en-
hanced independent of the time of separation (Bock et al., 2005),
then become persistently unstable due to potentially increased
microglial motility (Takatsuru et al., 2009, 2015). Thus, ELS alters
the synaptic balance in limbic and sensory cortices in a region-
specific manner reflecting maturational stage of endocrine and neu-
ronal systems.

Maternal separation in rodents, however, yields inconsistent
results on behavior, which may reflect differences in strain, sex, or
reunion response (Moore and Morelli, 1979; Millstein and Hol-
mes, 2007; Mehta and Schmauss, 2011; Savignac et al., 2011). To
address this, an alternative limited-bedding paradigm was ini-
tially developed in rats (Gilles et al., 1996), obviating the require-
ment for overt separation of pups and dams typically used in
rodent ELS models (Rice et al., 2008; Walker et al., 2017). This
paradigm induces inconsistent and fragmented maternal care
(Heun-Johnson and Levitt, 2016), which has since been validated
and adopted for use with mice by multiple laboratories (Rice et
al., 2008; Wang et al., 2011, 2012, 2013; Gunn et al., 2013; Malter
Cohen et al., 2013; Liao et al., 2014; Kohl et al., 2015; Naninck et
al., 2015; Yang et al., 2015; Arp et al., 2016; Bath et al., 2016, 2017;
Liu et al., 2016; McIlwrick et al., 2016, 2017; Yam et al., 2017). The
paradigm provides an ethologically relevant framework for ad-
dressing heritability of risk-, sex-, and developmentally depen-
dent influences that determine outcomes following ELS. As we
detailed by video analyses, changes in both maternal care and
pup responses to this environment are complex, with both likely
contributing to enduring alterations in brain function (Heun-
Johnson and Levitt, 2016).

Cellular analyses in the limited-bedding model to date have
focused primarily on neuronal architecture and function. Except
for two studies, which report altered astrocyte glutamate trans-
porter function in the hypothalamus (Gunn et al., 2013) and a
premature increase in myelin basic protein in the hippocampus
(Bath et al., 2016), the involvement of non-neuronal cells has not
been studied. Based on their central roles in regulating neuronal
development and function, including synaptogenesis (Hong and
Stevens, 2016), disruption of non-neuronal cells likely contrib-
utes to the long-term effects of ELS on neuronal function and
behavioral outcomes. Moreover, recent studies reinforce the con-
cept that the maturational state of neural circuits during devel-
opment is likely to determine ELS responses.

For example, reduced expression of the Met receptor tyrosine
kinase, which results in advanced maturation of hippocampal
circuits (Qiu et al., 2014; Peng et al., 2016), when combined with
ELS, results in hippocampal structural changes that parallel those
observed when ELS is administered later in development (H.
Heun-Johnson and P.L., unpublished observations). These and
other data place an emphasis on measurements that include as-
sessment of developmental trajectories of specific phenotypes
after ELS, not simply “end state” outcomes. This experimental

approach is valid for brain, behavior, and peripheral organ func-
tions that reflect states of health.

Inhibitory circuit impact and reversibility of early
life adversity
Pioneering work in sensory systems has revealed inhibitory in-
terneuron function to be essential for normal critical period timing
(Hensch, 2005). When glutamic acid decarboxylase (GAD65),
which is responsible for GABA synthesis at axon terminals, is
deleted from mice, critical period plasticity for vision (ocular
dominance) (Hensch et al., 1998), hearing (tonotopy) (Barkat et
al., 2011), or multisensory integration (insula) (Gogolla et al.,
2014) is prevented until inhibition is restored, such as by the
benzodiazepine agonist, diazepam. Maturation of a specific, local
inhibitory network composed of parvalbumin-positive (PV�)
large basket cells derived from the medial ganglionic eminence
drives critical period onset (Takesian and Hensch, 2013). Indeed,
manipulations of excitatory/inhibitory balance are so powerful
that a brain region may be before, during, or past its critical
period regardless of chronological age. This finely tuned excitato-
ry/inhibitory balance is highly susceptible to alteration and pa-
thology in cognitive disorders, such as autism and schizophrenia,
leading to subsequent mistiming of plastic windows that derail
development (Leblanc and Fagiolini, 2011; Do et al., 2015; Marín,
2012).

