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Locomotion is common to all animals and is essential for survival. Neural circuits located in the spinal cord have been shown to be
necessary and sufficient for the generation and control of the basic locomotor rhythm by activating muscles on either side of the body in
a specific sequence. Activity in these neural circuits determines the speed, gait pattern, and direction of movement, so the specific
locomotor pattern generated relies on the diversity of the neurons within spinal locomotor circuits. Here, we review findings demon-
strating that developmental genetics can be used to identify populations of neurons that comprise these circuits and focus on recent work
indicating that many of these populations can be further subdivided into distinct subtypes, with each likely to play complementary
functions during locomotion. Finally, we discuss data describing the manner in which these populations interact with each other to

produce efficient, task-dependent locomotion.
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Introduction

City dwellers on their way to work, wildebeests migrating through
the Serengeti, and ocean-dwelling sea slugs escaping the preda-
tory starfish all have one thing in common: their ability to move
actively in space or locomote. For more than a century, it has been
known that neural circuits, referred to as locomotor central pat-
tern generators (CPGs), are the source of the basic locomotor
rhythm and pattern. Several studies have demonstrated that these
neural circuits reside in the ventral aspect of the spinal cord
(Grillner and Wallen, 1985; Grillner et al., 1998; Kiehn, 2016).
Although the basic left-right and flexor—extensor alternations
that underlie locomotion might appear straightforward, the core
elements of movement can be expressed in different forms de-
pending on behavioral context. For example, as the speed of qua-
drupedal locomotion increases from a walk to a trot to a gallop,
the synergy between muscles on the left and right sides of the
body seamlessly transition from alternation (walking) to coacti-
vation (galloping) (Bellardita and Kiehn, 2015; Lemieux et al.,
2016). Similarly, while walking on a narrow rocky path, stride
length is modified constantly to optimize foot placement and
avoid obstacles. Whether the input to achieve these modifications
originates from the cortex or the peripheral afferents, the loco-
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motor CPGs require a high degree of flexibility to integrate this
information and generate smooth, task-dependent output (EI
Manira, 2014; Grillner and El Manira, 2015).

The ability of the locomotor CPGs to generate versatile out-
puts is linked to the diversity of its component neurons and their
pattern of connectivity. Studies aimed at identifying the in-
terneuronal components of the locomotor CPGs as well as the
manner in which they interact began in the mid-1900s. Initially,
this work was performed using a physiological approach, record-
ing blindly from cells in the spinal cord, investigating their activ-
ity during locomotion, and characterizing them based on their
anatomical features and/or the afferent input they received (for
review, see Jankowska, 1992, 2001). This work, which was pri-
marily performed in the cat, identified potential component
interneurons of the locomotor CPGs, but provided limited infor-
mation on how they might interact with one another and was not
amenable to studying their function during locomotion. Subse-
quent work in lamprey and Xenopus has provided important in-
sights into the organization of the locomotor CPGs (Grillner,
2003; Roberts et al., 2010).

Since the turn of the century, classic physiological techniques
have been combined with molecular genetic approaches to
identify cells based on their expression of specific transcription
factors. Early in embryogenesis, the graded activity of diffusible
morphogens (i.e., Sonic hedgehog, bone morphogenic proteins,
and Wnts) along the dorsal-ventral axis of the neural tube delin-
eates the expression of specific transcription factors, creating dis-
tinctive progenitor domains. These domains produce 11 cardinal
interneuron classes in the spinal cord (dI1-dI6, VO-V3) and the
motoneurons (Goulding and Pfaff, 2005; Alaynick et al., 2011;
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Catela et al., 2015). Identification of the specific transcription
factor profiles of each neuronal population have allowed groups
of molecularly related cells in the spinal cord to be targeted and
characterized reliably (Jessell, 2000; Goulding, 2009; Grillner and
Jessell, 2009; Arber, 2012).

The ventral spinal cord, the region housing the primary com-
ponents of the locomotor CPGs, harbors at least five of these
interneuronal populations: V1 (Enl-expressing) and V2 (Chx10/
Gata3-expressing) neurons that project ipsilateral axons; the VO
and V3 neurons, which primarily project commissural axons and
are marked by the transcription factors Dbx1 and Sim1, respec-
tively; and the dorsally derived dI6 interneurons (Dmrt3- and/or
Wtl-expressing), which possess ipsilateral and contralateral ax-
ons. Over the past two decades, experimental evidence has dem-
onstrated that a significant proportion of the aforementioned
populations are rhythmically active during locomotion and the
ablation/silencing of several of these cell groups resulted in spe-
cific movement deficits suggestive of a definable function during
locomotion.

