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Network Models: Frequency Dynamics and Response to
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Hippocampal ripples are involved in memory consolidation, but the mechanisms underlying their generation remain unclear. Models
relying on interneuron networks in the CA1 region disagree on the predominant source of excitation to interneurons: either “direct,” via
the Schaffer collaterals that provide feedforward input from CA3 to CA1, or “indirect,” via the local pyramidal cells in CA1, which are
embedded in a recurrent excitatory-inhibitory network. Here, we used physiologically constrained computational models of basket-cell
networks to investigate how they respond to different conditions of transient, noisy excitation. We found that direct excitation of
interneurons could evoke ripples (140 -220 Hz) that exhibited intraripple frequency accommodation and were frequency-insensitive to
GABA modulators, as previously shown in in vitro experiments. In addition, the indirect excitation of the basket-cell network enabled the
expression of intraripple frequency accommodation in the fast-gamma range (90 -140 Hz), as in vivo. In our model, intraripple frequency
accommodation results from a hysteresis phenomenon in which the frequency responds differentially to the rising and descending
phases of the transient excitation. Such a phenomenon predicts a maximum oscillation frequency occurring several milliseconds before
the peak of excitation. We confirmed this prediction for ripples in brain slices from male mice. These results suggest that ripple and
fast-gamma episodes are produced by the same interneuron network that is recruited via different excitatory input pathways, which
could be supported by the previously reported intralaminar connectivity bias between basket cells and functionally distinct subpopula-
tions of pyramidal cells in CA1. Together, our findings unify competing inhibition-first models of rhythm generation in the hippocampus.

Key words: basket cells; CA1; fast gamma; memory consolidation; network oscillations; sharp wave/ripple complexes

(s )

The hippocampus is a part of the brain of humans and other mammals that is critical for the acquisition and consolidation of
memories. During deep sleep and resting periods, the hippocampus generates high-frequency (~200 Hz) oscillations called
ripples, which are important for memory consolidation. The mechanisms underlying ripple generation are not well understood. A
prominent hypothesis holds that the ripples are generated by local recurrent networks of inhibitory neurons. Using computational
models and experiments in brain slices from rodents, we show that the dynamics of interneuron networks clarify several previ-
ously unexplained characteristics of ripple oscillations, which advances our understanding of hippocampus-dependent memory
consolidation.
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rarily stored in the hippocampus. Sharp wave-ripple complexes
(SWRs) are prominent in periods of immobility, consummatory
behaviors, and slow-wave sleep in rodents (Buzsaki et al., 1983,
1992; Buzsaki, 1986; Wilson and McNaughton, 1994; Karlsson
and Frank, 2009) and humans (Bragin et al., 1999; Axmacher et
al., 2008). During SWRs, previously acquired information is re-
played (Wilson and McNaughton, 1994; Nadasdy et al., 1999; Lee
and Wilson, 2002; Foster and Wilson, 2006; Diba and Buzsaki,
2007; Gupta et al., 2010). SWRs were proposed to assist mem-
ory consolidation (Buzsdki, 1989, 1998; Siapas and Wilson,
1998; Girardeau and Zugaro, 2011). In support, the suppres-
sion of SWRs impairs spatial memory (Girardeau et al., 2009;
Ego-Stengel and Wilson, 2010; Jadhav et al., 2012). However,
mechanisms underlying the generation of SWRs are not well
understood (Buzséki and Lopez da Silva, 2012).

SWRs consist of a fast (~90-200 Hz) oscillation, the ripple,
superimposed on a transient deflection of the LFP, the sharp wave
(Buzséki etal., 1992). The activity of various cell types is locked to
ripple oscillations, but the pace-making mechanisms are unclear,
although many in vivo and in vitro studies addressed this question
(Ylinen et al., 1995; Draguhn et al., 1998; Nadasdy et al., 1999;
Csicsvari et al., 2000; Klausberger et al., 2003, 2005; Maier et al.,
2003, 2011; Lapray et al., 2012; Hajos et al., 2013; Pangalos et al.,
2013; Gan et al.,, 2017). Current hypotheses agree that the fast
component emerges from interactions between neurons, but
models differ on where and how such oscillatory activity is gen-
erated. Excitation-first models propose that oscillations originate
in pyramidal cells that, in turn, entrain interneurons via local
principal cell-to-interneuron connections. Generative mecha-
nisms in such models rely on propagation of activity between
pyramidal cells via axonal gap junctions (Draguhn et al., 1998;
Traub et al., 1999) or, alternatively, via chemical synapses and
supralinear dendritic integration (Memmesheimer, 2010). In
inhibition-first models, in contrast, the generation of the oscilla-
tion is critically dependent on a recurrent interneuron network
(Buzséki et al., 1992; Ylinen et al., 1995; Taxidis et al., 2012;
Malerba et al., 2016). Upon stimulation, such an interneuron
network generates fast oscillations, providing rhythmic inhibi-
tion that paces principal cells. Models of this class may differ on
whether interneurons are predominantly driven by direct Schaf-
fer collateral input (Schlingloff et al., 2014) or indirectly via local
pyramidal cells (Stark et al., 2014).

Ripples display several features that constrain the type of pace-
making mechanism. First, single oscillatory episodes in vivo can
exhibit frequencies either in the ripple band (140-220 Hz) or the
fast-gamma band (90-140 Hz) (Csicsvari et al., 1999; Sullivan et
al., 2011). Second, both ripple and fast-gamma events exhibit
intraripple frequency accommodation (IFA): an initially high os-
cillation frequency during the first half of the event is followed by
a monotonic deceleration (Ponomarenko et al., 2004; Nguyen et
al., 2009; Sullivan et al., 2011). And third, the ripple frequency in
vitro is insensitive to GABA modulators (Papatheodoropoulos et
al., 2007; Koniaris et al., 2011; Viereckel et al., 2013), in stark
contrast to other forms of inhibition-based oscillations (Whit-
tington et al., 1995; Traub et al., 1996).

So far, models of SWRs have focused on the ripple band, and
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have not accounted for IFA (Traub et al., 1996; Memmesheimer,
2010; Taxidis et al., 2012; Malerba et al., 2016). Moreover, previ-
ous inhibition-first models are frequency-sensitive to changes in
GABAergic transmission (Taxidis et al., 2012; Malerba et al,,
2016; but see Brunel and Wang, 2003), which supports excita-
tion-first models (Viereckel et al., 2013).

The present computational and experimental study demon-
strates how the inhibition-first hypothesis can account for all the
aforementioned features of ripples, advancing our understanding
of hippocampus-dependent memory formation.

Materials and Methods

Here we aimed at assessing the explanatory power of ripple models that
rely on an interneuron network as the primary pacemaker. We therefore
focused on the oscillatory response of a physiologically constrained
model of a parvalbumin-immunoreactive (PV *) basket cell (BC) net-
work in CAl. The parameters of the model were constrained by data
obtained from studies using rodents, mostly rats. In few cases, if data
from rats were not available, we also used data obtained from mice (for a
review on ripple features in these species, see Maier and Kempter, 2017).

Model neurons. Both pyramidal cells and interneurons were described
by single-compartment, leaky integrate-and-fire models, in which the
dynamics of the subthreshold membrane potential V. obeyed as follows:

dv,,
Cm F = gleak(Erest - Vm) + Isyn + Iapp) (1)

where E_, is the leak (resting) potential, C,, is the capacitance, and g
is the leak conductance. The symbols I, and ,,, indicate the synaptic
and injected (applied) currents, respectively. When V, | reaches a thresh-
old voltage V.- the unit emits a spike. After spiking, V,, is reset to a
potential V., and the cell remains refractory for a period ¢,

For interneurons, the parameters of the leaky integrate-and-fire model
were tuned to resemble the behavior of a fast-spiking BC in CA1. The leak
potential E, ., was set to —65 mV (Wang and Buzsaki, 1996; Bartos et al.,
2002). The values C,, = 100 pF and g, = 10 nS yield a membrane time
constant of 10 ms (Buhl etal., 1996). The spiking parameters Vi, co Vyeser
and t,c were set to —52 mV, —67 mV, and 1 ms, respectively. Although
higher values of V., have been reported in the literature (Ferguson et
al., 2013), we opted to remain consistent with previous models (Wang
and Buzsdki, 1996; Taxidis et al., 2012) because this parameter is not
critical for the phenomena described here. To check for the consistency
of the chosen parameter values, we empirically measured the current-
frequency curve of the interneuron model by varying the value of I,
between 0 and 1.0 nA in the absence of synaptic currents. The obtained
current-frequency curve exhibited a slope of 380 Hz/nA (measured at
Ipp = 0.6nA) and arheobase of 0.13 nA, in agreement with hippocampal
PV * BCs recorded in vitro (Pawelzik et al., 2002; Ferguson et al., 2013)
and more sophisticated models of fast-spiking BCs (Wang and Buzsdki,
1996; Ferguson et al., 2013).

For pyramidal cells, the parameters of the leaky integrate-and-fire
model were adjusted according to Bihner et al. (2011): E, ., = —67 mV,
C,, = 275 pF, and g, = 25 nS, which yield a membrane time constant
of 11 ms, and the spiking parameters Vi .. Vieer and t,.c were set to
—50 mV, —60 mV, and 2 ms, respectively.

Model synapses. The total synaptic current I, is described according

to a conductance-based model as follows:
Ly = (8 + g)(E. — V) + &(E — Vi) (2)

where g, and g; are the phasic excitatory and inhibitory conductances,
respectively, resulting from the presynaptic activity, and g, corresponds
to a tonic excitatory conductance that could be externally driven. E; and
E, are the reversal potentials of inhibition and excitation, respectively.
For interneurons, E; was set to —75 mV, in accordance with reported
values (Buhl et al., 1995) and previous models (Wang and Buzsaki, 1996;
Bartos et al., 2002). For pyramidal cells, E; was set to —68 mV (Maier et
al., 2003; Bihner et al., 2011). E, was set to 0 mV for both interneurons
and pyramidal cells.
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The time course of a postsynaptic conductance due to a presynaptic
spike is described by a normalized dual exponential as follows:

g0 = g"*s{exp[— (t — T)/1g] —exp[ — (t = 7)/7]}  (3)

for t= 7, and g(t) = 0 otherwise. The scaling factor s was set such that g(t)
reaches the maximum value gP**¥, and 7, and 7, are the rise and decay
time constants, respectively. There is a latency of 7, = 1 ms between a
presynaptic spike and the start of the postsynaptic conductance.

