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Dissociation of Self-Motion and Object Motion by Linear
Population Decoding That Approximates Marginalization
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We use visual image motion to judge the movement of objects, as well as our own movements through the environment. Generally, image
motion components caused by object motion and self-motion are confounded in the retinal image. Thus, to estimate heading, the brain
would ideally marginalize out the effects of object motion (or vice versa), but little is known about how this is accomplished neurally.
Behavioral studies suggest that vestibular signals play a role in dissociating object motion and self-motion, and recent computational
work suggests that a linear decoder can approximate marginalization by taking advantage of diverse multisensory representations. By
measuring responses of MSTd neurons in two male rhesus monkeys and by applying a recently-developed method to approximate
marginalization by linear population decoding, we tested the hypothesis that vestibular signals help to dissociate self-motion and object
motion. We show that vestibular signals stabilize tuning for heading in neurons with congruent visual and vestibular heading prefer-
ences, whereas they stabilize tuning for object motion in neurons with discrepant preferences. Thus, vestibular signals enhance the
separability of joint tuning for object motion and self-motion. We further show that a linear decoder, designed to approximate margin-
alization, allows the population to represent either self-motion or object motion with good accuracy. Decoder weights are broadly
consistent with a readout strategy, suggested by recent computational work, in which responses are decoded according to the vestibular
preferences of multisensory neurons. These results demonstrate, at both single neuron and population levels, that vestibular signals help
to dissociate self-motion and object motion.
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(s )

The brain often needs to estimate one property of a changing environment while ignoring others. This can be difficult because
multiple properties of the environment may be confounded in sensory signals. The brain can solve this problem by marginalizing
over irrelevant properties to estimate the property-of-interest. We explore this problem in the context of self-motion and object
motion, which are inherently confounded in the retinal image. We examine how diversity in a population of multisensory neurons
may be exploited to decode self-motion and object motion from the population activity of neurons in macaque area MSTd.

ignificance Statement

flect a combination of multiple environmental causes. However,
for specific behavioral tasks, it may be necessary to make judge-
ments about a single environmental cause of sensory input with-
out being influenced by other competing causes (i.e., “nuisance
variables”). In general, estimating one variable and ignoring others
can be achieved by marginalization, a computation in which some

Introduction
Under natural conditions in which many things may change si-
multaneously in the environment, incoming sensory signals re-
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variables are integrated out of a joint probability distribution.
Although marginalization is probably important for many
cognitive processes, little is known about its underlying neural
mechanisms (Beck et al., 2011). We recently proposed a method
for determining a linear decoder that approximates marginaliza-

DOL:10.1523/INEUROSCI.1177-17.2017
Copyright © 2017 the authors  0270-6474/17/3711204-16515.00/0



Sasaki et al. @ Dissociating Self-Motion and Object Motion in Area MSTd

Motion in the world

\\\\
s

C 90°
135 45° . 90 N
4 185° 45
N o %! s
. ©°0 . o o
180° «— Q0O —» O 180° < - 0
0g0
/ \ ¥ v LY
l R 225° 315°
225 315 270°
270°
Figure1.  Schematicillustration of stimuli and experimental design. A, The monkey viewed

ascene in which a multipart object moved in the world while the monkey was also translated. In
this illustration, self-motion is rightward (0°) and the object moves upward (90°) in the world.
The object and background were composed of random dots and rendered in 3D using disparity
cues. B, Image motion resulting from the combination of self-motion and object motion de-
picted in A. Note that this s a planarimage projection, and has not been flipped and inverted as
it would be by the lens of the eye. C, Both the multipart object and the monkey moved in one of
eight possible directions in the frontoparallel plane, as shown by red and green vectors, respec-
tively. The speed of object motion was 50% faster than that of self-motion.

tion, and we showed through simulations that diverse multisen-
sory representations could facilitate performance of the method
(Kim et al., 2016). Here, we evaluate this method in the context of
a naturalistic application: dissociation of self-motion and object
motion.

For a moving observer, retinal image motion is a combination
of components resulting from self-motion and object motion
(Fig. 1A,B). Therefore, to accurately perceive self-motion, the
brain needs to marginalize away the effects of object motion, and
vice versa. Although some behavioral studies suggest that purely
visual mechanisms exist to parse image motion into components
related to self-motion and object motion (Rushton and Warren,
2005; Warren and Rushton, 2007, 2008; Matsumiya and Ando,
2009), other studies suggest that nonvisual (e.g., vestibular) sig-
nals make important contributions (Wexler, 2003; Wexler and
van Boxtel, 2005; MacNeilage et al., 2012; Dupin and Wexler,
2013; Fajen and Matthis, 2013; Dokka et al., 2015a,b).

Little is known about neural computations that can dissociate
self-motion and object motion. A few previous studies have
examined interactions between visual motion patterns that sim-
ulate self-motion and object motion in area MSTd (Logan and
Dulffy, 2006; Sato et al., 2010; Kishore et al., 2012). These studies
show that MSTd responses depend on self-motion and object
motion in complex ways, but they did not systematically explore
the joint tuning of MSTd neurons for heading and object direc-
tion, nor how nonvisual inputs influence the joint representation
of self-motion and object motion. Given that vestibular signals
contribute to perceptual judgements of self-motion and object
motion (Fajen and Matthis, 2013; Dokka et al., 2015a,b), we hy-
pothesized that the capacity of cortical neurons to distinguish
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self-motion and object motion would be enhanced by vestibular
cues.

Cortical neurons in multiple brain areas, including MSTd (Gu
et al., 2006, 2008; Fetsch et al., 2011), ventral intraparietal (VIP;
Bremmer et al., 2002; Chen et al., 2011b, 2013), visual posterior
sylvian (VPS; Chen etal., 2011b), and frontal eye field (FEF; Gu et
al,, 2016), are selective for the direction of translation (heading)
based on both optic flow and vestibular inputs. These areas con-
tain “congruent” cells, which have matched vestibular and visual
heading preferences, as well as “opposite” cells, which tend to
prefer opposite directions of real and visually-simulated transla-
tion (Gu et al., 2006; Chen et al., 2011b). Whereas the activity of
congruent cells is compatible with roles in cue integration (Gu et
al., 2008; Chen et al., 2013) and reliability-based cue weighting
(Fetsch et al., 2011), opposite cells are poorly suited to these
computations. However, opposite cells may respond strongly
when a moving object produces image motion that is inconsis-
tent with self-translation. Thus, the combined activity of a mix-
ture of congruent and opposite cells could allow the system to
identify image motion that is inconsistent with self-motion. In-
deed, simulations suggest that a properly trained linear decoder
(Kim et al., 2016) can take advantage of this diversity to margin-
alize over object motion and estimate heading, but this approach
has not been applied to real neural data.

We tested macaque MSTd neurons with many combinations
of object motion and self-motion (including visual and vestibular
cues to self-motion). We examined how vestibular signals mod-
ulate the joint tuning of single neurons for heading and object
direction. In addition, we evaluated whether our method for ap-
proximate linear marginalization (ALM; Kim et al., 2016) could
compute the probability distribution over heading while margin-
alizing out the effects of object motion, or vice versa. Our findings
suggest that vestibular signals facilitate a robust neural represen-
tation of motion that can be used to estimate either heading or
object motion.

Materials and Methods

Subjects and preparation

Two male rhesus monkeys (Macaca mulatta), weighing 12.8 and 11.5 kg,
participated in this study. Both animals were 68 years of age during the
course of the studies, and were pair-housed in a vivarium with a 12 hlight
cycle (6:00 A.M. to 6:00 PM). Under sterile conditions, monkeys were
chronically implanted with a circular Delrin ring (diameter: 7 cm) for
head stabilization, as described previously (Gu et al., 2006), as well as a
scleral search coil for measuring eye movements. After recovery, animals
were trained to fixate visual targets for fluid rewards using standard
operant conditioning techniques.