As the acuity of techniques used to investigate the primary
classes of interneurons has improved, it has become clear that
there is significant cell-type heterogeneity within many of the
cardinal populations that were initially identified and they can be
further subdivided based on genetic marker expression down-
stream of the transcription factors originally used to define each
group. Although it is known that postmitotic differentiation in-
volves a series of spatially and temporally regulated transcription
factor cascades (Tripodi and Arber, 2012; Lu et al., 2015), the
precise molecular mechanisms responsible for generating diver-
sity within each cardinal population are poorly understood. De-
spite this, distinct differences in the characteristics of each subset,
as well as their specific function during locomotion, are starting
to emerge and indicate that recruitment of the appropriate sub-
types at any given time may hold the key to the versatility of the
locomotor CPGs. In this review, we focus on the genetic variabil-
ity contained within each of the genetically defined interneuronal
populations and discuss recent findings regarding their func-
tional role and synaptic connectivity.

Ipsilaterally projecting interneuronal populations

Three essential features of hindlimb locomotion are: (1) genera-
tion of rhythmic locomotor activity, (2) precise coordination of
motoneurons innervating antagonistic (flexor—extensor) muscula-
ture on the ipsilateral side of the spinal cord, and (3) appropriate
coordination of motoneurons on the contralateral sides of the
spinal cord (Kiehn, 2006). Studies in which locomotor activity
was evoked in the midline-transected spinal cord demonstrated
that, although contralateral coordination was abolished, rhyth-
miclocomotor activity persisted, as did appropriate coordination
between flexor and extensor motoneurons (Kjaerulff and Kiehn,
1996; Cowley and Schmidt, 1997; Cangiano and Grillner, 2005;
see also Moult etal., 2013). This work indicates that generation of
the basic locomotor rhythm, as well ipsilateral flexor—extensor
coordination, rely on interneurons that project their axons ipsi-
laterally. Two groups of ventrally located spinal interneurons, the
V1 and V2 populations, have been shown to project in an exclu-
sively ipsilateral manner.

The first of the ipsilaterally projecting populations to be char-
acterized was the V1 class of interneurons (Burrill et al., 1997;
Saueressig et al., 1999). Initial investigation indicated that they
were inhibitory in nature (Higashijima et al., 2004; Li et al., 2004).
Based on their connectivity and response to sensory stimulation,
it was demonstrated that the functionally defined Renshaw cells
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and a substantial portion of the Ia reciprocal interneurons are
contained within the V1 population (Sapir et al., 2004; Benito-
Gonzalez and Alvarez, 2012; Stam et al., 2012). Both of these cell
types are rhythmically active during locomotion, but they are not
thought to be essential components of the locomotor CPGs be-
cause stepping is unaffected after their silencing (McCrea et al.,
1980; Pratt and Jordan, 1980; Enjin et al., 2017). Importantly,
Renshaw cells and Ia inhibitory interneurons constitute only a
small fraction of the entire V1 population, which underscores the
diversity within this cell group. Renshaw cells arise from the very
first wave of neurogenesis of V1 interneurons, between embry-
onic days 9 and 10 (Benito-Gonzalez and Alvarez, 2012; Stam et
al., 2012). The differentiation and maintenance of Renshaw cell
identity is regulated temporally by the expression of a series of
transcription factors, including Foxd3, Ocl, Oc2 and MafB,
whereas Ia inhibitory interneurons express Foxp2 (Stam et al.,
2012). The function of the entire V1 population during locomo-
tion was assessed via selective silencing of these cells, which re-
sulted in a drastic reduction of locomotor speed, implicating the
V1 population in the regulation of locomotor frequency (Gos-
gnach et al., 2006). Interestingly, this slowing occurred without
any ipsilateral coordination defects; however, when a subset of
the V2 population (the ipsilaterally projecting V2b interneurons)
were ablated together with the V1 population, ipsilateral flexor—ex-
tensor coordination breaks down (Zhang et al., 2014), suggesting
that the inhibitory interneurons mediating flexor—extensor alterna-
tion are derived from multiple cardinal interneuron classes.