Two types of phasic synapses were used: fast GABAergic and AMPA-
type. The values for GABAergic synapses were tuned according to Bartos
etal. (2002): GABA on interneurons had 7, = 0.45 ms, 74 = 1.2 ms, and
¢P** = 5nS. GABA on CAl pyramidal cells had 7, = 0.4 ms, 7, = 2 ms,
and gP**™* = 9 nS. AMPA-type synapses on CAl interneurons had 7, =
0.5 ms, 74 = 2 ms, and gP*** = 0.8 nS when driven by Schaffer collateral
activity (Taxidis et al., 2012), and 7, = 0.5 ms, 74 = 1.2 ms, and gPeak =
3.0 nS when driven by CA1 pyramidal cell activity (Pawelzik et al., 2002).
AMPA-type synapses on pyramidal cells had 7, = 0.5 ms, 74 = 1.8 ms,
and gpe“k = 0.9 nS (Maier et al., 2011).

Network model of inhibitory neurons. SWRs can be observed in the
isolated CA1 area of ventral-to-middle hippocampal slices (Maier et al.,
2003, 2011; Nimmrich et al., 2005). We therefore constrained the model
according to the PV * BC network in such a small volume of tissue. To set
the number of interneurons in the network, we obtained two consistent
estimates for the number of PV * BCs. The first estimate is based on the
volume of the stratum pyramidale in a hippocampal slice and the density
of PV ™ BCs in this region. The typical thickness of a hippocampal slice
(0.4 mm) and the dimensions of the CA1 stratum pyramidale in ventral
hippocampus (0.13 mm X 1.1 mm) (Dougherty et al., 2012) yield a
volume of 0.057 mm?>. The density of PV * cells in the stratum pyrami-
dale was estimated to be 5.4 X 10 72 cells/mm? (Aika et al., 1994). Con-
sidering that 60% of PV " cells in CA1 are BCs (Bezaire and Soltesz,
2013), we calculated 185 PV ™ BCs contained in a slice.

A second estimate for the number of interneurons was obtained by
scaling the total number of 5530 PV * BCs in the hippocampus (Bezaire
and Soltesz, 2013) by the fraction of the volume of a 400 wm slice. If we
approximate the geometry of the hippocampus to a cylinder and con-
sider its septotemporal extension to be ~10 mm (Patel et al., 2012), a
400 pm slice represents 4% of the total volume. This fraction yields 221
PV * BCs in a slice. Approximately consistent with both estimates, our
simulated network consisted of 200 interneurons.

To estimate the connectivity in our network, we note that a single PV *
BC can contact on average 64 other PV * cells (Sik et al., 1995). If we
consider that 60% of those PV * cells are BCs (Bezaire and Soltesz, 2013),
then a PV ™ BC contacts on average 38 other cells of the same type. This
number corresponds to a connectivity of 20.5% for 185 cells and 17% for
221 cells. In our simulations, we used 20% connectivity.

To keep the model as simple as possible, we assumed that pairs of PV *
BCs are connected with equal probability. In consequence, there is no
spatial structure in the connectivity, in contrast to previous models
(Wang and Buzséki, 1996; Bartos et al., 2002; Taxidis et al., 2012).

In summary, the interneuron network model consisted of 200 fast-
spiking BCs that are randomly connected with a connection probability
of 20%. Thus, on average, each interneuron in the network received 40
synaptic contacts from other interneurons.

Phasic excitatory input to interneurons. In the hippocampus, AMPA-
type synapses on interneurons in CAl can be driven by Schaffer collat-
erals from CA3, or by local fibers from CA1 pyramidal cells (Takédcs et al.,
2012). In our model, two populations of pyramidal cells (CA3 and CA1)
were randomly connected to CA1 interneurons via AMPA-type synapses.
Here we explain how we constrained the number of pyramidal cells in
both populations and their connectivity with the interneuron network
described above. In the intact hippocampus, the total number of pyra-
midal cells in CA3 and CA1 was estimated as 204,700 and 311,500, re-
spectively (Bezaire and Soltesz, 2013). We scaled these numbers down to
the ratio 0.04 of the volumes of a slice and the intact hippocampus to
obtain ~8200 CA3 and ~12,000 CA1 pyramidal cells providing input
fibers to CAl interneurons. The connectivity between CA3 pyramidal
cells and interneurons in the model (see Fig. 3A) was obtained from the
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estimated number of synapses per interneuron and the total number of
CA3 pyramidal cells. In the intact hippocampus, each interneuron re-
ceives 7,952-17,476 synapses from Schaffer collaterals (Bezaire and
Soltesz, 2013). Such collaterals stem from pyramidal cells located within
the proximal two-thirds of the ~10 mm septotemporal extension of CA3
(Lietal., 1994). If we consider that each of those synapses corresponds to
a pyramidal cell located within such an extension (~6.7 mm) and that
the thickness of a typical hippocampal slice preserves 6% of that exten-
sion (0.4 mm/6.7 mm), we expect that ~6% of the total number of
excitatory synapses can be driven by the ~8200 CA3 pyramidal cells.
From this estimate, we obtained 480—-1050 input synapses per interneu-
ron. From the ratio between the number of synapses per interneuron and
the number of pyramidal cells in CA3, we estimated a connection prob-
ability between CA3 pyramidal cells and interneurons, py,, ., that ranged
from 0.06 to 0.13. This number also describes the average shared input
across interneurons and therefore quantifies the correlations introduced
by the connectivity. For the simulations, we chose an intermediate value
Pshare = 0.095, which corresponds to ~780 excitatory synapses per in-
terneuron. Interneurons did not project back to CA3 pyramidal cells.

The connection probabilities between CA1 pyramidal cells (pyr) and
interneurons (int) (see Fig. 4A) were adjusted according to the reported
connectivity between pyramidal cells and PV ™ BCs in vitro (Pawelzik et
al., 2002): pyr — int = 0.1; int — pyr = 0.3. Local pyramidal cells were
also reciprocally connected with probability 0.01 (Deuchars and Thom-
son, 1996).

Stimulation paradigms. To study the oscillatory behavior of the in-
terneuron network under both its steady-state and transient regimes, we
applied different forms of persistent and transient excitation to interneu-
rons, respectively. Stimulation was applied either directly to interneu-
rons (i.e., in the absence of feedback inhibition; sketched in Figs. 3A, 4C)
or indirectly via depolarization of local CA1 pyramidal cells (sketched in
Fig. 4A). Direct stimulation was delivered either via spiking activity of the
CA3 population of pyramidal cells (see, e.g., Fig. 3A), or by activation of
tonic excitatory conductances ( g in Eq. 2) on interneurons (as in Schlin-
gloff et al., 2014) (see Fig. 4C). Indirect stimulation, on the other hand,
was delivered by activation of tonic excitatory conductances on CAl
pyramidal cells (as in Stark et al., 2014) (see Fig. 4A). In what follows, we
describe in detail the various combinations of stimulus paradigms.

Persistent stimulation was always applied directly to the interneurons.
During persistent spiking stimulation (see Figs. 1, 2, and 9A), every py-
ramidal cell in CA3 fired according to a homogeneous Poisson process
with a constant rate. In this condition, the total Poisson rate delivered to
each interneuron corresponds to the number of synapses per interneu-
ron (here: 780) multiplied by the rate of a single pyramidal cell, which
was varied in a wide range between 1.28 and 19.23 spikes/s. The input
strength of the network is then given as the total rate per cell (range,
1,000-15,000 spikes/s), which corresponds to the number of excitatory
synaptic events experienced by a single interneuron per unit time. For
persistent stimulation via tonic conductance activation (see Fig. 9B),
constant values of g were normally distributed across the population
with a mean of 17.4 nS and an SD of 0.5 nS, yielding a coefficient of
variation (CV) of 3%, as in interneuron-network gamma models (Traub
et al., 1996; Wang and Buzsaki, 1996).

To provide transient stimulation, interneurons were driven either by a
modulated Poissonian activity (e.g., see Fig. 2A, top, gray), or a burst of
excitatory activity (e.g., see Figs. 3B,H, 4C). In all cases, also a weak
Poissonian synaptic activity was delivered at a total rate of 1200 spikes/s,
which summarizes the synaptic noise due to random activity and spon-
taneous synaptic release stemming from both CA1 and CA3 pyramidal
cells. The burst consisted of a Gaussian temporal profile that was deliv-
ered either directly or indirectly. To directly deliver a burst in the form of
CA3 spiking activity (see Figs. 3, 8), we considered that a small fraction of
the pyramidal cells in CA3 (~17%) fires once during a single SWR event
(Hajos et al., 2013). Accordingly, in our simulations, 1400 of 8200 units
of the CA3 driving population participated in the SWR. Each driving unit
in this bursting subpopulation fires once at a point in time which is
drawn from a normal distribution with a SD of 5, 7, or 10 ms.

To modulate the transient activity of CA3 pyramidal cells at ripple
frequencies (Fig. 3 H,I), we modified the probability distribution from
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which the spike times of the bursting population were drawn. The mod-
ified distribution consisted of a train of Gaussian peaks with jitter oj; e,
that were separated by a constant interpeak interval T (i.e., no IFA from
CA3). This train (at ripple frequency 1/T) was in turn modulated by a
Gaussian envelope (o = 7 ms), as in the control condition in Figure 34,
and the train of Gaussian peaks was randomly aligned (across simulated
SWR events) to the Gaussian envelope. In this way, the excitatory firing
rate delivered to the interneuron network remained the same, regardless
of the values of T and oy, To quantify phase locking, the vector
strength v, resulting from the wrapped peak distributions was set by
adjusting oy;,,/ T in

v =exp{—2 X (m X do/T)*}. (4)

In our simulations, we used reference values v, = 0.1 and 0.2 of CA3
modulation depths, which correspond to the upper bound observed for
ripples in vivo (Sullivan et al., 2011), and the average reported for fast-
gamma in vivo (Tukker etal., 2013), respectively. We also used v, = 0.4 to
illustrate an extreme case.