For electrophysiological recording, a Delrin grid (2.5 X 4.5 X 0.5 cm)
containing rows of holes was stereotaxically secured to the skull inside the
head-restraint ring and was positioned in the horizontal plane. The holes
in the grid (0.8 mm spacing) allowed vertical penetration of microelec-
trodes into the brain via transdural guide tubes that were inserted
through a small burr hole in the skull. Burr holes were made surgically
under aseptic conditions while the subjects were anesthetized. The re-
cording grid extended bilaterally from the midline to regions overlying
area MST in both hemispheres. All experimental procedures con-
formed to National Institutes of Health guidelines and were approved
by the University Committee on Animal Resources at the University
of Rochester.

Vestibular and visual stimuli

During experiments, monkeys were seated comfortably in a primate
chair with their head restrained. The chair was securely attached to a
6 degree-of-freedom motion platform (MOOG 6DOF2000E, Moog) that
was used to passively translate the animals. A field-coil system (CNC
Electronics) was mounted on top of the motion platform, surrounding
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the monkey’s head and body, and was used to measure eye movements
using the scleral coil technique. Visual stimuli were rear-projected onto a
tangent screen by a three-chip digital light projector (Mirage S 3K,
Christie Digital Systems), and the tangent screen was attached to the
front of the field coil (Gu et al., 2006). The display screen measured 60 X
60 cm and was mounted at a viewing distance of ~30 cm in front of the
monkey, thus subtending ~90 X 90° of visual angle. The sides and top of
the field coil frame were covered with a matte black enclosure such that
the animal could only see visual stimuli that were presented on the tan-
gent screen; the room was not visible. Platform motion and visual stimuli
were updated at 60 Hz and were precisely calibrated such that visual
motion was synchronous with platform motion (Gu et al., 2006).

Visual stimuli simulated translational self-motion along one of eight
directions, spaced 45° apart, in the frontoparallel (i.e., vertical) plane
(Fig. 1C). We elected to restrict self-motion to the frontoparallel plane
for two main reasons: (1) to reduce the dimensionality of the stimulus
space, which was necessary because we test all combinations of self-
motion and object motion directions; and (2) because it simplifies the
types of visual motion interactions that take place within the receptive
field (i.e., no radial motion), thus simplifying predictions for how vestib-
ular signals may interact with visual motion.

The visual scene consisted of a three-dimensional (3D) field of stars.
Each star was a triangle that measured 0.15 X 0.15 c¢m, and the cloud
measured 100 cm wide by 100 cm tall by 40 cm deep with a star density of
0.01/cm”. Along the depth dimension, the volume of the star field was
centered on the distance of the display screen and fixation target. Given
that the viewing distance was ~30 cm, the star field ranged in depth from
10 to 50 cm in front of the monkey. To provide stereoscopic cues, the dot
cloud was rendered as a red-green anaglyph and viewed through custom
red-green goggles (Kodak Wratten? filters #29 and #61). The optic flow
field contained naturalistic cues mimicking translation of the observer
through the 3D star field, including motion parallax, size variations, and
binocular disparity. Visual stimuli were generated using the OpenGL
libraries (under Microsoft Visual C++) and were rendered using an
accelerated graphics card (Quadro FX4800), with anti-aliasing for smooth
motion. Optic flow simulating self-motion was generated by translating
the OpenGL cameras (1 for each eye) through the 3D star field. The star
field always filled the entire visible video display; as dots disappeared
from one edge of the display, other dots appeared on the opposite edge.
This helped to enhance the perception that background dots were sta-
tionary in the world.

To explore the interaction between self-motion and object motion, a
large, multipart object moved in the world while the monkey was trans-
lated. The object consisted of a cluster of spheres (diameter 15 cm each)
that were composed of random dots, with a dot density (0.25/cm 3) that is
greater than that of the background dots, such that the object is easily
detectable in the scene. Each sphere was separated from its neighbors by
22.5 cm and they were transparent such that they did not occlude back-
ground optic flow (Fig. 1A). The multipart object was centered in depth
at the same distance from the monkey (~30 cm) as the fixation point,
which was in the plane of the display screen. Note that the entire outer
boundary of the group of objects moved relative to the screen boundar-
ies, facilitating the distinction between motion of the object and motion
of the (stationary) background dots. After exploring various options
including single spheres of different sizes, we elected to use the multipart
object for the following reasons. First, because object location was not
tailored to the receptive field of each neuron (to facilitate decoding anal-
yses), we wanted object motion to cover a substantial portion of the
visual field such that most receptive fields would be stimulated by the
object. Second, using a single very large object may create figure-ground
ambiguity that we wanted to avoid. Using a cluster of transparent moving
spheres as the object allows decent coverage of the visual field while still
allowing the moving objects to be easily segmented from the background.

As for self-motion, object motion was along one of eight directions
(45° apart) within the frontoparallel plane. All self-motion and object
motion trajectories were straight and had a Gaussian velocity profile with
a SD of 1/3 s (Gu et al., 2006). The total excursion (0.15 m) and peak
velocity (0.45 m/s) of object motion was somewhat greater than that for
self-motion (0.10 m and 0.30 m/s, respectively), such that there was
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always movement of the object relative to the background even when the
background and the object moved in the same direction.

Electrophysiology procedures

We recorded action potentials extracellularly from area MSTd of two
monkeys. A tungsten microelectrode (Frederic Haer; tip diameter 3 wm,
impedance 1-2 M() at 1 kHz) was advanced into the cortex through a
transdural guide tube, using a hydraulic micromanipulator (Narishige)
mounted on top of the head-restraint ring. Action potentials were
amplified and isolated using a head-stage preamplifier, a bandpass eight-
pole filter (Krohn-Hite, model 3384; 400—4000 Hz), and a dual voltage-
time window discriminator (Bak Electronics, model RP-1). The times of
occurrence of action potentials and all behavioral events were recorded
with 1 ms resolution by the data acquisition computer. Raw neural sig-
nals were also digitized at 25 kHz and stored to disk for off-line spike
sorting and additional analyses. Experimental control and data acquisi-
tion were coordinated by scripts written with TEMPO software (Reflec-
tive Computing).

Area MSTd was localized with aid from structural MRI scans and a
standard macaque atlas (Van Essen et al., 2001). MSTd was typically
identified as a region centered ~15 mm lateral to the midline and ~3—
6 mm posterior to the interaural plane. Electrode penetrations were also
guided by the pattern of background activity as the electrode traversed
through gray and white matter, as well as the response properties of
neurons to visual stimuli. MSTd was usually the first gray matter encoun-
tered, ~6-10 mm below the cortical surface, which exhibited prominent
response modulation to flashing random-dot stimuli and direction-
selective responses to motion of the dots. We were careful to distinguish
MSTd from the lateral subdivision of area MST (MSTI). To do this, we
also carefully mapped the portions of area MT that were found beneath
MSTAd, in the posterior bank of the superior temporal sulcus. We mainly
targeted regions of area MSTd that were located postero-medially, over-
lying portions of area MT that had receptive fields with moderate to large
eccentricities.

Experimental protocol

We searched for neurons while presenting a large pattern of flickering or
drifting random dots. After isolating the action potential of an MSTd
neuron, we used custom software to perform an initial characterization
of response properties, making use of a graphical interface that con-
trolled the position, size, and velocity of a patch of dots. After hand-
mapping the receptive field, a reverse-correlation procedure was used to
obtain a quantitative map of the receptive field, as described in detail
previously (Chen et al., 2008). We also measured heading tuning within
the frontoparallel plane by presenting eight directions of motion, 45°
apart, defined by optic flow alone (visual condition), platform motion
alone (vestibular condition), and congruent visual and vestibular inputs
(bimodal condition).

After this initial characterization of response properties, the main ex-
perimental protocol was run. This protocol included a fully crossed de-
sign in which eight directions of self-motion in the frontoparallel plane
were crossed with eight directions of object motion. Two full sets of these
8 X 8 stimulus conditions were presented, a visual condition in which
self-motion was visually simulated by optic flow while the animal re-
mained stationary, and a bimodal condition in which self-motion was
provided by congruent optic flow and vestibular signals. In addition, the
main protocol included three self-motion control conditions in which
self-motion was presented without any moving object: a visual, a vestibular,
and a bimodal condition. The protocol also included an object-motion con-
trol condition in which only the moving object was presented, with no
self-motion, and a null condition in which no stimuli were presented
except for the fixation target. In total, 161 unique stimulus conditions
were randomly interleaved, requiring 805 trials to complete 5 repetitions
of each distinct stimulus.