Fast-spiking PV� large basket cells mature at different rates in
different brain regions (del Rio et al., 1994; Conde et al., 1996),
thereby playing a central role in the proper sequential timing of
critical periods (Hensch, 2005). These cells exert temporal con-
trol over the information flow to the pyramidal neurons and are
gradually surrounded by perineuronal nets (PNNs), which en-
capsulate the maturing PV-cell body and its proximal neurites.
Chondroitin sulfate proteoglycans in the PNN and myelin fac-
tors, produced by oligodendrocytes, bind to the Nogo receptor
(Dickendesher et al., 2012), which acts in a complex with im-
mune genes to restrict plasticity beyond a critical period (Atwal et
al., 2008; Bochner et al., 2014). The best evidence that disruption
of the development of PV� interneurons and maintenance of
their PNNs are pathophysiological targets comes from studies of
schizophrenia (Lewis et al., 2012; Do et al., 2015; Marín, 2016).

A key feature of fast-spiking PV� cells is their high metabolic
demand (Buzsaki et al., 2007), which generates abundant reactive
oxygen species. The PNNs serve to protect PV� cells from this
oxidative stress (Cabungcal et al., 2013). But they can eventually
succumb to the damage themselves, resulting in PNN loss and
transiently prolonged critical period plasticity (Morishita et al.,
2015) that may contribute to circuit instability in the etiology of
mental illness (Do et al., 2015). Maternal and perinatal immune
challenge (Meyer et al., 2008; Jenkins et al., 2009), parental sepa-
ration (Brenhouse and Andersen, 2011), and social isolation
(Harte et al., 2007; Schiavone et al., 2009) have all been shown to
lead to anomalies in hippocampal and/or prefrontal PV �

circuits.
The impact of ELS on these critical period “triggers” and “brakes”

is then of great interest. Factors that may accelerate or delay GABA
circuit maturation, such as BDNF (Huang et al., 1999; Bath et al.,
2013), Clock gene expression (Kobayashi et al., 2015; Marco et al.,
2016), Otx2 (Sugiyama et al., 2008; Pena et al., 2017), or the
GUCY1A3 mentioned above (Sabatini et al., 2007), may be vul-
nerable to ELS, predicting a shift in developmental timing. In-
deed, limbic circuits underlying fear extinction are particularly
sensitive to ELS (Fig. 1B). Both rats (Callaghan and Richardson,
2011) and mice (Bath et al., 2016) after ELS show an accelerated
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transition to mature fear memories that are more enduring (Fig.
1E). This transition normally reflects in part the emergence of
PNNs in the basolateral amygdala (Gogolla et al., 2009), suggest-
ing that an earlier biochemical maturation of PV� circuits may
underlie the effects of ELS. Thus, not only does ELS deprive the
pups of vital caregiver interactions early in life, it may also pre-
maturely limit the extent of critical period windows of opportu-
nity to potentially correct their derailed circuitry.

Sex- and timing-based vulnerabilities of the biological impact
of ELS
Emerging evidence points to neurodevelopmental origins of
most psychiatric disorders, spanning internalizing and external-
izing behaviors (Leonardo and Hen, 2008; Pechtel and Pizzagalli,
2011). Epidemiological data in humans reveal significant differ-
ences between females and males in the incidence of psychiatric
disorders. In particular, internalizing disorders, such as post-
traumatic stress disorder (Kessler et al., 1995), panic disorder,
generalized anxiety, and major depressive disorder (Somers et al.,
2006; Eaton et al., 2012) are more prevalent in women, whereas
men have a higher risk for externalizing disorders, such as atten-
tion deficit hyperactivity disorder, substance abuse, autism, and
schizophrenia (for review, see Cover et al., 2014). It is likely that
ELS will predispose neuronal circuits to internalizing or exter-
nalizing disorders in a stress type- and sex-dependent manner
(Keyes et al., 2012).

The Virginia twin study of adolescent (age 8 –16 years) behav-
ioral development confirmed that girls are more affected by emo-
tional disorders, and boys more in behavioral disorders (Eaves et
al., 1997; Simonoff et al., 1997). This suggests a sex-environment
interaction in the development of psychiatric disorders. For ex-
ample, sex differences in anxiety emerge from adolescence, with
females more susceptible especially if they have experienced ELS
(for review, see Bale and Epperson, 2015). Likewise, we found
that ELS in mice predisposes to internalizing or externalizing
behaviors in a sex-dependent manner, which may reflect differ-
entially wired inhibitory circuitry in their prefrontal cortex (Z.Y.,
H.S.K., C.J., and T.K.H., unpublished observations; Holland et
al., 2014).