Although no genetic markers have been identified that allow
us to distinguish between the V1 cells involved in regulating lo-
comotor speed and those involved in ipsilateral coordination,
molecular profiling of the V1 cells suggests that we are likely
scratching the surface when it comes to the diversity within this
population. Recent work has identified 19 transcription factors
with combinatorial expression in the V1 population that pro-
vides an inordinate degree of molecular diversity within this
interneuron class (Bikoff et al., 2016; Gabitto et al., 2016). Con-
sistent with the hypothesis that genetic identity is linked to func-
tion, these studies demonstrate that different V1 subsets exhibit
distinct physiological signatures and occupy highly stereotyped
positions within the spinal cord that appear to constrain the na-
ture of synaptic input to these interneurons. Moreover, anatom-
ical and physiological experiments indicate the existence of
variant inhibitory circuit architecture for V1 interneurons con-
trolling hip-, ankle-, and foot-innervating motor pools, perhaps
reflecting different biomechanical properties of individual mus-
cles (Bikoffetal., 2016). Interestingly, the precise identity of these
cell types varies along the rostrocaudal axis, where limb and tho-
racic differences emerge through a Hox-dependent mechanism
analogous to that which controls motoneuron differentiation (L.
Sweeney, unpublished observations).

The V2 population emerge from Lhx3-expressing progenitor
cells and can be divided into two subsets, V2a and V2b interneu-
rons, through mechanisms involving Notch/Delta signaling and
the transcription factors Foxn4, Tall, and Lmo4 (Peng et al,,
2007; Kimura et al., 2008; Joshi et al., 2009, Del Barrio et al., 2013,
Li et al., 2005). Unlike V1 interneurons, which are thought to be ex-
clusively inhibitory, the V2 population consists of the GABAergic/
glycinergic V2b neurons that express Gata2/3, as well as
excitatory V2a cells that express Chx10 (Lundfald et al., 2007;
Pengetal., 2007). These two subsets are born simultaneously in a
mosaic manner during early postmitotic neurogenesis (Joshi et
al., 2009, Del Barrio et al., 2013). Although the role of the V2b
cells in ipsilateral flexor—extensor alternation has come to light
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recently (see above), the V2a cells were the first subset of this
population to be characterized and shown to be involved in left
right alternation (Crone et al., 2008; Crone et al., 2009). This was
demonstrated to be due to their axonal projection onto a popu-
lation of commissural interneurons, the VO cells, which regulate
contralateral motoneuron activity during locomotion (Lanuza et
al., 2004; Crone et al., 2009). Recent work has demonstrated that
further diversity exists within V2a interneurons and that a por-
tion of these cells may be involved in locomotor rhythm genera-
tion (Eklof-Ljunggren et al., 2012; Ljunggren et al., 2014).

Identification of locomotor rhythm-generating cells has been
a priority since the initial demonstration that transcription factor
expression could be used to divide the spinal cord into func-
tionally related populations. In the years since, all of the known
ipsilaterally projecting, excitatory cell populations have been ge-
netically silenced or ablated individually with no effect on the
ability of locomotor activity to be generated. There are several
possible reasons why rhythm generating neurons were not cap-
tured in these experiments. First, there may be no single popula-
tion of rhythm-generating cells. Instead, many neurons may be
capable of performing this function and have the capacity to
compensate for the loss of any rhythm-generating cells. Another
possibility is that the rhythm-generating neurons do not belong
to a single cardinal class, but rather are composed of subsets of
several classes. Data from the Shox2 neurons support this latter
hypothesis. Shox2 is expressed postmitotically in a subset of the
V2a cells and several interneuronal populations in the dorsal spi-
nal cord. Silencing of all Shox2 neurons decreased the locomotor
frequency; however, selective ablation of Shox2+ V2a interneu-
rons had no effect on the rhythm (Dougherty et al., 2013). This
suggests that the non-V2a subset of Shox2 neurons contributes to
rhythm generation. Importantly, the fact that ablation of these
neurons did not result in the cessation of locomotor activity in-
dicates that other cell types must also be involved in rhythm
generation.