To compare our results regarding the coupling between CA3 units and
CALl LFP with those obtained by Both et al. (2008), we translated their
measure “coupling strength” of unit locking (called Sg,, here) into vec-
tor strength v, in the following manner: Both et al. (2008) estimated the
time-span around the central peak of the cross correlogram that entails
50% of its area, and then expressed this time as a percentage of the ripple
period (their Figs. 2, right, and 4C for single-unit recordings with Sy, =
0.37, bottom right). In a normal distribution, such a width corresponds
to ~4/3 of its SD (= 2/3 SDs around the peak). The fraction Sy, of the
ripple cycle covered by such a width is therefore Sp, = 4/3 * 0o/ T-
Using S, = 0.37 yields v, = 0.22.

For the indirect-drive condition in Figure 4A, a random subpopula-
tion of 100 local pyramids was depolarized by driving their tonic excit-
atory conductances ( g, in Eq. 2) with Gaussian intensity profiles (o =
13 ms). The amplitudes of such profiles were normally distributed across
the population with a variability described by the ratio between the SD
and the mean of the normal distribution (i.e., by its CV). The variability
was kept constant at CV = 0.5 across simulations, only the mean ampli-
tude of this distribution was varied to provide different levels of input to
the pyramids. For the direct-drive condition (see Fig. 4C), interneurons
were depolarized by driving their tonic excitatory conductances with
Gaussian intensity profiles, as was done with pyramids. Such intensity
profiles were adjusted according to the excitatory activity measured on
interneurons during the indirect-drive condition. For every average level
of input applied to the pyramids during indirect-drive, the resulting
excitatory conductances measured at the interneurons were low-pass
filtered (<30 Hz) to generate a sample of 200 reference conductance
traces (one for each interneuron). From that sample, an average trace and
its SD were measured. The average trace and variability obtained were
then used to adjust the Gaussian intensity profiles that were delivered
directly to the interneurons via their tonic excitatory conductances.

Numerical simulations. Simulations consisted of 1 s or 100 ms simu-
lated time (time step = 10 us) for the persistent and transient paradigms,
respectively. For each numerical simulation, a new instance of the model
was created (i.e., the network and the external input connectivity were
randomly rewired). All simulations, data analysis, and visualization of
results were performed in Python (www.python.org). The network
model was implemented using the spiking network simulator Brian
(Goodman and Brette, 2009).

Analysis of the network activity. For simulations performed under per-
sistent stimulation, power spectra of the network activity were computed
from the Fourier transform of the autocorrelogram of the population
activity (see Figs. 1B, 9B). The network frequency was obtained from the
peak of the power spectrum. The network saturation was defined as the
average number of inhibitory units recruited in a network oscillation
cycle (see Fig. 1D, middle). Because in our simulations units rarely fired
more than once in each cycle, we obtained an approximation of the
saturation from the average number of spikes generated by the popula-
tion in one cycle. Unit firing rates were estimated from the number of
spikes generated during the time of a simulation (1 s). Regularity of unit
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firing was measured by the CV of the interspike interval. The coherence
of the oscillation (see Fig. 1D, bottom) was derived from the power
spectrum as the square root of the ratio between the power of the peak
and the power at zero frequency (Kempter et al., 1998).

For simulations performed under transient stimulation, we calculated
the wavelet spectrogram of the corresponding transient response (see,
e.g., Fig. 3B, top). To obtain this spectrogram, the population spiking
activity was first smoothed with a Gaussian kernel (o = 0.2 ms); that is,
each spike was replaced by a Gaussian and then convolved with Gabor
wavelets covering the band 120-270 Hz in steps of 1 Hz.

To reveal the time course of the instantaneous frequency of single
ripple events, we located the maximum activation at every time step in
the spectrogram (see Fig. 3B, top, white). Likewise, the time course of the
power was calculated by averaging the wavelet spectrogram across fre-
quencies for every time step (see Fig. 3F). The duration of a transient
response was calculated as the length of the time interval during which
the power exceeded 4 SDs above the baseline, where the baseline corre-
sponds to the mean power generated by the network in response to the
background input activity. The power spectrum was calculated by aver-
aging the wavelet spectrogram across time for each frequency (see Fig.
3E). The leading frequency was obtained from the peak of the power
spectrum. The unit firing rate was calculated by dividing the number of
spikes the interneurons generated during an event by the duration of the
transient response.

Model of extracellular field ripples. We assumed that ripples in the
extracellular field, as measured in the CAl stratum pyramidale, are
mainly generated by perisomatic inhibitory currents in pyramids, and
that such currents reflect the collective activity of PV * BCs (Schlingloff et
al., 2014; Gan et al,, 2017). To obtain an approximation of the LFP of
ripples from our model, we assumed that the perisomatic inhibitory
activity experienced by interneurons in the network is similar to that
experienced by CA1 pyramidal cells. We therefore considered the band-
pass filtered (120-300 Hz) average inhibitory current experienced by the
population of interneurons as an approximation for the LFP ripple in
CALl (see Figs. 3H and 8C). It could be argued that GABA, channels
expressed in the perisomatic area of pyramids have peak conductances
and decay time constants different from those in interneurons. However,
because here the purpose of modeling the LFP is simply to evaluate phase
locking (see Fig. 3) and to illustrate qualitative changes in LFP ripple
amplitude as caused by drugs that alter GABA,, parameters (see Fig. 8),
the initial (control) condition of such parameters and their absolute
amplitudes are irrelevant.

Slice preparation and electrophysiology in vitro. Experimental proce-
dures were similar to those described previously (Maier et al., 2009).
Briefly, horizontal slices (400 wm) were prepared from ventral to mid-
hippocampus of C57Bl/6 male mice 3—4 weeks old, and slices were main-
tained in an interface chamber superfused with oxygenated ACSF at
~35°C. ACSF contained the following (in mm): 119 NaC, 2.5 KCl, 1.3
MgSO,, 2.5 CaCl,, 10 glucose, 1.0 NaH,PO,, and 26 NaHCO;. Osmo-
larity of ACSF was routinely checked to range between 290 and 310
mosmol/L. Slices were incubated for 1—4 h before being transferred to a
submerged chamber for recordings at 31°C-32°C. Extracellular LFPs
from the CA1l field were recorded with ACSF-filled borosilicate glass
electrodes of 0.2—-0.3 M() resistances. Within a distance of ~160 um
from the LFP electrode (range, 37-157 pum), simultaneous whole-cell
recordings were performed from two pyramidal cells. Borosilicate glass
electrodes (2—5 M{)) were filled with Cs-based intracellular solution that
contained the following (in mwm): 120 gluconic acid, 10 KCI, 2.0 MgSO,,
3.0 MgATP, 1.0 NaGTP, 5.0 EGTA, 10 HEPES, and 2—3 mg/ml biocytin,
pH adjusted to 7.4 with CsOH. Signals were amplified 1000X, low-pass
filtered at 0.7 or 2 kHz and 4 or 8 kHz (LFP and intracellular signals),
sampled at 16 bit resolution (National Instruments), and digitized at 10
or 20 kHz. Data were recorded in Igor Pro (WaveMetrics) using a Mul-
ticlamp 700A amplifier (Molecular Devices). Series resistance (Rg) was
monitored continuously throughout experiments; cells were rejected if
Rg exceeded 20 M) or varied >30% during recordings or between cells
recorded in parallel. No Rg compensation was used. Voltages were not
corrected for liquid junction potentials.
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Experimental design and statistical analysis. Experimental data were
obtained from seven hippocampal slices from 5 male mice (Mouse 1:
three slices; Mice 2-5: one slice each). SWR-associated postsynaptic cur-
rents were simultaneously recorded from pairs of CA1 pyramidal cells.
Obtained data were used to test theoretically formed predictions. No
statistical comparisons were performed. Data in the text are presented as
mean = SD.

Results

The basic building block of inhibition-first models of hippocam-
pal ripples is a network of recurrently connected PV* BCs
(Klausberger et al., 2003; Katona et al., 2014; Schlingloff et al.,
2014; Gan et al., 2017). We therefore began by analyzing the
oscillatory response of an in silico model of such a network of
interneurons to different configurations of excitatory drive. The
model, which aimed at describing the scenario in CA1 in an acute
hippocampal slice and in a local network in vivo, consisted of a
population of 200 interneurons that were randomly intercon-
nected via fast GABAergic synapses with a connection probability
of 20%. Excitatory input was delivered either directly by a popu-
lation of 8200 CA3 pyramidal cells or indirectly by depolarizing a
subpopulation of local CA1 pyramidal cells (as in Stark et al,,
2014). Both pyramidal cell populations were randomly con-
nected to the interneurons via fast AMPA-type synapses with a
connection probability of ~10%. Interneurons projected back
only to the local pyramidal cells with probability 30% (Pawelzik
et al., 2002) (for a motivation of this particular choice of num-
bers, see Materials and Methods). The magnitude of excitation
delivered to the interneuron network was described by the total
input rate, which corresponds to the average number of excit-
atory synaptic events per unit time experienced by a typical in-
terneuron. Alternatively, input was also described in terms of the
mean excitatory conductance per interneuron.

Steady-state oscillations in a model of the CA1 BC network
We set off by analyzing the oscillatory response of an isolated CA1
interneuron network driven by constant levels of spiking excit-
atory activity. In such a direct-drive condition, there were no
feedback projections from the interneurons to the driving excit-
atory population.

Previous modeling studies have shown that interneuron net-
works subject to constant levels of excitatory input can sustain
two distinct modes of oscillation that respond differentially to the
magnitude of the excitatory drive. In the sparsely synchronized
mode, the frequency is insensitive to the input drive (Brunel and
Wang, 2003; Brunel and Hakim, 2008), whereas in the fully syn-
chronized mode, the network frequency increases monotonically
with the input drive (Traub etal., 1996; Wang and Buzsaki, 1996).
Here, we reproduce and extend these generic results in our spe-
cific hippocampal model, and we show how low and high input
rates favor the emergence of sparsely and fully synchronized os-
cillations, respectively (Fig. 1). We focus on the dependence of
network oscillation frequency on input rate because it provides
the basis to explain the phenomenon of IFA that emerges in the
transient response, which we study later in this manuscript (see
Figs. 2-5).