Data analysis

The response of a neuron to each stimulus was computed as the firing
rate over a time window from 500 to 2000 ms following stimulus onset, as
this time window was previously found to contain most of the neural
response to these stimuli (Gu et al., 2006, their Fig. 1C). The joint tuning



Sasaki et al. @ Dissociating Self-Motion and Object Motion in Area MSTd

Congruent cell

—~ 30 —&— Visual —

3 —e— Vestibular 8

o —e— Bimodal @2

173 172

L £

Q Q.

KA X

z 10 2 10

g g L

(7] 7]

@ O o 0+

X 0 920 180 270 360 o 0 92 180 270 360

Heading (deg) Object Direction (deg)

B Visual Condition C  Bimodal Condition

z
3
Q

Bggss

N
S

N
Response (ospikes/sec‘j

(deg—*
I

270

180 180

i /A\
§34c98 I
0 0

0 90 180 270 360
Heading (deg)

Object Direction

0 90 180 270 360
Heading (deg)

Figure 2.

D 90°

J. Neurosci., November 15, 2017 - 37(46):11204-11219 * 11207

Opposite cell

A t X
180°+ ‘ -0
» Y
—e— Visual + o
407 —e—Vestibular 270

< 5 307—e—Object 270°

3 —e— Bimodal 2

B 30 @

) 22 I

B2 5

2 $ 10

g g =

@ O T T T ] @ 01 T T T )

x 0 920 180 270 360 x o 90 180 270 360

Heading (deg) Object Direction (deg)

E Visual Condition F

IS}

o

S
o
S

Object Direction (deg)
Object Direction (deg)

-9 0 90 180

90 0 9 180
Heading (deg) Heading (deg)

Interactions between self-motion and object motion for two example MSTd neurons. 4, D, Left, Heading tuning curves in the absence of object motion (visual: blue; vestibular: red;

bimodal: green). Right, Object motion tuning curve in the absence of self-motion (black). Data are shown for a congruent cell (4) and an opposite cell (D). B, E, Joint heading-object tuning profiles
are shown for the visual condition in which self-motion is simulated by optic flow. Responses to combinations of heading and object motion are shown as a color contour map, and tuning curves along
the margins show heading tuning for each object motion direction (top) and object tuning for each heading (left). €, F, Joint heading-object tuning profiles for the bimodal condition in which

self-motion is indicated by both optic flow and vestibular signals.

of MSTd neurons for the 64 combinations of heading and object direc-
tion was plotted as a color map for visualization (Fig. 2C). In addition,
data from the control conditions involving only self-motion or only
object motion were plotted as tuning curves (Fig. 2A).

Direction discrimination indices. To quantify the strength of directional
tuning exhibited by a neuron, we computed a well established metric of
neural selectivity (Prince et al., 2002; DeAngelis and Uka, 2003) called the
direction discrimination index (DDI):

Rmax - Rmin

DDI = , "
Rix = Riin + 2 \SSE/(N - M)

In this formulation, R, ,, and R, denote the mean responses to the
most effective and least effective stimulus directions, respectively, SSE is
the sum squared error around the mean responses, N is the number of
observations (trials), and M is the number of stimulus values tested.

In our application of DDI, we wanted to quantify the strength of neural
selectivity for heading (while pooling across object directions) or the
strength of selectivity for object direction (pooling across headings).
Thus, we computed two DDI metrics. DDl qing Was computed after
responses were pooled across the eight possible object motion directions,
and DDI ;. was computed after responses were pooled across the eight
possible headings (see Fig. 4). These pooled DDI metrics therefore reflect
the consistency of tuning for one variable (e.g., heading) across variations
in the other variable (e.g., object motion). A neuron could have a low
DDI value because it is not tuned at all or because its tuning for one
variable is not consistent across variations in the other variable. These
pooled DDI metrics are useful to evaluate whether the addition of ves-
tibular signals makes tuning more consistent or less consistent.

To further investigate whether the interactions between self-motion
and object motion in MSTd responses can be described by baseline
response shifts, peak shifts, and/or gain changes, we calculated DDI met-
rics that are compensated for baseline shifts (mean-compensated DDI),
peak shifts (shift-compensated DDI), and gain modulations (gain-
compensated DDI). To compute the mean-compensated DDI} . ging
mean responses were equated across object directions before computing
DDl ¢ading To compute the shift-compensated DDI,,, i, the peaks of
heading tuning curves were aligned across object directions before com-
puting DDI},,4ine- To compute the gain-compensated DD, iy, the

peak-trough amplitudes of heading tuning curves were equated across
object directions before computing DDIj.,4;,- Analogous operations
were performed to compute the compensated values of DDI.., but
instead equating mean values, peak locations, or peak-trough amplitudes
across headings.

Direction separability index. If heading tuning is independent of object
direction (and vice versa), then we may expect the joint tuning profile for
heading and object motion to be multiplicatively separable. In contrast,
if heading tuning depends on object direction (or vice versa), then the
joint heading/object tuning profile may have a somewhat slanted struc-
ture (see Fig. 7A). To quantify the separability of joint heading/object
tuning, singular value decomposition (SVD) was applied to the joint
tuning profile of each neuron. This approach represents the empirically
measured joint tuning profile as a weighted sum of multiplicatively-
separable components. Thus, if the joint tuning is multiplicatively sepa-
rable, then the first singular value will be large and all of the other singular
values will be relatively small. To quantify separability, we compute a
direction separability index (DSI), which depends on the relative magni-
tude of the first singular value to the sum of all singular values (Depireux
et al., 2001; Mazer et al., 2002):

A(1)?

DSI=1- S (2)

where A(i) is the ith singular value. If the joint tuning is separable,
then DSIwould be close to zero, and greater values indicate increasing
inseparability.

Population decoding by likelihood computation. Maximum likelihood
decoding can be used to estimate heading or object direction from a
sample of activity of our population of MSTd neurons. To compute an
estimate of the log likelihood over heading [logL(0)] or object direction
[logL(¢)], each neuron’s response (r;) to a particular stimulus was mul-
tiplied by the log of its tuning function [log f,(6) or log f,(¢)] and the
result was summed across neurons (Egs. 3, 4; Dayan and Abbott, 2001;
Jazayeri and Movshon, 2006). The second term in these equations com-
pensates for biases caused by a nonuniform distribution of direction
preferences.
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log L(6) = i log £(6) — 2]‘;(0), 3)
log L(g) = ; 1, log fi(¢) — ;f,(q»). (4)

In these formulations, r; represents the response of the ith neuron to a
particular combination of heading and object motion in either the visual
or bimodal condition. For heading estimation, f;(6) could be either the
visual or vestibular heading tuning function for each neuron, without
object motion. For object motion estimation, f;(¢) is the object motion
tuning curve measured without self-motion. The peak of the resulting
distribution represents the maximum-likelihood estimate of either head-
ing or object motion direction. This approach assumes that neurons have
independent Poisson spiking statistics.

It should be emphasized that the distributions obtained from Equa-
tions 3 and 4 will only equal the corresponding log likelihoods over
heading and object direction if the shape of the population activity is not
influenced by nuisance variables such as object motion and self-motion,
respectively. If these conditions are not met (which will generally be the
case in our applications, since tuning for heading is altered by object
motion and vice versa), then Equations 3 and 4 do not compute true
log-likelihoods but may instead be referred to as recognition models
(Hinton and Dayan, 1996). Although we do not expect this simple form
of population decoding to effectively perform marginalization, it pro-
vides an instructive comparison to an optimal linear decoder that does
approximate marginalization, as described below.

In addition, we also computed the joint likelihood over both heading
and object direction by applying the same approach to the joint tuning
profiles for heading and object motion:

log L(6, ¢) = ;n log (6, @) — Z,ﬁ(& @). (5)

Here, f,(6, ¢) represents the joint tuning profile for heading and object
direction (Fig. 2C) for the ith neuron.