In contrast to the work in mouse, direct evidence for a role in
the control of locomotor rhythm generation, as well as the func-
tional diversity of the V2a population, comes from studies inves-
tigating the locomotor CPGs that control swimming in zebrafish.
The excitatory drive within these CPGs originates from the V2a
subset of interneurons (Kimura et al., 2006), which are necessary
and sufficient for the generation of the locomotor rhythm (Eklof-
Ljunggren et al., 2012; Ljunggren et al., 2014) and active during
locomotion in a speed-dependent manner (McLean et al., 2008,
2009). The functional diversity of the V2a interneurons is para-
mount because it has been shown that they can be segregated into
three functionally distinct subclasses that become activated at
specificlocomotor speeds (slow, intermediate, or fast; Ausborn et
al., 2012). Furthermore, interneurons belonging to each subclass
make selective monosynaptic connections to drive the activity of
motoneurons recruited at the same locomotor speed, thereby
forming a modular locomotor CPG with three separate microcir-
cuits underlying slow, intermediate, or fast locomotion (Gabriel
et al., 2011; Kyriakatos et al., 2011; Ampatzis et al., 2013, 2014).
Traditionally, the generation of the locomotor rhythm has been
considered to rely on interneurons without contribution from
motoneurons. Recent evidence now shows that motoneurons
strongly influence the activity of the locomotor CPGs and can
regulate the frequency of locomotion. In zebrafish, this is medi-
ated via gap junctions that allow retrograde control of the
strength of the excitatory drive within the locomotor CPGs (Song
et al., 2016), whereas in neonatal mice, this is mediated by syn-
aptic release of glutamate (Falgairolle et al., 2017).
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Commissurally projecting interneuronal populations
Although locomotor rhythm generation and coordination of ip-
silateral flexor and extensor motoneurons are reliant on ipsilat-
erally projecting interneurons, coordination of motoneurons on
contralateral sides of the body depend on cells with commissural
projections. Whereas this seems to be a logical assumption, it was
formally demonstrated in the isolated spinal cord preparation in
which appropriate left-right alternation was abolished after a
midline hemisection (Kjaerulff and Kiehn, 1996). The VO class of
interneurons, which predominantly project commissural axons,
are derived from Dbxl-expressing progenitors (Pierani et al.,
2001) and were the first genetically defined interneuronal popu-
lation identified to play a role in left-right alternation. Experi-
ments assessing the function of these cells demonstrated that
mice lacking Dbx1 interneurons displayed aberrant locomotor
activity, with contralateral motoneuronal populations drifting in
and out of phase with one another (Lanuza et al., 2004), indicat-
ing that the two sides were operating independently. Around the
same time, it was demonstrated that the VO population could be
divided into a ventral subpopulation (VOy, cells) that express the
transcription factor Evx1 and a dorsal subpopulation (VOy, cells)
that do not express Evx1 but are derived from Pax7-expressing
cells (Moran-Rivard et al., 2001; Pierani et al., 2001). In addition,
a small population of cholinergic VO cells (VO interneurons)
originate from the Evx1-expressing VO neurons, make monosyn-
aptic contact onto ipsilateral motoneurons, and are presumed to
modulate their firing frequency (Zagoraiou et al., 2009). Initial
work attributed the locomotor deficits in the Dbx1 mutant
mouse to the absence of the VO, neurons because no aberrant
locomotor phenotype was apparent in the Evx1l-null mouse
(Lanuza et al., 2004).

Subsequent experiments have demonstrated that VO, and
VO, cells have complementary features and functions and both
are involved in left-right alternation. The inhibitory VO, cells
coordinate left-right activity at slow locomotor speeds via mono-
synaptic connectivity onto contralateral motoneurons. As loco-
motor speed increases, the excitatory VO, cells are recruited to
regulate contralateral motor output and activate last-order inhib-
itory interneurons located close to their target motoneurons
(Talpalar etal., 2013). It is interesting that elimination of VO cells
in the Dbx1 mutants resulted in the left and right sides acting
independently of one another (Lanuza et al., 2004), whereas de-
letion of the entire VO population (or V0, or VO, cells alone)
resulted in complete synchrony between the left and right sides
(seen as hopping in the adult animal; Talpalar et al., 2013). These
observations suggest that another group of neurons are involved
in synchronizing activity on the left and right sides in the absence
of the VO cells.