We first delivered a persistent stimulation to the CAl in-
terneuron network by allowing each pyramid in the CA3 popu-
lation to fire randomly at a constant rate that was varied between
1.3 and 19.3 spikes/s. Given that each interneuron has ~780
AMPA-type synapses (see Materials and Methods), the total in-
put rates varied between 1000 and 15,000 spikes/s.

Donoso et al. @ Ripples in Interneuron Networks

Driving strength modulates the oscillatory regime

Figure 1A shows the response of the network when a total input
rate of 3000 spikes/s was applied to each interneuron. At such an
input level, a prominent and stable ripple-like oscillation was
apparent in the population activity throughout the stimulation
(Fig. 1A, top). Interestingly, oscillations in the population activity
emerged from units that fired irregularly, as indicated by the
rastergram (Fig. 1A, middle). The membrane potential of a typi-
cal interneuron in the network showed subthreshold oscillations
that reflected the oscillatory population activity (Fig. 1A, bot-
tom). Such oscillations of the membrane potential constrain the
timing of the spiking response of interneurons by providing win-
dows of opportunity at which they are more likely to fire. Ran-
dom fluctuations, here due to the Poissonian excitatory drive,
occasionally depolarize the membrane potential above threshold.
As a result, units skip cycles randomly, giving rise to a firing
pattern that is irregular but in phase with the population activity.
The prominence and coherence of network oscillations were fur-
ther revealed in the spectrum of the population activity by a peak
at ~187 Hz (Fig. 1B, top, gray). In contrast, the distribution of
firing rates in the population showed that units fired at a broad
range of rates, and firing rates were much lower than the fre-
quency of the oscillatory population activity (Fig. 1B, bottom,
gray) (Bdhner et al., 2011).

The behavior of the interneuron network at such a weak input
rate (3000 spikes/s) was consistent with “sparsely synchronized
oscillations” (Brunel and Hakim, 2008). Such a regime emerges
in conditions of high noise, and it is characterized by units that
fire irregularly at rates lower than the frequency of the oscillations
in the population activity (Brunel, 2000; Brunel and Wang,
2003). In this regime, the network frequency is determined by the
delay of the recurrent interactions (transmission latency and rise
time of IPSCs), and it is therefore largely independent of the level
of excitation provided (Brunel and Wang, 2003).

Consistent with the sparsely synchronized regime, a doubling
in the excitatory input from 3000 spikes/s to 6000 spikes/s shifted
the distribution of interneuron firing rates toward much higher
values, but the network frequency increased only by 3% (Fig. 1B,
gray, orange). However, when the input strength was increased
beyond 6000 spikes/s, also the network frequency markedly in-
creased with input strength (Fig. 1B, top). This change of behav-
ior was accompanied by an increasingly larger fraction of units
firing at rates close to the network frequency (Fig. 1B, bottom).
Such a change in the network response with increasing input rate
suggested a change in the oscillatory regime. Figure 1C shows the
response of the network when a total input rate of 9000 spikes/s
was applied. In stark contrast to the situation depicted in Figure
1A, oscillations in the population activity (Fig. 1C, top) emerged
from units that fired regularly and rarely skipped cycles (Fig. 1C,
middle, bottom). Accordingly, units fired at mean rates close to
the peak frequency of the oscillatory population activity (Fig. 1B,
green).

The behavior of the interneuron network at such a high input
rate (9000 spikes/s) was consistent with “fully synchronized os-
cillations” (Brunel and Hakim, 2008). In this mode, units fire
regularly at rates close to the population frequency, as also dem-
onstrated previously in interneuron network models expressing
gamma oscillations (Traub et al., 1996; Wang and Buzsaki, 1996;
Bartos et al., 2002).

Although such a transition from sparse to full synchrony in
response to increased input rate was predicted by previous theo-
retical studies (Brunel and Wang, 2003), an in depth understand-
ing of underlying mechanisms is still lacking. Figure 1D
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Figure 1.  Steady-state oscillations in a model of the CA1 BC network. A, Network activity at an input rate of 3000 spikes/s. Oscillations in the population rate (top) emerge from units that fire

irregularly (middle: spike raster plot for 20 of 200 units). Bottom, Membrane potential of a unit (spike times: middle, horizontal gray bar). Subthreshold oscillations are superimposed on random
fluctuations. B, Power spectral density of population activity (top) and firing-rate histogram of units (bottom) at four levels of input rates (gray corresponds to activity depicted in A). C, Network
activity at an input rate of 9000 spikes/s (B, green). Oscillations in the population rate (top) emerge from units that fire regularly and rarely skip cycles of the population activity (middle). Bottom,
Membrane potential of a unit (spike times: middle, gray bar). D, Steady-state network response as a function of input strength (input levels depicted in B are indicated by colored triangles below the
horizontal axis). Top, Network frequency (triangles) and mean firing rate of units (circles). Gray area represents the ripple band (140 —220 Hz). Middle, The saturation (triangles) is the average
fraction of units recruited in one cycle. Irregularity of firing is described by the average CV (circles) of the interspike interval of units. Bottom, Coherence of network oscillations. Error bars are smaller
than marker size. E, Sequence of three input levels (top), spike-time histogram of network activity (middle; bin width 0.5 ms), and membrane-potential distribution across the interneuron
population (bottom). Atan input rate of 3000 spikes/s (t << 0 ms), the distribution of membrane potentials exhibits a subthreshold sinusoidal mean. The tail of the distribution reaches the threshold
(dashed line; see also A, bottom). At 6000 spikes/s (0 << t << 20 ms), ~75% of the population is recruited (middle) in every cycle. Because the network is close to saturation, a further increase to

12,000 spikes/s (t = 20 ms) reduces the time between bursts of activity (middle). The threshold is then reached in the rising (excitatory) phase of the membrane potentials.

summarizes such a transition by showing key properties of the
network as a function of input rate. Figure 1D (top) shows that a
minimum input rate of ~2000 spikes/s was sufficient to generate
a ripple-like network oscillation (~186 Hz). The network exhib-
ited sparsely synchronized oscillations at input rates between
~2000 and ~6000 spikes/s where the unit firing rate remained
well below the network frequency. At input rates =6000 spikes/s,
the network entered a state that resembled a fully synchronized
regime where the network frequency and the firing rate were
similar, and both increased monotonically with input rate. Thus,

an indicator for the regime is the ratio of firing rate and network
frequency (i.e., the fraction of the population recruited in any
given cycle), which we called the network saturation (Fig. 1D,
middle). Saturation increased with increasing input rate. The
unit activity became also more regular, which is quantified by the
decreasing CV of the interspike intervals. We refer to a CV = 0.5
as a high-noise state of the network, where units fire irregularly,
whereas =0.5 will be termed low-noise state, where units fire
regularly. Another marker for the regime is the coherence of the
network oscillations (Fig. 1D, bottom). Coherence increased rap-
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idly with increased input rate during the high-noise state and
saturated in the low-noise state.

Mechanisms underlying the regime transition

To better understand the network behavior at different input
rates, we studied the time course of membrane potentials across
units in relation to the oscillatory population activity at different
levels of excitatory drive. Figure 1E shows an input rate that in-
creases abruptly every 20 ms (top), the resulting population ac-
tivity (middle), and the underlying distribution of membrane
potentials (bottom).

The basic process sustaining the oscillations in the population
activity can be explained as follows (Brunel and Hakim, 1999;
Brunel and Wang, 2003): We consider a trough of the oscillatory
distribution of membrane potentials shown in Figure 1E (bot-
tom) as the starting point of a cycle. At that point, all the units are
below threshold; therefore, the population is silent. The excit-
atory input charges the membranes of the interneurons, pushing
the distribution of membrane potentials toward more depolar-
ized values. Eventually, part of the distribution reaches the
threshold (Fig. 1E, bottom, dashed line) and the corresponding
subset of units fires (Fig. 1E, middle). Conduction and synaptic
delays introduced by the recurrent connections allow the spiking
activity to further build up before being fed back to the network
as inhibitory currents. The inhibitory currents induced by the
population activity shift the distribution of membrane potentials
to more hyperpolarized values, and thereby the spiking activity is
reduced and eventually silenced. As inhibitory currents decay, the
excitatory input recharges the membranes. The distribution of
membrane potentials is again pushed toward depolarized values,
and a new cycle is initiated.

How is this process affected by the level of excitatory input? At
an input rate of 3000 spikes/s, where the sparsely synchronized
regime is expressed (Fig. 1E, + < 0 ms; see also Fig. 1A), the
membrane potentials were highly variable across cells due to the
uncorrelated noisy input. In this case, the noise in the system is
not only resulting from the random excitatory activity but also
from the mostly irregular inhibitory activity that was delivered by
the network itself via sparse recurrent connections (Brunel and
Hakim, 1999).

At an input rate of 3000 spikes/s, a large fraction of the units
remains subthreshold at any given time point, and the mean
membrane potential is oscillatory. In such a condition, popula-
tion activity is generated via noise fluctuations, preferentially
near the maxima of the mean membrane potential (see also Fig.
1A, bottom). Under this fluctuation-driven regime (Renart et al.,
2006), stable network oscillations are possible only if the sinusoi-
dal mean and the population activity are mutually consistent in
phase and amplitude (Brunel and Wang, 2003; Brunel and Han-
sel, 2006). The phase consistency limits the frequencies at
which oscillations can be expressed to a narrow range that is
mostly determined by the latency and rise time of inhibitory
synaptic transmission. The amplitude consistency, on the
other hand, allows some variability in the firing rate of single
units (e.g., due to changes in excitatory drive) without affect-
ing the network frequency (for a detailed analysis, see Brunel
and Wang, 2003).