Approximate linear marginalization. As described above, the responses
of MSTd neurons will generally be a function of both heading and object
direction, f(0, ¢), and the joint posterior over both variables, P(6, ¢ \ r),
can be computed from the neural responses, r, and the joint tuning
profiles (assuming a flat prior; see Eq. 9). However, in many situations, it
is not necessary to compute the joint posterior, and it may be advanta-
geous to directly estimate the marginal posterior over heading or object
direction, P(6 | r) or P(¢ | r), respectively. Mathematically, this involves
integrating one of these variables out of the joint posterior (see Eq. 10), a
computation known as marginalization. But how can the marginal pos-
terior be computed from neural activity? Is it possible to directly decode
neural activity and obtain a reasonable approximation of the marginal
posterior?

As described in detail recently (Kim et al., 2016), we sought to find a
linear transformation of neural activity that can perform near-optimal
marginalization; for example, to compute an approximate marginal
posterior distribution over heading that discounts object motion. To
perform what we call ALM, we assume that the marginal posterior dis-
tribution over heading is approximated by a member ( Q) of the expo-
nential family with linear sufficient statistics (Ma et al., 2006):

1
Q(6|r;h, g) = 7 N(OT5(0), ©)

where

Z(r;h, g) = E AOT+e(0) 7
[]

We then optimize the parameters, h(6) and g(6), to best explain data
drawn from the true marginal posterior distribution, P(6 | r). This opti-
mization, performed using multinomial logistic regression (Bishop,
2006), maximizes the likelihood of the parameters and minimizes the
Kullback-Leibler divergence between the true marginal distribution P
and the approximation Q. Given K samples from the joint distribution
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(0 ¢ 1) ~ P(0, @, 1) for k = 1...K, where 6 denotes heading, ¢
denotes object motion direction, and r denotes the neural population
response, the log-likelihood of the model parameters (for heading esti-
mation) is given by the following:

log L(h, g) = ; log Q(6 |t h, g)

= ; [h(6) - 1+ g(6) — log Z(r, h, )], (8)

where h=[h,(6,)] denotes a matrix of weights specifying how the re-
sponse r; of neuron i influences the log-probability of heading 0, g(6))
represents a set of bias parameters for each heading, and the constant Z
ensures that Q(6,|r;; h, g) is properly normalized. These parameters
were obtained by performing multinomial logistic regression using the
glmtrain() function in the Netlab toolbox for MATLAB (Nabney, 2002;
Bishop, 2006), specifically with the algorithmic variant based on an ap-
proximate Hessian. For our purposes, h(6) represents the key quantity
that is obtained by ALM: it contains the optimal decoding weights for
each neuron that provide the best approximation to the marginal posterior
over heading that can be obtained by a linear transformation of responses.
The equations above describe computation of the ALM weights for the case
of estimating heading, but the procedure is completely analogous for
object direction (substituting ¢ for ), yielding decoding weights given
by h(¢).

ALM was trained on a stimulus set including 500 simulated trials for
each distinct stimulus condition. For each simulated trial, a pseudo-
population response was created by sampling a response from each neu-
ron (with replacement). Once ALM was trained, its performance was
tested on a different set of pseudo-population responses, again compris-
ing 500 simulated trials for each distinct stimulus condition. The stimu-
lus conditions in the training set included all combinations of eight
self-motion directions and eight object motion directions, as well as
conditions involving self-motion only or object motion only. Specifi-
cally, when ALM was trained to decode heading, 30% of trials in the
training set were self-motion only conditions (10% vestibular, 10% vi-
sual, and 10% bimodal) and 70% of trials involved combinations of
self-motion and object motion (evenly split between visual and bimodal
self-motion cues). Similarly, when ALM was trained to decode object
motion direction, 30% of trials in the training set were object-only con-
ditions, and 70% of trials involved combinations of self-motion and
object motion (exactly the same as for decoding heading). Conditions
involving only self-motion or only object motion were included in the
training sets such that the resulting decoder should be able to estimate
heading or object motion across a range of stimulus conditions.

Experimental design and statistical analysis
Data were collected from two male animals such that sex was not a
variable in the analysis. For each animal, we collected data from between
70 and 100 neurons, which is commensurate with the standards of the
field for single-unit studies in awake macaques.

The design of the experiments was such that each neuron was tested
with an identical set of stimulus conditions. All stimulus conditions to be
directly compared in the main experimental protocol were randomly
interleaved in a block of trials for each neuron, such that there were no
temporal sequence effects to consider.

Because all neurons were tested with the same stimulus set, statistical
analyses focus on examining comparisons of quantitative metrics across
the population. For this purpose, data from the two monkeys were
pooled together, and there were no between-subject factors in the anal-
ysis. All statistical analyses were performed using the Statistics toolbox in
MATLAB. Parametric or nonparametric statistics were used, as appro-
priate to each particular comparison, as described in detail in the Results
section.

Results

To investigate how visual motion signals related to self-motion
and object motion interact, and how these interactions are mod-
ulated by vestibular self-motion signals, we recorded from 164
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Figure 3. Summary of relative heading preferences for visual and vestibular inputs. The

histogram shows the distribution of the absolute difference in preferred heading, | A Preferred
Heading|, between the visual and vestibular conditions. Data are shown for all 164 neurons, and
heading preferences were estimated by computing the vector sum of responses to eight direc-
tions of motion in the frontoparallel plane. Colors denote data for the two animals.

MSTd neurons in two animals (73 from Monkey D and 91 from
Monkey N). Monkeys were required to maintain fixation on a
head-fixed target while a large multipart object moved in one of
eight directions within the frontoparallel plane (Fig. 1). In addi-
tion, self-motion along eight possible directions within the
frontoparallel plane was simulated by either full-field optic flow
presented alone (visual condition) or by a combination of optic
flow and whole-body translation (bimodal condition). All 64
combinations of 8 directions of self-motion and 8 directions of
object motion (45° apart) were presented (Fig. 1C), along with
controls in which either self-motion or object motion was pre-
sented alone.

We attempted to record from any MSTd neuron that exhib-
ited clear visual responses to moving and/or flickering random-
dot stimuli. We classified cells as congruent (n = 82) ifthey had a
Pearson correlation coefficient between visual and vestibular
heading tuning that was significantly >0.2 (95% confidence in-
terval not including 0.2, bootstrap; n = 1000). Heading tuning
curves for an example congruent cell are shown in Figure 2A.
Similarly, we classified cells as opposite (n = 29) if the correlation
coefficient between visual and vestibular heading tuning was sig-
nificantly <—0.2 (95% CI not including —0.2, bootstrap). Data
from an example opposite cell are shown in Figure 2D. The re-
maining neurons were denoted as unclassified (n = 53). We
found that these criteria produced a categorization of congruent
and opposite cells that agreed well with classification by eye.

For comparison with previous studies (Gu et al., 2006), Figure
3 shows the distribution of differences in heading preference
(JA Preferred Heading|) between the visual and vestibular self-
motion conditions. The distribution is bimodal, indicating
substantial proportions of both congruent and opposite cells.
Although the bimodality is not as strong as in previous studies of
MSTd (Gu et al., 2006), this may be due to the fact that heading
tuning was measured in the frontoparallel plane in the present
study, whereas Gu et al. (2006) measured this relationship in the
horizontal plane.

Interactions between self-motion and object motion in
single-unit responses

We now examine how self-motion and object motion interact in
the responses of MSTd neurons. Joint tuning profiles for heading
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and object direction are shown in Figure 2, B,C, and E, F, for the
example congruent and opposite cells, respectively. When self-
motion and object-motion are presented simultaneously, both
clearly influence the joint tuning of the example neurons. As a
result, heading tuning curves are generally altered by object mo-
tion and object tuning curves are altered by heading. Interest-
ingly, for the example congruent neuron (Fig. 2B,C), heading
tuning curves are more consistent across object directions in the
bimodal condition than in the visual condition, whereas object
tuning curves are more consistent across headings in the visual
condition than in the bimodal condition. In contrast, for the
example opposite cell (Fig. 2E, F), the opposite pattern was ob-
served: heading tuning is more consistent in the visual condition
than the bimodal condition, and object tuning is more consistent
in the bimodal condition than in the visual condition. In other
words, vestibular self-motion signals appear to stabilize heading
tuning for congruent cells, whereas they stabilize object tuning
for opposite cells. This makes sense, intuitively, because vestibu-
lar heading tuning aligns with visual heading tuning for congru-
ent cells, whereas it aligns with object tuning for opposite cells.