The excitatory VO, and inhibitory VO, subsets are also pres-
entin the zebrafish and recent work in this species hints that there
is more functional diversity in the VO class than that which has
been revealed in the mouse. Analysis of development of the V0,,
class in zebrafish indicates that these commissural interneurons
consist of three further subclasses that differentiate in a specific
temporal order correlating with their axonal trajectories (Satou et
al., 2012). Furthermore, a detailed study of the activity pattern of
V0, interneurons during locomotion in adult zebrafish has
shown that this subset consists of two distinct cell types depen-
dent on whether they display rhythmicity or not during locomo-
tion. Rhythmic V0, interneurons were further subdivided into
three subsets engaged sequentially, first at slow, then at interme-
diate, and finally at fast locomotor speeds (Bjornfors et al., 2016).
These data indicate that, along with motoneurons and V2a in-
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A
POPULATION SUBSET PROPOSED FUNCTION DURING LOCOMOTION
DMRT3 Coordinated locomotor movements
d |6 Wit1 Unknown
DMRT3/Wt1 Unknown
V0, Dbx1/Pax7 Left right coordination at slow locomotor speed
VO V0, Dbx1/Evx1 Left right coordination at fast locomotor speed
VO.s Dbx1/Evx1/Pitx2 Modulation of ipsilateral motoneuron firing
RC En1/Foxd3/0Oc1/0Oc2/MafB Control of ipsilateral motoneuron activity via recurrent inhibition
V1 laIN| En1/FoxP2 Control of ipsilateral motoneuron activity via reciprocal inhibition
En1 Control of locomotor speed
V2b GATAZ/3 Control of ipsilateral flexor/extensor coordination
V2 V2a | cChx10 Left right coordination at fast locomotor speed
Chx10/Shox2 Burst variability of motoneurons.
V3 Sim1 Ipsilateral and contralateral coordination.
B

L MNs

Figure1.

R MNs

Geneticidentity, locomotor function, and synaptic connectivity of molecularly defined subpopulations in the ventral spinal cord. 4, Table indicates the name of the cardinal populations,

the subsets derived from each (including the defining transcription factors), and their function during locomotion. B, Schematic summarizing initial experimental findings and predictions regarding
synaptic connectivity of each population listed in A. The non-V2a Shox2 + cells (orange) have also been included in B. Synaptic connectivity that has been demonstrated experimentally is indicated
by a solid line; connectivity that has been predicted is indicated by a dashed line. Glutamatergic synapses are indicated by “1,” inhibitory synapses by “@", and cholinergic synapses by “<<.”
Motoneurons on the left (L MNs) and right (R MNs) are represented by the brown boxes on either side of the midline (gray horizontal line). Note that the connectivity presented here is not exhaustive.

terneurons (Ausborn et al., 2012; Ampatzis et al., 2014), the VO,
interneurons are also organized in a modular manner.

The dI6 interneurons originate from progenitor cells imme-
diately dorsal to the VO population and migrate to take up a
position in the ventromedial spinal cord shortly before birth
(Gross et al., 2002; Miiller et al., 2002). To date, no single genetic
marker has been identified that exclusively labels the entire dI6
population; however, they express the transcription factor Lbx1,
a marker also expressed by other dorsal interneuronal popula-
tions. dI6 interneurons have been divided into at least three sub-
sets based on postmitotic transcription factor expression: those
that express Dmrt3, those that express WT1, and those that ex-
press both Dmrt3 and WT1 (Andersson et al., 2012). Although

we have included them here as a commissurally projecting pop-
ulation, the Dmrt3+ and Wtl+ subsets have been shown to
project both ipsilateral and contralateral axons and make contact
onto motoneurons (Andersson et al., 2012). Whole-cell record-
ings from dI6 interneurons have indicated that a majority of these
cells are rhythmically active during locomotion (Dyck et al.,
2012); however, only the Dmrt3+ subset have had their function
assessed. In the isolated spinal cord preparation Dmrt3 mutant
mice displayed irregular bursting on either side of the spinal cord,
which led to the conclusion that this subset of dI6 cells is required
for the development of a coordinated locomotor network (An-
dersson et al., 2012). This hypothesis was supported by data col-
lected from horses with a naturally occurring Dmrt3 mutation.
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Analysis of their locomotor pattern indicated that these animals
were capable of alternate gaits such as pacing, which require atyp-
ical coordination between motor pools both ipsilaterally and
contralaterally (Andersson et al., 2012).

The V3 cells are a group of excitatory commissural interneu-
rons that emerge from the most ventral Nkx2.2-expressing pro-
genitor domain of the neural tube and express the transcription
factor Sim1 postmitotically (Zhang et al., 2008). Based on initial
anatomical findings, the V3 interneurons seem to be a highly
heterogeneous population. These cells are broadly distributed
along the dorsal-ventral and rostral—caudal axes in the postnatal
spinal cord and are found, not only in laminae VII and VIII,
where most ventral commissural neurons reside, but also in clus-
ters in laminae IV and V of the deep dorsal horn in the lower
thoracic and rostral lumbar segments (Zhang et al., 2008;
Borowska et al., 2013; Blacklaws et al., 2015). Axonal projection
of these cells are broadly distributed with V3 cells located in the
ventral and intermediate regions of the spinal cord making
monosynaptic connections onto contralateral motoneurons, as
well as ventrally located interneurons on either side of the spinal
cord (Blacklaws et al., 2015, Zhang et al., 2008).