There is considerable evidence that many sex-dependent out-
comes to prenatal stressors are mediated by sex-dependent effects
on the placenta (Mueller and Bale, 2007, 2008; Goel and Bale,
2009; Bale, 2011; Bronson and Bale, 2014; Howerton and Bale,
2014; Bronson et al., 2017). Recent studies indicate that, even in
the absence of placental effects, the early postnatal period repre-
sents a distinct developmental window for sex-dependent re-
sponses to early life stressors (Kawakami et al., 2007; Coutellier
and Würbel, 2009; Kikusui and Mori, 2009; Gross et al., 2012;
Kawakami et al., 2013; Naninck et al., 2015; Arp et al., 2016;
Fuentes et al., 2016; Lerch et al., 2016; Bath et al., 2017; de Az-
eredo et al., 2017; Yam et al., 2017). For the most part, the mech-
anisms underlying sex-dependent outcomes in response to exposure
to stressors during this later period are poorly understood.

The application of discovery-based strategies, such as com-
parative genomic and proteomic profiling of vulnerable circuits,
also can guide investigations of mechanisms that underlie how
ELS disrupts brain and peripheral organ development and func-
tion. Recent application of one such method, isobaric tag for
relative and absolute quantitation, on brain tissue isolated at
various times in development, inclusive of both sexes, revealed
that prominent among a disrupted developmental proteome are
proteins involved in ATP production and mitochondrial homeosta-
sis. Although requiring further investigation, the mitochondria-

associated protein changes are consistent with temporal and sex
influences on cellular responses to ELS during development (Fig.
1E) (K.L.E. and P.L., unpublished observations). The findings are
aligned with those described by McEwen and colleagues (Picard
and McEwen, 2014; Picard et al., 2014, 2015, 2017) following
psychosocial stress. Direct measures of mitochondria-associated
phenotypes reveal that ELS using the limited bedding paradigm
results in sex-dependent adaptations that likely reflect functional
short- and longer-term functional changes (K.L.E. and P.L., un-
published observations).

Mitochondrial dysfunction has been associated with a variety
of brain-based and peripheral disorders that display a sex bias,
including affective disorders (Chang et al., 2015; Klinedinst and
Regenold, 2015; Bansal and Kuhad, 2016), diabetes (Koliaki and
Roden, 2016; Wanagat and Hevener, 2016), liver disorders (Pes-
sayre, 2007; Serviddio et al., 2008; Grattagliano et al., 2012), and
neurodegenerative disorders (Wallace, 1999). Sex differences in
mitochondrial function have been reported and are typically as-
sociated with levels of circulating gonadal hormones following
puberty (Gaignard et al., 2015) and the decline in estrogen and
progesterone following menopause (Irwin et al., 2012; Rettberg et
al., 2014; Yin et al., 2015).

These may underlie, at least in part, the increased vulnerability
of one sex to certain pathological processes. There remains, how-
ever, a limited understanding of the developmental origins of
sex-dependent mitochondrial dysfunction, which is particularly
relevant in the context of neurodevelopmental disorders that
manifest before puberty. This is a rich area of investigation in
establishing how early adaptive physiological responses to allo-
static load result in maladaptive, long-term functions that can
have such profound impacts on physical and mental health.

In conclusion, early studies of the long-term effects of ELS or
adversity in early childhood, in both animal and human studies,
focused primarily on describing a host of behavioral outcomes
that were characterized by poorer ability of an individual to adapt
to the ever-changing contexts that characterize life, including
perturbed attention skills, aggressive behaviors, difficulty with
social relationships (i.e., attachment disorders), and difficulty in
interpreting the world around them (i.e., increased display of a
myriad of anxious and depressive behaviors). The similarity of
the behavioral outcomes led to the general belief that experienc-
ing a variety of early life adversities can set an individual on an
alternative developmental trajectory that may differ in severity
but was characterized by a rather uniform set of behavioral char-
acteristics. However, as science has delved further into mechanis-
tic studies, the specificity of the impact of early life adversities on
brain development is becoming apparent. The nature of the ad-
versity, whether it involves abuse, fear, or neglect, matters, and it
is likely that as we understand these phenomena better, we will be
able to define specific neural circuits that respond to each type of
adversity, and differences in sensitivity to long-term alterations
in function. The timing of experiencing adversity matters, as neu-
ral circuits that are actively developing at the time the stress is
experienced are most likely to be affected by the stress. Factors
that alter the developmental state of circuits will influence their
response to ELS. Periods when neural circuits are plastic and
actively developing represent periods of increased sensitivity to
the impact of both stress exposure and remediating interven-
tions. The sex of the individual matters. Early life adversities can
have sex-specific effects on developing neural circuits. As neuro-
science continues to advance in integrating measures across dif-
ferent levels of resolution, we believe that specific outcomes of
exposure to early life adversities will become more predictable.
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This will provide a clearer understanding of how to effectively
intervene to facilitate adaptation that redirects an individual onto
a trajectory of more normative development.
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