To quantify these observations, we used a DDI to measure the
overall strength of tuning relative to response variability (Prince
et al., 2002; DeAngelis and Uka, 2003). In our application, we
wish to quantify both the overall strength of tuning for one vari-
able (heading or object direction) and how it is influenced by
variations in the other variable. Thus, we computed a DDI for
heading (DDI},,4ing) by pooling responses across all object direc-
tions (see Materials and Methods; Fig. 4A), such that DDI,,,gine
reflects the consistency of heading tuning across different direc-
tions of object motion. Analogously, we computed a DDI for
object motion (DDI;.,) by pooling responses across headings
(see Materials and Methods; Fig. 4B).

Results from our sample of MSTd neurons (Fig. 5) confirm
the observations made for the example neurons of Figure 2. For
congruent cells (magenta; n = 82), DDIj, i, is significantly
greater in the bimodal condition than in the visual condition
(paired ¢ test, £, = —8.29, p = 2.1 X 10~ '?), whereas for op-
posite cells (cyan; n = 29), DD, 4ing 18 significantly greater in
the visual condition (paired ¢ test, t,5) = 1.98, p = 0.0057; Fig.
5A). Comparing the two types of cells, the median difference in
DD, ding between the bimodal and visual conditions was signif-
icantly greater for congruent cells than opposite cells (Wilcoxon
rank sum test, p = 9.7 X 10 ~%). Thus, vestibular signals stabilize
the heading tuning of congruent cells, and weaken the heading
tuning of opposite cells.

The opposite pattern of results was found for tuning to the
direction of object motion (Fig. 5B). For congruent cells, DDI ;. is
significantly greater in the visual condition than in the bimodal
condition (paired ftest, £g,) = 6.20,p = 2.2 X 10 ~%), whereas for
opposite cells, DDI ., is greater in the bimodal condition
(paired t test, ¢, = —3.30, p = 0.0026). The median difference
in DDI .. between bimodal and visual conditions is signifi-
cantly less for congruent cells than opposite cells (Wilcoxon rank
sum test, p = 8.3 X 10 ~®). Hence vestibular signals stabilize the
object tuning of opposite cells but substantially disrupt the object
tuning of congruent cells.

To further summarize these effects, we plotted the difference
in DD, between visual and bimodal conditions against the
difference in DDI,,,,4inq between these stimulus conditions (Fig.
5C). Strikingly, across the entire population, there is a very strong
inverse correlation between these variables (Spearman’s rank r =
—0.84, p = 2.80 X 10 ~*%; n = 164), with congruent and opposite
cells being pretty well segregated by the unity-slope diagonal.
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Note that there is also a strong negative correlation in Figure 5C
for neurons that are not statistically categorized as congruent or
opposite cells (gray symbols; r = —0.78, p = 5.6 X 107 %n=
53), indicating that the effect of vestibular signals on joint tuning
for heading and object motion extends to most neurons in the
population.

One may expect that neurons with stronger vestibular inputs
would have greater differences in DDI},,ging OF DDy between
visual and bimodal conditions. Indeed, this was the case for con-
gruent cells: the difference in DDIj,,4;,, between bimodal and
visual conditions is positively correlated with strength of vestib-
ular tuning as quantified by computing DDI for the vestibular
heading tuning curve (r = 0.53, p = 4.1 X 10 ~’; n = 82, data not
shown). Analogously, the difference in DDI,;;,., between bimodal
and visual conditions is negatively correlated with strength of ves-
tibular tuning for congruent cells (r = —0.37, p = 0.050; n = 82,
data not shown). For opposite cells, vestibular tuning strength is
significantly negatively correlated with the difference in DDI},¢, ;s be-
tween bimodal and visual conditions (r = —0.51,p = 1.6 X 10 ™%

. values for the visual and bimodal conditions are plotted in the same format as A. Vestibular signals weaken object tuning for congruent cells and
between bimodal and visual conditions (ordinate) is plotted against the difference in DIy, ;.4 between these two conditions (abscissa).

n = 29), and significantly positively correlated with the difference
in DDI e (r = 0.56, p = 0.0019; n = 29, data not shown). There
was no significant difference overall, however, between the
strength of vestibular heading tuning of congruent and opposite
cells (Wilcoxon rank sum test, p = 0.22).

DDI quantifies the overall strength of tuning, but it does not
indicate which aspects of heading tuning are modulated by object
motion and vice versa. For example, different directions of object
motion could change the response gain, shift the peak, or verti-
cally shift the baseline of heading tuning curves (Fig. 2). We ex-
plored this issue by equalizing one of these aspects of tuning (e.g.,
peak location) and recomputing DDI values (Fig. 6; see Materials
and Methods for details). For heading tuning, original DDI,,,ing
values are significantly less than mean-compensated values
(Wilcoxon signed rank test: Visual: p = 1.2 X 10~ %%, Bimodal:
p=1.6 X 10 **;Fig. 6 A, D) and shift-compensated values (Wil-
coxon signed rank test: Visual: p = 1.6 X 10 ', Bimodal: p =
2.2 X 10~ '3 Fig. 6 B, E), but are not significantly different from
gain-compensated DD, gig values (Wilcoxon signed rank test:
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10 %%, Bimodal: p = 1.8 X 10 ~*% shift-compensated DDI,p..:
Visual: p = 1.3 X 10~% Bimodal: p = 1.5 X 10~ % gain-
compensated DDI ;.. Visual: p = 0.17, Bimodal: p = 0.58).
These findings suggest that variations in heading tuning or object
tuning are mainly caused by vertical and horizontal shifts of the

Visual: p = 0.19, Bimodal: p = 0.49; Fig. 6C,F). This indicates
that object direction mainly affects DDl i, values through
baseline and peak shifts, with relatively little effect of gain
changes. Similar results are obtained for object direction tuning
(Fig. 6G-L; mean-compensated DDI ;. Visual: p = 52 X
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tuning curves, with less contribution from variations in response
gain.

The fact that heading tuning curves show horizontal and ver-
tical shifts as a function of object direction (and vice versa) im-
plies that joint tuning profiles are generally not multiplicatively
separable. To quantify inseparabilities in joint tuning, we used
SVD analysis to compute a DSI (see Materials and Methods; De-
pireux et al., 2001; Mazer et al., 2002). For neurons with joint
tuning profiles that are multiplicatively separable, the first singu-
lar value should dominate, and the DSI value will be close to zero.
For neurons with inseparable joint tuning, such as the slanted
structure visible in the example of Figure 7A, the second and
higher singular values will have non-negligible values (Fig. 7B),
and the DSI value will be greater. The key question is whether
inseparability is reduced by the inclusion of vestibular signals.
Indeed, we found that DSI values for MSTd neurons were signif-
icantly smaller (closer to 0) in the bimodal condition than in the
visual condition (Wilcoxon signed rank test, p = 1.3 X 10 '3
n = 164). There was no significant difference in DSI between
congruent, opposite and unclassified cells (ANCOVA, main ef-
fect of congruency, p = 0.082) and no significant interaction
between congruency and the effect of vestibular signals (ANCOVA,
interaction effect, p = 0.069). These results indicate that vestib-
ular signals reduce the interdependencies of heading and object
direction in the responses of MSTd neurons.