Figure 1E (middle) (0 < t < 20 ms) shows the behavior of the
population when the input rate was doubled to 6000 spikes/s.
Because of the stronger excitatory currents, the distribution of
membrane potentials exhibited a steeper ascending phase (in-
crease in the voltage-time derivative), the “escape rate” at the
firing threshold increased, and more units fired before this activ-
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ity affected the network in the form of inhibitory currents. Be-
cause more cells were recruited in any given cycle, the amount of
negative charge delivered back to the network was larger, and the
membrane potentials were shifted toward more hyperpolarized
values. Thus, the steeper ascending phase of the membrane po-
tential distribution (due to a stronger excitation) was compen-
sated for by a more hyperpolarized trough (due to the increased
inhibitory activity). As a result, the network frequency was simi-
lar for input rates of 3000 and 6000 spikes/s, although the mean
firing rates were approximately doubled. However, this doubling
of the input rate led to a narrower distribution of membrane
potentials (Fig. 1E, t > 0 ms), and nearly all the units reached the
threshold (dashed line) and fired within a small fraction of a
cycle. In this case, the strong network synchronization has intro-
duced correlations in the inhibitory synaptic activity, reducing
the variability of membrane potentials across the population, and
thereby the noise in the system (Brunel, 2000); the network has
entered a mean-driven or low-noise regime, as predicted by
Brunel and Wang (2003).

Once a large fraction of the population is recruited at a cycle,
further increases in excitatory input can no longer be compen-
sated for by alarger recruitment of interneurons. To illustrate this
effect, let us consider the transition from the input rate 6000 to
12,000 spikes/s depicted in Figure 1E at time t = 20 ms. In this
case, the fraction of units recruited in a cycle increased only from
~0.8 to ~0.9, which means that the inhibition fed back to the
network in a given cycle only slightly increased, and could there-
fore not compensate the doubled excitatory input. Thus, the os-
cillation period is dominated by the duration of the ascending
phase of the membrane-potential distribution, which depends on
the level of mean excitatory drive.

In summary, the amount of excitatory drive can modulate the
oscillatory state of a recurrent interneuron network. At low input
rates, the network expresses sparsely synchronized oscillations,
where the network frequency is relatively insensitive to changes
in input rate. With increasing input rates, the network frequency
becomes gradually more sensitive to excitation as it transits to-
ward a fully synchronized regime. In line with previous models
that investigated the latter type of oscillations (Traub et al., 1996;
Wang and Buzsaki, 1996), the network frequency increases
monotonically with increasing excitatory drive.

Network response to direct transient stimulation

So far, to explain basic oscillatory regimes, we have analyzed the
response of a CAl interneuron network only to persistent stim-
ulation, which is an unrealistic scenario given the transient nature
of SWRs. During SWRs, interneurons in the CA1 network expe-
rience an excitatory current that increases and decreases within a
few tens of milliseconds (Buzsaki and Chrobak, 1995; Csicsvari et
al., 2000; Schlingloffetal., 2014; Stark et al., 2014). To understand
the network dynamics during such a transient activation, we first
focused on the response of the network to excitatory activity that
increased and decreased linearly (Fig. 2). Here, we show that the
frequency is relatively stable during the ascending phase of exci-
tation, but it decays monotonically during the descending phase.
As a consequence, when the network is driven by a burst of activ-
ity resembling that of pyramidal cells in CA3 during a SWR, the
transient response exhibits [FA (Fig. 3), as in experiments.

Network response to changing input rate exhibits

synchrony hysteresis

We analyzed the response of the interneuron network to random
spiking activity that was modulated by a double ramp input as the
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Network response to changing input rate is asymmetric. 4, A double ramp input rate (top, gray) consists of a linear increase (t << 0 ms), a plateau (0 = t << 40ms), and a linear decrease

(t =40 ms). The network response (top, black) is asymmetric with respect to the input. The membrane-potential distribution (bottom) shows that the network s in a high-noise state (bottom, t =
—20ms) and synchronizes in the middle of the ascending input ramp at t = — 20 ms. The network then remains in a low-noise state during the plateau and the entire descending phase (bottom,
40 < t=75ms). B, Time courses of input (top), average frequency responses (middle), and average saturations (bottom) for different parameters of the double ramp. During the ascending phase

(solid line), the onset frequency (~220 Hz) is independent of the amplitude (B,), slope (B,),

and combinations of these two parameters (B;), regardless of its steady-state value (dotted line).

Frequency decays with input during the descending phase (dashed line). , Frequency (top) and saturation (bottom) as a function of input rate (obtained from B). Frequency is more sensitive to input

on the descending phase (top, dashed line), which is consistent with the respective higher satu

ration (bottom, dashed line). Each average trace was obtained from 50 simulations. Error bars (data

not shown) were comparable with the line width. B,, B, Black traces are respectively identical.

one depicted in Figure 2A (top, gray). In this example, the input
rate increased from a baseline of 1200 spikes/s to a maximum of
9000 spikes/s within 40 ms. After remaining in a plateau for
40 ms, it decreased back to baseline with the same slope as the
ascending phase. Remarkably, the network response (top, black)
exhibited a prominent asymmetry with respect to the input (top,
gray): The population started synchronizing at ~220 Hz in the
middle of the ascending phase of excitation (+ =~ —20 ms). In

contrast, the population persisted oscillating during the entire
descending phase (40 ms = ¢ = 80 ms), at decelerating frequency.

To study this asymmetry in more detail, we tracked the evo-
lution of the network state by observing the membrane potential
distribution underlying the network activity (Fig. 2A, bottom).
At an initial stage, the population exhibited a wide distribution of
membrane potentials that hovered below the threshold (Fig. 24,
bottom, t =—20 ms). In the middle of the ascending phase of the
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excitatory activity (—20 = r <—10 ms), the network exhibited a
short phase of a high-noise oscillatory state (Fig. 2A, top; see also
Fig. 1E; t <20 ms). At this time interval, the increase in excitatory
drive was counterbalanced by the increase in network (i.e., inhib-
itory) activity. This compensation was also reflected in the in-
creasing amplitude of the membrane potential oscillations; that
is, membrane potentials gradually reached more hyperpolarized
values until the network entered a low-noise state (ft ~—10 ms).
Interestingly, after the end of the plateau (r > 40 ms), the satu-
rated network remained synchronized in a low-noise state for
almost the entire descending phase of excitation.

The state transition from the asynchronous irregular balanced
state to the high noise oscillatory activity observed during the
ascending phase of excitation predicts an onset frequency that is
independent of the ramp slope and amplitude. According to
Brunel and Wang (2003), oscillatory instabilities of the initial
balanced state depicted in Figure 2A (bottom, t =< —20 ms)
emerge when a critical level of interneuronal activity is reached.
Such oscillations appear with an onset frequency that is exclu-
sively determined by the time constants describing the dynamics
of the GABAergic synaptic transmission. With the parameters
used in our model, their theory predicts an onset frequency of
~237 Hz (Brunel and Wang, 2003, their Eq. 16), which is consis-
tent with our simulations (see below). The subsequent low-noise
oscillatory state observed during the plateau and descending
phase of the input predicts that the frequency should be modu-
lated by both the ramp amplitude and its descending slope. Such
a behavior has been observed in a previous low-noise model sub-
ject to decaying excitatory drive (Traub et al., 1996).

To test these predictions in a systematic way, we analyzed the
network response to double ramps with different amplitudes and
slopes (Fig. 2B, top). In this manner, we could gradually drive the
network activity from baseline toward different levels of satura-
tion and then back to baseline at different speeds. For each input-
rate profile (Fig. 2B, top), we calculated the instantaneous
frequency (Fig. 2B, middle) from the time interval between the
peaks of the population activity, and the saturation (Fig. 2B, bot-
tom) by determining the fraction of units that were active within
a cycle (see Materials and Methods). Each average curve for the
instantaneous frequency and the saturation was obtained from 50
responses.

We first focused on the response to double ramps that reached
different plateau levels at a fixed slope (Fig. 2B, top). Consistent
with an initial condition of high noise (Fig. 24, t <—20 ms), the
onset frequency at which oscillations emerged during the ascend-
ing phase (Fig. 2B;, middle, solid lines) was ~220 Hz, which was
close to the ~237 Hz predicted by the theory (Brunel and Wang,
2003, their Eq. 16). Once the input reached its plateau (Fig. 2B,
t = 0), the frequency settled at the steady-state value of the re-
spective input level (Fig. 2B;, middle, dotted lines; see corre-
sponding colors in Fig. 1 B,D). During the descending phase of
the input (Fig. 2B;, t > 40), the frequency decreased monotoni-
cally and followed the time course of the descending excitation
down to frequencies much lower than those expressed during the
rising phase (Fig. 2B;, middle, dashed lines).

To characterize this hysteresis phenomenon in more detail, we
plotted frequency and saturation as a function of the input rate
(Fig. 2C,). The frequency characteristic showed a markedly lower
sensitivity to input rate in the ascending phase compared with the
descending phase (Fig. 2C,, top, solid and dashed lines, respec-
tively). Such a differential sensitivity to the input rate was
consistent with a much lower saturation expressed during the
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ascending phase compared with the descending phase (Fig. 2C;,
bottom, solid and dashed lines, respectively).

We hypothesized that the hysteresis characteristic of the satu-
ration, which captures the noise asymmetry in the system, is me-
diated by the temporal lag of the instantaneous population
activity with respect to the excitatory input that drives it: Once
oscillations are established, every peak of activity in the transient
response (e.g., Fig. 2A, top, black) results from the interaction
between excitation and inhibition during the preceding oscilla-
tion cycle. Thus, during the ascending phase, every peak of
interneuronal activity provides an inhibitory input that is con-
fronted with an excitation that is higher than the one that gener-
ated the peak. The opposite occurs during the descending phase,
where the synchronized inhibition is confronted with a subse-
quent lower excitation. Thereby, the ascending phase is domi-
nated by random excitation, which increases noise, and the
descending phase is dominated by synchronized inhibition,
which reduces noise.