Blocking synaptic transmission or acute suppression of V3
neuron excitability in the isolated mouse spinal cord preparation
resulted in incoherent, weak rhythmic activity and asymmetric
locomotor outputs on the left and rights sides. Acute silencing of
V3 neurons in the lumbar region of freely moving adult mice
caused most animals to display uneven gaits. Based on these data,
it was suggested that V3 interneurons play important roles in
limb coordination during locomotion (Zhang et al., 2008). Mo-
lecular markers expressed by V3 cells located in distinct regions
are currently being investigated and their identification may re-
veal definable subsets within this population. This seems likely
because the ventral and dorsal V3 neurons display distinctive
physiological and morphological properties present at birth and
are recruited in different patterns in running and swimming
(Borowska et al., 2013, 2015).

The ipsilaterally and contralaterally projecting cell types de-
scribed above are not an exhaustive list of neurons that may be
involved in locomotor control. A small population of neurons
located in lamina VIII/X of the spinal cord have been shown to
express the transcription factor Hb9 and have been suggested to
be involved in rhythm generation (Hinckley et al., 2005; Wilson
etal., 2005; Kwan et al., 2009; Caldeira et al., 2017). In addition, a
recent study found that late neurogenic events in the developing
mouse spinal cord produce CSF-contacting neurons (CSF-cNs)
called Kolmer—Agdubhr cells, an intriguing cell type surrounding
the central canal, which, like the V2b interneurons, express the
transcriptions factor Gata3 (Petracca et al., 2016). Although the
role of CSF-cNs in locomotor circuits of the mouse spinal cord
remains to be determined, in zebrafish and lamprey, CSF-cNs
have been shown to regulate swimming by projecting directly
onto locomotor CPG neurons (Hubbard et al., 2016; Jalalvand et
al., 2016).

Summary

The discovery that spinal neurons can be divided into a few ge-
netically distinct populations led to excitement that key compo-
nents of the locomotor CPGs could be characterized and defined
functionally. Over the past couple of decades, significant progress
has been made in this regard. We now have a good grasp on the
interneuronal populations responsible for key functions such as
left-right and flexor—extensor coordination and are beginning to
clarify the synaptic connectivity of interneurons involved in these
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functions (Fig. 1). What is clear from the work thus far is that,
despite this effective approach, the spinal locomotor circuitry
remains a complex circuit to crack. Each parent population can
be divided into several subpopulations based on either transcrip-
tion factor expression, location in the spinal cord, and/or activity
during locomotion. Furthermore, it is becoming increasingly ev-
ident that many functions may rely on, or can tap into, small
subsets of several populations. This may be essential given the fact
that the locomotor pattern must be flexible and respond to envi-
ronmental cues with subtle modifications to its output.

Despite advances in our understanding of the locomotor
CPGs, we must keep in mind that many challenges remain, par-
ticularly regarding identification of the molecularly defined sub-
populations of spinal interneurons, their morphological and
physiological properties, and their connectivity and functional
roles during stepping. With the development of novel experi-
mental approaches, our understanding of the structure and
mechanism of function of the locomotor CPGs is sure to grow.
High-throughput sequencing techniques (i.e., single-cell RNA-
seq) will facilitate the identification of neuronal subsets (Lein et
al., 2017, Zeng and Sanes, 2017). Genetically modified versions of
rabies viruses (Callaway and Luo, 2015) and advanced optoge-
netic methods (Adamantidis et al., 2015) will allow the connec-
tivity of these populations to be mapped and may enable their
physiological properties, including their specific firing patterns
during locomotion, to be identified. In addition, molecular tech-
niques are evolving to allow for the manipulation of neuronal
activity and functional assessment of individual subpopulations
in the adult during overground locomotion (Britz et al., 2015),
providing further insight into potential roles during locomotor
activity. Collectively, these experimental approaches provide op-
timism that increasingly effective means will become available to
delineate interneuronal subpopulations and the manner in which
they interact with one another to generate locomotor outputs.
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