Likelihood-based decoding of MSTd population responses
Given that self-motion and object motion interact in the re-
sponses of MSTd neurons in rather diverse ways, the question
arises as to whether it is possible to decode heading or object
direction accurately from a population of such neurons. One
possibility is that the brain computes the joint posterior proba-
bility distribution over both heading (6) and object direction (¢)
from the neural population response (r). To illustrate this, we
assumed that the prior distributions over heading and object
direction are flat (as in our experiment) and that population
activity follows independent Poisson statistics, even though the
latter is not accurate for real MSTd neurons (Gu et al., 2010,
2011). With these assumptions, we computed the joint posterior
as follows (Dayan and Abbott, 2001):

e*ﬁ(w)fi(g’ (P)';
T,’!

P(o, cpIr)ocH , (9)

where f(0, ¢) denotes the joint tuning profile (Fig. 2B, C) of the
ith neuron and r; denotes the response of the ith neuron on a
particular trial.

An example joint posterior, computed from a single-trial
sample of activity from all neurons in our population (Fig. 84), is
sharply peaked around the true stimulus (0 = 135, ¢ = 135). If
the brain actually computes the joint posterior over both heading
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and object direction, then it should be possible to estimate both
variables accurately (note that this requires the decoder to know
the joint heading-object tuning profile of each neuron). Indeed,
we found that performance of this decoder was quite accurate
and precise (Fig. 8 B, C), with errors that were close to zero.

It may not be practical, in general, for the brain to compute the
joint posterior because it could have several dimensions. For ex-
ample, if there were multiple moving objects in a scene, then it
would be necessary to compute a multidimensional posterior
over heading and each object’s motion. Alternatively, for tasks
that involve judging heading, object motion can be treated as a
“nuisance variable” and an ideal strategy would be for the brain to
marginalize over object motion to estimate heading. In other
words, it may be necessary to compute the marginal posterior
over heading:

P(6]x) = X P(6, ¢|r). (10)
®

Analogously, the brain could marginalize over heading to com-
pute the marginal posterior for object motion. Indeed, marginal-
ization is a general operation that is likely to be performed by the
brain for a variety of forms of probabilistic inference.

Mathematically, marginalization simply involves integrating
one (or more) variables out of a joint posterior, but how can such
an operation be implemented neutrally? More specifically, how
might the responses of MSTd neurons be decoded to marginalize
over object motion and estimate heading, or vice versa? In gen-
eral, performing optimal marginalization requires nonlinear op-
erations (Beck et al., 2011); thus, we considered whether an
approximate solution might be achieved through some form of
linear decoding. We first considered the possibility that an ap-
proximation to marginalization could be achieved through a
standard form of linear decoding that involves estimating the
log-likelihood function as a response-weighted sum of tuning
curves (maximum likelihood decoding; Dayan and Abbott,
2001). In simulations, we have reported recently that heading
could be estimated robustly, in the presence of object motion, by
computing approximate log-likelihood functions from a mixed
population of congruent and opposite cells based on their vestib-
ular tuning curves (Kim et al., 2016). This approach was quite
successful in idealized populations of neurons but substantially
less effective in the presence of tuning curve diversity (Kim et al.,
2016); hence, it was not clear if it would be successful when ap-
plied to real data. Thus, we decoded the responses of real MSTd
neurons by computing log-likelihoods based on either visual or
vestibular tuning curves (see Materials and Methods; Egs. 3, 4).

We found that decoding the bimodal responses of MSTd neu-
rons using unimodal tuning curves generally produced large er-
rors (Fig. 9A, B). We summarized these results by computing the
root mean square error (RMSE) for estimates of heading (pooled
across object directions) and the RMSE for estimates of object direc-
tion (pooled across headings). For heading estimation in the bi-
modal condition, RMSE averaged 73.2° = 0.98° when heading was
decoded based on visual heading tuning curves (Fig. 9C, filled blue
bar), and 77.6° £ 6.2° when based on vestibular tuning curves (Fig.
9C, filled red bar). Errors were comparable or larger for the visual
condition (Fig. 9C, open blue and red bars). Thus, the strategy of
estimating log-likelihood functions over heading from unimodal
tuning curves is unsuccessful in the presence of object motion. This
strategy likely fails due to the considerable diversity of tuning prop-
erties across the MSTd population (Kim et al., 2016).

Analogous results are obtained for decoding object direction
based on object-only tuning (Fig. 9D, orange bars), which is also
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unsuccessful. Thus, it does not appear possible for the brain to
effectively dissociate heading and object direction by estimating
log-likelihood functions from response-weighted sums of uni-
modal tuning curves. However, this does not rule out the
possibility that other forms of linear decoding might better
approximate marginalization.

Approximate linear marginalization

We have recently shown, through biologically-constrained sim-
ulations, that it is possible to learn a linear decoder of neural
responses that can provide a good approximation to the marginal
posterior (Kim et al., 2016). We now apply this ALM approach to
population responses from area MSTd to determine whether it is
capable of dissociating the effects of self-motion and object motion.

Similar to the likelihood computation described above, ALM
involves a weighted linear decoding of neural responses. How-
ever, unlike the likelihood computation in which the weight pro-
files are constrained to be the neuron’s tuning curve, ALM finds a
weight profile for each neuron that achieves the best approxima-
tion to the marginal posterior. More specifically, ALM seeks to
compute an approximate version of the marginal posterior (over
heading, for example) that can be described as a member of the
exponential family with linear sufficient statistics (see Materials
and Methods; Eq. 6). We therefore attempted to find the param-
eters, h(6) and g(6), that best approximate the true marginalized
posterior (P) by the approximate form Q. In this formulation
(Eq. 6), h(0) represents a matrix of decoding weights, in which each
neuron (row) has a weight corresponding to each possible heading
(column), whereas g(6) represents a response-independent bias pa-
rameter for each heading.

We have demonstrated previously (Kim et al., 2016) that the
desired quantities, h(6) and g(0), can be computed by applying
multinomial logistic regression to minimize the Kullback—Leibler di-
vergence between P and Q (Fig. 10A). We refer to the linear
transformation that best approximates the marginalized poste-
rior as ALM. The result of this analysis is a set of decoding weights
for each neuron, given by h(0), that describe how much each
neuron contributes to the representation of each possible head-
ing, 6, in the approximate marginal posterior. The resulting
decoding weights provide the best approximation to the margin-
alized posterior over heading that can be achieved by a linear
decoder in the exponential family. Analogously, we can also learn
a set of decoding weights, h(¢), to estimate the marginal poste-
rior over object direction (see Materials and Methods for details).

We applied ALM to responses of a subpopulation of 58 MSTd
neurons: all 29 opposite cells and a subset of 29 congruent cells
that were randomly chosen from our sample of 82 congruent
cells. Results were obtained for 10 different randomly-chosen
subsets of congruent cells, and the outcomes were averaged. This
was done such that the contributions of congruent and opposite
cells to the population were balanced. Our results demonstrate
that ALM is quite accurate in extracting estimates of heading that
are robust to object motion and vice versa (compare Figs. 10B,C
and 9A, B). For estimating heading, RMSEs were 7.32° and 3.68°
for the visual and bimodal conditions (Fig. 9C, brown bars),
values that are dramatically smaller than the RMSE values ob-
tained when heading is decoded by computing log-likelihoods
based on vestibular tuning (Fig. 9C, red bars; visual: 93.9°, bi-
modal: 77.6°) or visual tuning (Fig. 9C, blue bars; visual: 72.9,
bimodal: 73.2°). Indeed, the median RMS heading error for ALM
was highly significantly less than those obtained by decoding with
visual or vestibular tuning curves (Wilcoxon signed rank tests,
p <10~ "*for both visual and bimodal conditions). Importantly,
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the RMSE for ALM is significantly smaller in the bimodal condi-
tion (3.68°) than the visual condition (7.32° Wilcoxon signed
rank test, p = 1.5 X 10 ~>; Fig. 9C, brown bars), indicating that
vestibular signals significantly improve the accuracy with which
the marginal posterior can be estimated from MSTd activity. This
benefit of vestibular signals on ALM performance is roughly sim-
ilar to recent behavioral results from monkeys (Dokka et al.,
2015a), as discussed further below.