This mechanism predicts that the prominence of the hystere-
sis effect should be modulated by the slopes of the input ramps:
An input that grows and decays with shallower slopes can be
tracked more closely by the network response, and thereby the
balance mismatch is reduced. To test this prediction, we focused
on the response to double ramps that reached a plateau of 9000
spikes/s in 10, 20, or 40 ms (Fig. 2B,, top). Again, the onset
frequency at the ascending phase (Fig. 2B,, middle, solid lines)
was ~220 Hz, regardless of the ramp’s slope. In contrast, during
the descending phase, the frequency was strongly modulated by
the input rate (Fig. 2B,, middle, dashed lines). The prominence
of the saturation hysteresis (Fig. 2C,, bottom), which is typically
described by the area between the ascending and descending char-
acteristics (Fig. 2C, bottom, solid and dashed lines, respectively),
increased with steeper slopes. This behavior was confirmed in
simulations where different ramp slopes were combined with
different plateau levels of the input (Fig. 2B;,C;).

To conclude, Figure 2 supports the idea that the network be-
gins to synchronize in a high-noise state during the ascending
phase, where the frequency is relatively insensitive to the excit-
atory input. After reaching saturation during the plateau, the
network remains in a low-noise state during the descending
phase, where the frequency decays with the decreasing excitation.

Intraripple frequency dynamics

To connect our findings with experimental results, we studied the
response of the interneuron network to excitatory input that re-
sembled the activity of pyramidal cells in CA3 during an SWR
(Fig. 3A). In particular, we aimed at testing the predictions of the
noise-state transition (Fig. 2) in a more realistic model of SWRs.
Here, an excitatory burst was generated by allowing 1400 units
(~17% of the population of CA3 pyramidal cells in a slice) to fire
once at a random time drawn from a normal distribution with
SD = 7 ms (Hajos et al., 2013). The remaining ~6800 CA3 pyra-
midal cells fired randomly at a rate ~1.85 spikes/s, providing a
total input rate of 1200 spikes/s. Such a background activity sum-
marizes the synaptic noise due to random spiking and spontane-
ous synaptic release stemming from both local and CA3
pyramidal cells (for details, see Materials and Methods).

In response to such a stimulation (Fig. 3B, middle, gray), the
interneuron network generated a few cycles of oscillatory activity
in the ripple-frequency range (Fig. 3B, middle, black). This time,
we obtained the instantaneous frequency of the population activ-
ity (Fig. 3B, top, white line) from its wavelet spectrogram (Fig. 3B,
top), for better comparison with experimental results. During the
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connected to the interneuron network with probability p,,.. = 0.095. Excitatory fibers (gray lines, only 6 shown) from the bursting subpopulation (1400 units) fire once with a normally distributed
timing. The remaining 6800 fibers fire randomly and provide a total background rate of 1200 spikes/s to each interneuron. B, Top, Wavelet spectrogram and instantaneous peak frequency (white)
of the transient response (middle, black). The transient response exhibits IFA. Middle, Overlay of the total input activity (gray, input rate) and response of the interneuronal network (black, output
rate). The network responds with a modulated oscillation whose envelope lags the input burst. Bottom, Mean synaptic currents across the population generated by the excitatory input (red) and the
inhibitory recurrent response (blue). On the ascending phase of the input, inhibitory peaks remain slightly below the ongoing excitatory current. The opposite occurs during the descending phase.
€, Spike-time histogram (top) and time course of membrane-potential distribution (bottom). During an initial stage (t = —5ms), a wider distribution of membrane potentials shows subthreshold
oscillations that increase in amplitude, denoting an unsaturated (high noise) state. This initial stage is followed by a saturated (low noise) state (t = 0 ms). D, Average IFA signatures obtained at
different burst widths o Black represents control value o- = 7 ms, used also in B and C. Broader input bursts (- = 10 ms, orange) evoke shallower IFA signatures, whereas narrower input bursts
(o = 5ms, violet) evoke sharper IFA signatures (see also Fig. 2B;). E, Average power spectra obtained for the same burst widths as in D. Broader input bursts evoke slower ripples. F, Average time
course of power obtained for the same burst widths as in D. Broader input bursts evoke longer lasting but weaker transient responses. G, Changes in frequency, firing rate (FR), and duration with
respect to the control value o = 7 ms. B-G, Average traces were obtained from 20 simulations. H, In a ripple-modulated CA3 burst (gray), spikes (dots) are phase-locked (vector strength v, = 0.2)
to alocal rhythm (180 Hz, vertical dashed lines at input-rate peaks). The CA1 LFP response (black; see Materials and Methods) oscillates at 200 Hz, and CA3 spikes are weakly coupled to the CA1LFP
(v, = 0.08).1,CA1 frequency as a function of CA3 frequency for different CA3 modulation depths. Colored dots represent simulated events; CA3 vector strength v, = 0.1 (left), 0.2 (middle), and 0.4
(right). Atv, = 0.1and 0.2, CAT oscillates at its intrinsic frequency (~200 Hz), almost independently of the CA3 frequency (dashed line indicates identity). The coupling of the CA3 spikes to the CA1
LFP becomes prominent when CA3 frequencies are close to the CA1intrinsic frequency (~200 Hz). At v, = 0.4 (right), the CA3 ripple affects the CA1 frequency at a wider range. The coupling of CA3
spikes to the CAT ripples (vector strength, color coded) is normalized to the vector strength of the input, individually for each CA3 modulation depth.

first half of the event, the ripple frequency exhibited a peak that
was followed by a monotonic decrease during the second half.
Such a signature in the instantaneous frequency has been re-
ported in the literature and termed IFA (Ponomarenko et al.,
2004; Nguyen et al., 2009; Sullivan et al., 2011).

The IFA in the simulations in Figure 3D resembled the asym-
metry of the frequency response with respect to the input that we
observed during the double-ramp stimulation (Fig. 2B, middle).

If both situations share the same mechanism, we should be able to
observe a noise transition in the burst response, mediated by a lag
of the network activity with respect to the input (as in Fig. 2A).
Indeed, the burst response (Fig. 3B, middle, black) conformed a
modulated oscillation with an envelope that lagged the transient
input (Fig. 3B, middle, gray) by a few milliseconds. Such a de-
layed response with respect to the input generated a time course
of synaptic activity that was initially dominated by excitation
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(Fig. 3B, bottom, red), which increases noise in the system, and a
subsequent phase that was dominated by synchronized inhibi-
tion (Fig. 3B, bottom, blue), which reduces noise. The time axis
was centered (¢ = 0) to the peak of the mean excitatory current
because this enables a comparison with the in vitro experiments
described below. Consistently, the distribution of membrane po-
tentials in relation to the network activity (Fig. 3C) showed a
gradual transition from a high-noise state toward a low-noise
state that persisted for most of the descending phase of excitation
(Fig. 3C, bottom; as in Fig. 2A).

Input burst width affects frequency dynamics

The proposed mechanism governing IFA predicts that the prom-
inence of the effect can be reduced by providing a transient excit-
atory stimulus that develops more slowly (as in Fig. 2B,,C,). To
test this prediction, we analyzed the response of the model to
input bursts with different widths. The burst width was specified
by the SD of the distribution from which the spike times of the
driving population were drawn. Narrower distributions give rise
to input rates that develop faster and exhibit higher peak values.
Because every unit in the driving population fires once during the
burst, the burst width affects only the rate at which spikes are
delivered to the network; the total number of input spikes
(~1400) generated during a single burst remains unchanged.

Figure 3D shows the average IFA signatures obtained at three
different values of input burst widths (o = 5, 7, and 10 ms). Such
burst parameters provided input slopes and amplitudes similar to
those of the double ramp depicted in Figure 2B; (top, see corre-
sponding colors). Consistent with an initial high-noise state, the
onset frequency remained nearly the same for the three condi-
tions. Broader input bursts (larger o) stretched the IFA signature
in time, resulting in frequency traces that started to decay earlier
and slower. To quantify this effect, we show in Figure 3E, F the
normalized power spectra and the time courses of power in the
ripple band for the three analyzed conditions, respectively.
Broader and lower-amplitude input bursts generated responses
with lower frequencies (Fig. 3E), lower maximum power, and
longer durations (Fig. 3F). The mean firing rate decreased with
broader input bursts (Fig. 3G).

To conclude, IFA can be explained by interactions within the
interneuron network. Its delayed response to the excitatory input
burst generates a time course of synaptic currents that is initially
dominated by coarse excitation and later by the synchronized
inhibition. This timing of excitation and inhibition initially fa-
vors the emergence of a high-noise, sparsely synchronized state
characterized by a high oscillation frequency, and later favors a
low-noise, fully synchronized state in which the network fre-
quency is sensitive to the decreasing input drive.

Entrainment of oscillations in CAI by CA3 input
So far, we have considered CA1 interneuron networks that re-
ceive transient excitatory input devoid of ripple-like oscillations.
However, CA3 cells are entrained by ripples in their local network
(Maier et al., 2003; Both et al., 2008; Tukker et al., 2013), which
adds an oscillatory component to the CAl input (Sullivan et al.,
2011; Schonberger et al,, 2014). Despite such a ripple-modulated
drive, CAl can oscillate independently from CA3, typically at higher
frequencies (Maier et al., 2003, 2011; Sullivan et al., 2011). Notwith-
standing, spikes of CA3 pyramidal cells can be coupled to the ripple
oscillations in CA1 (Both et al., 2008; Sullivan et al., 2011).

To test whether interneuron networks in CA1 can generate
ripple oscillations independently of those stemming from CA3,
and to assess the prominence of phase locking between the CA3
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spikes and the CA1 ripple, we performed numerical simulations
with ripple-modulated excitatory input (Fig. 3 H,I). The example
in Figure 3H shows a CA3 Gaussian excitatory burst with o =
7 ms (same as in Fig. 3B) whose spikes are entrained by a 180 Hz
rhythm with a vector strength v, = 0.2 (for details, see Materials
and Methods). The CA1 network oscillated at ~200 Hz, which
was similar to the case without ripple-locked input (Fig. 3E). In
Figure 3H, the spikes in CA3 (dots) were coupled to the CA1 LFP
ripple (black trace) with a vector strength of ~0.08.

Figure 3] summarizes the dependency of the CA1 frequency
on the CA3 input frequency for three different CA3 input vector
strengths (v, = 0.1, 0.2, and 0.4; for details, see Materials and
Methods), and the resulting coupling (color coded) of CA3 spikes
to CAl ripples. At physiologically feasible CA3 modulations (v, =
0.1 and v, = 0.2, left and middle, respectively), ripple events in
CAL1 oscillated at ~200 Hz, almost independently of the CA3
input frequency. Nevertheless, CA3 spikes were phase-locked to
CA1 ripples, and the locking was strong when the CA3 frequency
was close (* 10%) to CA1’s intrinsic frequency ~200 Hz. For
high CA3 modulation (v, = 0.4; Fig. 31, right), the CA1 frequency
was affected by the CA3 frequency, and phase locking of CA3 and
CA1 was prominent for a wider range of frequencies.

The numerical simulation at CA3 input vector strength v, =
0.2 (Fig. 31, middle) could account for the experimental results by
Bothetal. (2008), who reported a coupling strength between CA3
units and the LFP in CA1 of ~0.22 during ripples in vitro (for a
derivation of this number, see Materials and Methods). If we
assume that the CA3 input vector strength is v, ~0.2 and consider
a CA3 oscillation frequency ~10% below the CAI natural fre-
quency, as observed in vitro (Maier et al., 2003; Both et al., 2008),
one could expect a coupling of CA3 spikes to the CA1 LFP of 0.2.
The much lower CA3 spike to CA1-LFP coupling observed in
vivo, on the other hand, could be explained by the larger and
more variable frequency difference between the two areas and/or
by a weaker local entrainment of CA3 pyramidal cells (Sullivan et
al., 2011; Buzsdki, 2015).

In conclusion, the interneuron network model is compatible
with the idea that ripples are generated de novo in CAl (i.e., not
inherited from CA3) (Csicsvari et al., 1999; Sullivan et al., 2011),
and it accounts for the apparent coupling between CA3 spikes
and CALl fields (Both et al., 2008; Sullivan et al., 2011). Because
the topic of coupled oscillators is complex enough in itself, in
what follows we return to CA3 input that is not ripple-locked.
This simplification will allow us to uncover further interesting
features of the generation of ripple oscillations within a local
network, such as CAl.

Network response to indirect transient stimulation

In the previous section, we showed that the slow time course of
excitation plays a pivotal role in the development of IFA (e.g., Fig.
3D). However, we only considered the case of an isolated in-
terneuron network that is driven by a feedforward excitatory pro-
jection (Schaffer collaterals from CA3). In such a scenario,
interneurons cannot provide inhibitory feedback to the pyrami-
dal cell population that is driving them. How would the fre-
quency dynamics be affected when interneurons are driven by the
local pyramidal cells in CA1 to which they also project? Would
IFA be disrupted in such a closed-loop scenario? To address these
questions, we extended the interneuron network model by in-
cluding local pyramidal cells. The parameters describing the py-
ramidal cells were adjusted according to Bihner et al. (2011). In
this new model, the 200 units in the interneuron network were
reciprocally interconnected with a population of 12,000 CA1 pyr-
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Induced oscillations under two driving conditions. A, A population of pyramids (pyr; gray triangles, 12,000 units) is reciprocally interconnected with an interneuron network (int; black

circles, 200 units; connection probabilities p.: pyr —int = 0.1, int — pyr = 0.3, pyr — pyr = 0.01). During indirect drive, a subpopulation of 100 pyramids is excited with Gaussian bursts (green,
o = 13 ms). Burstamplitudes were normally distributed across neurons (green: mean; dashed line, =SD). Two input levels (30 nS and 60 nS) are shown. B, Network response to indirect-drive for
thetwoinputlevels depictedin A (green, left andright, respectively). B,, Top, Wavelet spectrogram and instantaneous peak frequency (white) of the interneuron population activity (bottom, black).
Atlow input (30 nS, left), the transient response exhibits IFA at ~130 Hz. At high input (60 nS, right), the frequency peaks at ~155 Hz and there is no IFA. Bottom, Overlay of the activities of the
pyramidal (gray) and interneuronal (black) populations. Pyramids lead interneurons. B,, Synaptic conductances across the interneuron population. €, The isolated interneuron network (black circles)
is directly driven with normally distributed Gaussian bursts (red). Burst profiles and variability were adjusted to resemble the filtered (<<30 Hz) excitatory conductances shown in B, (left and right,
lightred), yielding profiles with - = 14 msand average peaks: 7nSand 12 nS, respectively. D, Same as Bwhen the interneuron network is directly excited with the profiles depicted in €. The network
response displays the stereotypical IFA shape at ~172 Hz (left) and ~186 Hz (right). The directly driven interneuronal network requires comparably lower excitation to generate oscillations in the

ripple band.

amids. Pyramids were randomly connected to the interneurons
with a probability p. = 0.1 via fast AMPA-type synapses (Pawel-
zik et al., 2002). The interneurons, in turn, were connected back
to the pyramids with probability p. = 0.3 (Pawelzik et al., 2002)
via fast and strong GABA-type synapses (Bartos et al., 2002).
Pyramids were also reciprocally and sparsely interconnected with
probability p. = 0.01 via AMPA-type synapses (for details, see
Materials and Methods).

Induced high-frequency oscillations in silico
To analyze the response of the closed-loop network upon depolar-
ization of local pyramidal cells, we implemented an in silico version
of the experiment described by Stark et al. (2014). In this experiment,
fast oscillations (>80 Hz) were evoked by optogenetic depolariza-
tion of a small group (80-100) of pyramidal cells in CA1l. Such
induced high-frequency oscillations provide a model of hippocam-
pal SWRs that is amenable to an in silico implementation.

To emulate this experiment, pyramids in the model were
equipped with excitatory conductances aimed at mimicking

channelrhodopsins. To evoke induced high-frequency oscilla-
tions in the model, a random subpopulation of 100 pyramids was
depolarized by driving their excitatory conductances with Gauss-
ian intensity profiles (o0 = 13 ms). The peak conductances ap-
plied to the cells were normally distributed across the population
with CV = 0.5 (see Materials and Methods) to provide variable
levels of input to the pyramids (Fig. 4A, solid and dashed green
traces: mean * SD, respectively).

Figure 4B shows the response of the network at two levels of
mean input conductances to the pyramids, as depicted in Figure
4A (left and right, respectively). Both pyramids and interneurons
displayed a transient oscillation in their population activities,
with pyramids leading interneurons (Fig. 4B,, gray and black,
respectively). Consistently, interneurons experienced strongly
modulated excitatory and inhibitory inputs (Fig. 4B,, red and
blue, respectively). At low excitatory input to pyramids (30 nS,
left), the transient response exhibited IFA at ~130 Hz (Fig. 4B,,
top left). When the input to pyramids was increased to 60 nS
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(right), the frequency of the oscillation increased to 155 Hz, but
the instantaneous frequency lost the stereotypical IFA shape (Fig.
4B;, top right).

With increasing input level, the interneuron network re-
sponded not only with a higher network frequency but also with
stronger activity (Fig. 4B;, black), resembling a state of higher
saturation. As a consequence, for high enough input, the network
achieved a level of high saturation already at the beginning of the
event, as evidenced by the instantaneous frequency that followed
the time course of the excitatory input.

Network response under indirect versus direct drive

We have shown that, during the indirect-drive condition, in-
terneurons experienced strongly modulated excitatory activity
stemming from the entrained population of pyramids (Fig. 4B,,
red). We wondered how the isolated interneuron network would
respond if it was directly driven by the same levels of excitatory
input but devoid of oscillatory modulation. To do that, we
equipped the interneurons with the same channelrhodopsin-
mimicking conductances used to depolarize pyramids and di-
rectly drove them with Gaussian bursts, as in Schlingloff et al.
(2014) (Fig. 4C). During this direct-drive condition, the Gaussian
bursts in Figure 4C were tuned to resemble a low-pass (<30 Hz)
version of the excitatory conductances depicted in Figure 4B,
(light red). The slow (<30 Hz) component of such conductances
exhibited average peaks of 7 and 12 nS, both with a variability of
CV = 0.28 across cells. Both mean traces were approximately
Gaussian with o = 14 ms. When those conductances were di-
rectly delivered to the interneurons, the network activity dis-
played oscillations at frequencies of ~172 Hz and ~186 Hz (Fig.
4D, top left and right, respectively). Compared with the indirect-
drive condition, it was apparent that the interneuronal network
activity was lower (Fig. 4D,, black). This lower unit activity dur-
ing the direct-drive condition is indicative of a lower state of
saturation of the network, which explains why the IFA signature
was rescued at higher channelrhodopsin input in this condition
(Fig. 4D, top right).

The phenomenology described in Figure 4 suggests that the
network frequency exhibits different responses to excitatory in-
put under the indirect-drive versus the direct-drive conditions.
To characterize this differential response in a systematic way, we
focused on the network frequency in response to a wide range of
input levels that were delivered under both conditions (Fig. 5A).
In both cases, we explored a range of excitation levels that evoked
firing rates of interneurons within the physiological range ob-
served in vivo (Lapray et al., 2012; Varga et al., 2012; Katona et al.,
2014) (Fig. 5B).

For the direct-drive condition, we tested a range of peak con-
ductances spanning from 4.5 nS (the minimum required to evoke
oscillations) to 16 nS. Oscillations evoked in this condition ex-
hibited frequencies constrained to the ripple band (range, 162—
225 Hz; Fig. 5A, circles). Remarkably, this range of frequencies
resembled those observed in vitro (e.g., 160-240 Hz) (Maier et
al., 2011). Frequencies were also only weakly sensitive to the peak
excitatory input delivered (see also Fig. 1D). In this direct-drive
condition, network frequencies were considerably higher than
the unit firing rates (Fig. 5A, B, respectively, circles), yielding
saturation levels that ranged from 30% to 50%. Consistently,
network frequency became gradually more sensitive to input at
higher input levels (see also Fig. 1D).