Analogous results were obtained when ALM was used to esti-
mate object motion and marginalize over heading (Figs. 10C, Fig.
9D). RMSEs for estimating object direction were greatly reduced
compared with when object direction was estimated by comput-
ing likelihoods based on object-only tuning (Fig. 9D; visual: p =
1.6 X 10 7% bimodal: p = 6.1 X 10 ~'?). Furthermore, the addi-
tion of vestibular signals modestly but significantly reduced the

RMSE in object direction from 1.91° in the visual condition to
1.64° in the bimodal condition (Fig. 9D, brown bars; Wilcoxon
signed rank test, p = 0.0032).

Although the results of Figure 9, Cand D, were obtained from
balanced populations of congruent and opposite cells, we also
found that qualitatively similar results were obtained when ALM
was trained to decode the responses of all MSTd neurons. For
decoding heading, RMSE in the bimodal condition (0.37°) was
significantly less than RMSE in the visual condition (0.81°), with
the difference being statistically significant (p = 0.019, Wilcoxon
signed rank test). For decoding object motion, the RMSE for the
bimodal condition (0.28°) was also significantly less than the
RMSE in the visual condition (0.36% p = 2.3 X 10 ~* Wilcoxon
signed rank test). Thus, the effect of vestibular signals on estima-
tion of heading and object motion can be observed when all
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neurons are decoded, although the differential effects become
smaller as the errors approach zero.

Together the results of Figures 9 and 10 show that it is possible
to linearly transform MSTd activity and obtain robust estimates
of either heading or object direction; moreover, vestibular input
significantly improves the accuracy of these estimates. These
findings qualitatively mirror the effects of vestibular signals ob-
served in recent behavioral studies (Fajen and Matthis, 2013;
Dokka et al., 2015a,b), although one should exercise caution in
comparing absolute errors between ALM and behavior (see
Discussion).

Comparison of ALM weights and neural tuning curves

Our previous computational study (Kim et al., 2016) showed that
the decoding weight profiles learned by ALM for heading estima-
tion were roughly similar to the vestibular tuning curves of model
neurons, but not to the visual tuning curves (for opposite cells).
To determine whether similar relationships hold for real MSTd
neurons, we compared the learned weight profile for each neu-
ron, h;(0) or h;(¢), with the unimodal heading tuning curves and
the object-only tuning curve. As described above, we averaged
results across 10 balanced populations of 29 congruent and 29
opposite cells.

Results from an example congruent cell (Fig. 11A) reveal that
the ALM weights for estimating heading, h;(6), have a profile
similar in shape to the vestibular and visual heading tuning
curves of this neuron. The ALM weights for estimating object
motion, h;(¢), are roughly similar in shape to the object-only

tuning curve but not the visual heading tuning curve. For the
example opposite cell (Fig. 11B), the results are quite different.
Here, h;(0) resembles the vestibular heading tuning curve, but
not the visual heading tuning curve, and h;,(¢) resembles the
object-only tuning curve and not the visual heading tuning. Notably,
h;(60) resembles the vestibular heading tuning for both the congruent
cell and the opposite cell in Figure 11, A and B, similar to the findings
of Kim et al. (2016) for simulated neural populations.

The pattern of results exhibited by these example neurons is
largely confirmed across the population of MSTd neurons, as
assessed by computing correlation coefficients between ALM
weights and tuning curves. For congruent cells (Fig. 11C), h;(0) is
generally well correlated with both vestibular and visual heading
tuning curves: the median correlation coefficients are 0.69 and
0.65, respectively. Both of these values are significantly different
from zero (sign tests: vestibular: p = 1.6 X 10 ~7°, visual: p =
5.6 X 10 ~°"), and the median correlation with vestibular heading
tuning is significantly greater than the correlation with visual tuning
(Wilcoxon signed rank test, p = 4.1 X 10 ~*). By comparison, h,(¢)
for congruent cells is modestly, but significantly, correlated with
object-only tuning (median correlation coefficient = 0.30; sign test,
p=26X10"",

For opposite cells (Fig. 11D), a different pattern emerges. We
find that h,(0) is generally positively correlated with vestibular
heading tuning (median correlation coefficient = 0.39; sign test,
p = 5.6 X 10 ~'®) but shows no systematic correlation with visual
heading tuning (median correlation coefficient = —0.20; sign
test, p = 0.80). Comparing ALM heading weights across congru-
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ent and opposite cells, we see that ALM
weights tend to be positively correlated
with vestibular heading tuning for both
types of neurons, roughly consistent with
the findings of Kim et al. (2016) for model
neurons.

For opposite cells, ALM weights for esti-
mating object direction, h;(¢), are strongly
correlated with object-only tuning (me-
dian correlation coefficient = 0.70; sign
test, p = 5.3 X 10~ *°), and this correla-
tion is significantly stronger than the cor-
responding relationship for congruent
cells (Wilcoxon rank sum test, p = 1.3 X
10 ~"%). This finding is consistent with the
idea that opposite cells may contribute
more substantially to estimating object di-
rection than congruent cells.

The results of Figure 11, Cand D, sug-
gest that the weight profiles learned by
ALM have some systematic relationships
with the unimodal tuning curves for
heading and object motion. We also ex-
amined whether the amplitudes of the
ALM weight profiles, h;(0) and h;(¢), are
correlated with the amplitudes of the uni-
modal tuning curves. We found no signif-
icant correlation between the amplitude
of h;(6) and the amplitude of visual or ves-
tibular heading tuning curves, for either
congruent or opposite cells (Fig. 11E,F;
Spearman rank correlations, p > 0.10).
Similarly, we found no correlation be-
tween the amplitude of h;(¢) and object
tuning curves (Spearman rank correla-
tions, p > 0.66). Thus, ALM does not
weight the responses of MSTd neurons ac-
cording to the strength of their unimodal
tuning curves (unlike the log-likelihood
computation), even though there are sys-
tematic relationships between the shapes
of ALM weights and tuning curves. This
suggests that the superior performance
of ALM over the log-likelihood computa-
tion arises, at least in part, from applying a
gain factor to neurons that is not predict-
able from their tuning strength.

Discussion

Our findings show that vestibular signals
contribute to generating robust represen-
tations of self-motion and object motion
in area MSTd. Specifically, vestibular sig-
nals enhance the separability of the joint
heading/object tuning profiles of MSTd
neurons. As a result, vestibular signals en-

hance the representation of heading in congruent cells and the
representation of object motion in opposite cells. We demon-
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curve), vestibular heading tuning (red curve), and object-only tuning (orange curve) for an example congruent cell. B, Same as 4,
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verse multisensory representations in performing neural compu-
tations that parse sensory inputs into components that reflect
separate physical causes.

strate that a linear transformation of MSTd responses (ALM) can

allow fairly accurate decoding of either heading or object motion
while marginalizing over variations in the other variable, and that
vestibular signals facilitate this marginalization computation.
Together, our findings demonstrate a fundamental role for di-

Limitations of stimulus design

Our exploration of interactions between self-motion and object
motion was limited to the frontoparallel plane, because it was not
practically feasible to record from neurons long enough to study
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the interactions in all three dimensions. We chose the frontopa-
rallel plane, instead of the horizontal plane, because there are
fewer visual cues to distinguish object motion from self-motion,
thus making the marginalization problem more difficult. In the
horizontal plane, there would also be looming and changing dis-
parity cues that might be exploited to dissociate self-motion and
object motion. Previous work (Logan and Dutfty, 2006) suggests
that the relationship between visual heading tuning and object
direction tuning is similar in the frontoparallel and horizontal
planes for MSTd neurons; thus, we would expect similar results
in the horizontal plane. We recognize, however, that the addi-
tional visual cues that would be available in the horizontal plane
might also aid the dissociation of self-motion and object motion.
Thus, there might be less need for marginalization operations
when self-motion occurs in the horizontal plane.

Another limitation is that we used a large, multipart object to
elicit robust responses of MSTd neurons to object motion. Al-
though our object is probably larger than most objects encoun-
tered in natural scenes, this choice was driven by the fact that
most MSTd neurons do not respond well to small objects (Kom-
atsu and Wurtz, 1988a,b), as well as the need to have the object
easily visually segmented from the background dots.

Approximate linear marginalization

Marginalization operations are of considerable importance be-
cause they allow the brain to estimate a variable of interest and
integrate out the effects of nuisance variables. Marginalization
can be easily accomplished with a simple linear decoder if nui-
sance parameters simply change the gain of neural responses (Ma
etal., 2006; Beck et al., 2011). However, the interactions between
self-motion and object motion in MSTd responses are generally
not well described as gain modulations (Figs. 2, 6). Under these
conditions, marginalization generally requires nonlinear trans-
formations of neural responses (Beck et al., 2011) that may be
difficult for the brain to implement.

We recently demonstrated that it is possible to approximate
marginalization using a linear transformation of neural responses
that we call ALM (Kim et al., 2016). ALM was successful in biolo-
gically-constrained simulations, even when the joint heading-
object tuning of model neurons was strongly inseparable. Our
present findings show that ALM performs quite well when ap-
plied to responses of real MSTd neurons, even when the neural
populations are modest in size (~60 neurons). Our results sug-
gest that simple linear transformations could help to solve a va-
riety of computational problems that require marginalizing out
the effects of nuisance parameters. Further work is needed to
determine how well ALM performs when multiple nuisance vari-
ables are present, but the approach is general and should be ap-
plicable to larger-scale problems.

Neural substrates for dissociating heading and object motion

In macaque monkeys, visual motion processing involves a net-
work of cortical areas, including MT, MST, VIP, and FST (Orban
etal., 2004). Although many studies have been conducted with a
variety of stimuli, including plaids and random-dot patterns that
contain multiple velocity components (Treue et al., 2000; Rust et
al., 2006; McDonald et al., 2014), only a few previous studies have
tested neurons with combinations of visual motion cues that sim-
ulate both self-motion and object motion (Logan and Dulffy,
2006; Sato et al., 2010; Kishore et al., 2012). Consistent with our
findings, these previous studies report that interactions between
heading and object motion can be complex, showing a variety of
subadditive and superadditive interactions (Sato et al., 2010). A
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population vector decoder failed to recover heading accurately
when object motion was opposite to self-motion (Logan and
Duffy, 2006), consistent with our finding that likelihood func-
tions computed as response-weighted sums of tuning curves fail
to approximate marginalization. Importantly, these previous
studies only examined interactions between visual cues to self-
motion and object motion; our study is the first to examine
whether vestibular signals help to dissociate self-motion from
object motion in neural responses.

Our findings suggest that area MSTd is well suited to play a
role in dissociating self-motion and object motion through mul-
tisensory integration. However, MSTd neurons generally do
not respond well to small moving stimuli (Komatsu and Wurtz,
1988a,b). Indeed, this was also our experience in preliminary
experiments, leading us to adopt a stimulus design in which a
large multipart object moved independently in the virtual envi-
ronment (see Materials and Methods). The role of MSTd in rep-
resenting object motion may therefore be limited to situations in
which moving objects subtend a substantial portion of the visual
field, and other areas may represent the motion of small objects
during self-motion. One candidate area is MSTI, where neurons
have smaller receptive fields and frequently exhibit strong sur-
round suppression (Eifuku and Wurtz, 1998). It is unknown,
however, whether MST] neurons carry vestibular signals that
could aid in dissociating self-motion and object motion. Another
candidate area is V6 (Galletti et al., 1999, 2001), based on human
imaging studies (Pitzalis et al., 2010, 2012). To our knowledge, a
direct examination of interactions between object motion and
self-motion has not been conducted in V6 at the single-neuron
level. However, recent results (Fan et al., 2015) indicate that mon-
key V6 neurons do not carry vestibular signals regarding body
translation. Other visual-vestibular areas that may contribute in-
clude the VIP area (Chen et al., 2011b), VPS area (Chen et al.,
2011a), and the FEF (Gu et al., 2016).

It is important to emphasize that multisensory mechanisms
for dissociating self-motion and object motion may operate in
parallel with purely visual mechanisms, such as those involving
center-surround mechanisms (Anstis and Reinhardt-Rutland,
1976; Frost and Nakayama, 1983). Indeed, computational mod-
els have demonstrated that such visual strategies can be effec-
tive (Royden, 2002; Royden and Holloway, 2014). Our results
suggest that multisensory mechanisms may augment these vi-
sual strategies.

Until recently, the functional role of opposite cells has re-
mained unclear. Previous work showed that opposite cells are
ill-suited for cue integration (Gu et al., 2008, 2014) and cue-
weighting (Fetsch et al., 2011) in heading perception. Choice-
related activity suggested that opposite cells might be decoded
according to their vestibular heading preferences (Gu et al., 2008,
2014), and simulations showed this to be an effective strategy for
estimating heading during object motion (Kim et al., 2016). Our
present results are broadly consistent with this idea, as the
weights learned by ALM to estimate heading tend to resemble
vestibular tuning for opposite cells. Together, these findings
suggest that opposite cells make important contributions to dis-
sociating self-motion and object motion; moreover, the compu-
tational strategy may be applicable to source separation problems
involving other sensory modalities.

Relationship to behavioral studies

Psychophysical studies have explored whether the visual system
can parse retinal image motion into components related to self-
motion and object motion (Rushton and Warren, 2005; Warren
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and Rushton, 2007, 2008, 2009; Matsumiya and Ando, 2009).
These “flow parsing” studies show that global patterns of optic
flow consistent with self-motion can alter the perceived velocity
of small moving objects, consistent with discounting global flow,
even when the object is located in the hemi-field opposite to optic
flow (Warren and Rushton, 2009). However, it is not clear from
these studies whether the visual system, by itself, can fully disso-
ciate self-motion and object motion, nor whether vestibular sig-
nals may contribute to flow-parsing.

A few recent psychophysical studies have examined percep-
tion of object motion during both real and simulated self-motion
(MacNeilage et al., 2012; Fajen and Matthis, 2013; Dokka et al.,
2015b). Consistent with our findings from decoding MSTd neu-
rons, Dokka et al. (2015b) report that vestibular signals reduce
biases in perceived object direction during self-motion. Dokka et
al. (2015b) found substantially larger biases than we predict from
ALM, however, suggesting that neural processing in humans may
not achieve near-optimal marginalization. However, the species
and stimulus conditions are different, making direct compari-
sons difficult. Using a different paradigm, Fajen et al. (2013) also
found evidence that vestibular signals contribute to human
judgements of object direction during self-motion, indicating
that multisensory mechanisms play important roles in dissociat-
ing self-motion and object motion.

One can also consider the complementary question of how
moving objects affect judgements of heading. Observers can ex-
hibit substantial biases when they judge heading in the presence
of objects that move independently in the world, especially when
those objects overlap the focus of expansion in optic flow (War-
ren and Saunders, 1995; Royden and Hildreth, 1996, 1999; Fajen
and Kim, 2002; Mapstone and Duffy, 2010). It is generally diffi-
cult to compare our population decoding results from MSTd to
these previous studies because stimulus conditions were quite
different. Our results regarding vestibular signals are most com-
parable to a recent study of monkey heading perception (Dokka
et al., 2015a), despite substantial differences in object size and
directions of self-motion. Dokka et al. (2015a) reported that ad-
dition of vestibular self-motion signals largely eliminated head-
ing biases caused by object motion, indicating that vestibular
signals contribute to dissociating self-motion and object motion.
Notably, the relative magnitudes of heading biases found by Dokka
et al. (2015a) in the visual and bimodal conditions (see their Fig.
4 B) are approximately comparable to our results from applying
ALM to MSTd responses (Fig. 9C, brown bars).

In closing, in conjunction with recent computational work
(Kim etal., 2016), the present findings suggest that a linear trans-
formation of the responses of a diverse population of multisen-
sory neurons may be sufficient to dissociate self-motion and
object motion. Future studies can build on this foundation by
recording and manipulating neural activity while animals disso-
ciate object motion and self-motion perceptually, and these ef-
forts will be important to tease apart the circuitry underlying
these fundamental computations.
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