For the indirect-drive condition, on the other hand, we ap-
plied peak conductances to the pyramids within a range from 10
to 75 nS. This range of input resulted in peak excitatory conduc-
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Figure 5.  Network-frequency response for indirect versus direct drive of interneurons. 4,
Network frequency as a function of the peak input conductance to interneurons. For indirect
drive (triangles, 280 simulations), the network frequency increased linearly with peak conduc-
tance, covering the fast-gamma range (90 —140 Hz) and part of the lower ripple band (range,
93-172 Hz). For direct drive (circles, 240 simulations), frequency was limited to the ripple band
(range, 162—225 Hz). B, Firing rate of interneurons as a function of the peak input conductance
to interneurons. Units expressed similar firing rates in both direct (open circles) and indirect
(open triangles) conditions. Green triangles and red circles correspond to the examples shown
in Figure 4B and Figure 4D, respectively.

tances to the interneurons spanning from 1.5 to 15 nS. For easier
comparison with the direct-drive condition (Fig. 54, circles), we
plotted the network frequency of each event in the indirect-drive
condition as a function of the average peak of the filtered
(<30 Hz) excitatory input experienced by interneurons (Fig. 5A,
triangles). Within the range of inputs tested, the network fre-
quency increased linearly with excitatory input to interneurons,
covering almost the entire fast-gamma range and part of the rip-
ple band (range, 93-172 Hz). These results indicate that the net-
work operated at a high saturation level. Indeed, if we consider
the ratios of unit firing rate to their corresponding network fre-
quencies for that condition (Fig. 5B, A, respectively, triangles),
we can estimate a saturation of ~60% for the entire range tested.
Consistent with such a level of saturation, the interneuron net-
work frequency increases with excitatory input (see also Fig. 1D).

In summary, oscillations evoked in transiently excited in-
terneuron networks can exhibit IFA when the interneurons are
driven both directly or indirectly by depolarization of the local
pyramids to which they project. Under direct drive, IFA is robust,
but its expression is limited to the ripple band. On the other hand,
in oscillations evoked by depolarization of local pyramidal cells,
asin Stark et al. (2014), IFA is limited to the fast gamma band. In
both cases, when IFA is expressed, the model predicts a peculiar
relationship between the time courses of the instantaneous fre-
quency and the transient excitatory input to interneurons: the
network frequency exhibits a peak during the ascending phase of
excitation (Figs. 3D, 4B, left, D,).



Donoso et al.  Ripples in Interneuron Networks

J. Neurosci., March 21, 2018 -

38(12):3124-3146 + 3137

LFP
300 pv 200 pA
900 pA =
20ms o ms 180
Cell (+6 mV) W S 100
120-300Hz £
2]
[0
Cell, (+6 mV) A g -100
120-300 Hz ™
E F G 50 1.0
LFP 5
3 . "
150pA| o A e [N
20pAms| £ 0 e *
SRS B oms & 2
Cell, (-55mV) \, /"/&* £ S 0s o
1 4 300 pV " 2
v 150 pA c @ o 0.5 1S
o c
20 ms = 2 50
% o o %
Cell, (-55 mV) os0H: % 0 — 3
o 0+ 0.6
-100 0 100 =z 0 0.5 1 -10 0 10
Time lag (ms) Correlation Time lag (ms)

Figure 6.

Inhibitory and excitatory currents in pairs of CA1 pyramidal cells during SWRs in vitro. A, To isolate inhibitory currents, two cells were clamped at 6 mV. Top (black), Extracellular SWR.

Bottom, Simultaneously recorded inhibitory currents (gray) and bandpass filtered versions (as indicated, blue). B, Magnification and overlay of the two filtered currents and their envelopes as
derived from the Hilbert transform (top). The instantaneous phase shift (bottom, gray) between the two ripple oscillations was obtained by subtracting the angles yielded by their respective Hilbert
transforms. The average phase shift (—4 degrees) and the quality of phase locking (vector strength 0.99) were estimated from the time span where both envelopes exceed 3 SD of baseline (gray
box). €, Average phase shifts and vector strengths of inhibitory currents for 124 SWR events (gray circles) recorded in one cell pair. Black circle represents the average phase vector (phase shift: —32
degrees; vector strength: 0.81) across events. D, Average phase vectors for 7 cell pairs (symbols). E, To isolate excitatory currents, two cells were clamped at — 55 mV. Top (black), Extracellular SWR.
Bottom, Simultaneously recorded excitatory currents (gray) and low-pass filtered versions (as indicated, red). F, Overlay of the two filtered and rectified currents (top), their temporal derivatives
(middle), and the cross-correlation of the derivatives (bottom). The maximum of the cross-correlation (0.97) indicates the strength of the correlation, and the time of this peak (0.7 ms) denotes the
time lag of the two excitatory inputs for a particular SWR. G, Time lags as a function of the maximum correlation (top, gray dots) and histogram of maximum correlations (bottom) for 191 events (gray
dots) recorded in one cell pair. Black circle represents the average correlation (0.79 = 0.01) and the average time lag (0.9 = 0.5 ms) across events. H, Average time lag versus average correlation
for 7 cell pairs. The grand average time lag (across cell pairs) was —0.04 == 0.54 ms (range, —2.9 to 1.4 ms).

Frequency dynamics during ripples in vitro

To test the prediction of the in silico model, that the maximum
frequency precedes the peak of excitatory input, we resorted to a
previously established in vitro model of hippocampal SWRs in
CA1 (Maier etal., 2009). In this preparation, we aimed at tracking
the instantaneous frequency of the putative interneuron network
activity while simultaneously observing the time course of the
excitatory input to CA1 during SWR events. In other words, we
were specifically interested in the fine temporal “ripple” structure
of inhibition and the slower temporal “sharp wave” structure of
excitation. This information can be extracted from whole-cell
recordings of pyramidal cells in voltage-clamp mode. However,
inhibitory and excitatory currents cannot be measured simulta-
neously in a single cell. Hence, we performed simultaneous
patch-clamp recordings from two neighboring pyramidal cells
within area CAl. By isolating excitatory synaptic activity in one
cell and inhibitory synaptic activity in another, we could extract
the relevant information to test the model prediction.

The described approach rests on the assumption that the cur-
rents in two different pyramidal cells are correlated. This assump-
tion is supported by the structure of the projections: pyramidal
cells receive input from a large sample of converging inhibitory
(mostly local collaterals) and excitatory (mostly Schaffer collat-
erals) fibers. Therefore, the synaptic current measured in a single
cell can provide information about the overall activity of the
respective converging population. To test this assumption, we
first voltage-clamped pairs of pyramidal cells at the same holding
potential and assessed the temporal relationship between the

measured currents. Clamping both cells at the reversal potential
of inhibition reveals excitatory currents. On the other hand,
clamping both cells at the reversal potential of excitation reveals
inhibitory currents. We first investigated these two cases in detail
and checked whether inputs were indeed correlated.

Phase alignment of inhibitory ripples in pairs of pyramidal cells
Can the inhibitory current measured in one CAl pyramidal cell
provide information about the inhibitory current in another py-
ramidal cell? We reasoned that, if a pair of pyramids receives
input from two inhibitory subpopulations that are entrained by a
common rhythm (i.e., a ripple), the ripple-locked compound
IPSCs recorded in the two cells should be temporally aligned or,
equivalently, their ripple components should be phase-locked
with a phase difference close to 0. Therefore, we analyzed the
phase relationship between inhibitory ripples.

To isolate inhibitory currents, two simultaneously recorded
cells were clamped at the reversal potential of excitation. In both
cells, we observed compound IPSCs that co-occurred with the
extracellularly recorded SWRs (Fig. 6A) and exhibited a temporal
structure consistent with a rhythmic inhibitory input (Fig. 6A,
bottom). For every SWR event, two inhibitory ripples were ob-
tained from bandpass filtered currents (120-300 Hz). We then
calculated the Hilbert transform of the two ripples and obtained
their envelopes (Fig. 6B, top) and instantaneous phase angles.
The instantaneous phase shift between the two ripple oscillations
was obtained by subtracting the angles yielded by their respective
Hilbert transforms (Fig. 6B, bottom). Then the phase shift of a
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single SWR event was calculated as the circular mean of the in-
stantaneous phase shift in the time interval where both ripple
envelopes exceeded 3 SDs of the baseline (Fig. 6B, gray box); and
the quality of phase locking was described by the vector strength
of the instantaneous phase shift during this overlap. The phase
shift, which is an angle, and the vector strength, which is a num-
ber between 0 and 1, were determined for all SWR events re-
corded in a cell pair (Fig. 6C, gray circles). From all these phase
vectors obtained in a simultaneous recording, we calculated an
average phase vector (Fig. 6C, black circle). Inhibitory ripples
were strongly phase-locked at low phase shift angles in all simul-
taneous recordings analyzed (Fig. 6D). For the seven recordings
analyzed, the average vector strength was 0.76 = 0.03 (range,
0.63—0.82) and the average phase shift was 2 * 8 degrees (range,
—32 to 31 degrees). The range of phase shifts observed corre-
sponds to time lags <0.5 ms for a ripple frequency of 200 Hz.
From these results, we conclude that the inhibitory input to one
pyramid predicts the phase of inhibitory input to other pyramids
well. Moreover, the inhibitory current can be used to assess the
phase of the putative interneuron network activity and therefore
its instantaneous frequency.

Alignment of excitatory sharp waves in pairs of pyramidal cell

In a second set of experiments, we aimed at testing whether the
time course of the excitatory current recorded in one pyramidal
cell is a reliable predictor of the overall time course of excitatory
input to the network. We reasoned that, if a pyramidal cell re-
ceives input from a large sample of Schaffer collateral fibers, we
should be able to use the excitatory current recorded in any pyr-
amid to track the time course of the excitatory burst. We specif-
ically tested whether the slow component of excitation is aligned
in pairs of pyramidal cells.

To isolate excitatory currents, two simultaneously recorded
cells were clamped at the reversal potential of inhibition. In both
cells, we observed ripple-locked compound EPSCs that co-
occurred with the extracellularly recorded SWRs (Fig. 6E) (Maier
et al.,, 2011). To keep track of the coarse excitatory input, we
focused on the low-frequency components of the measured cur-
rents. For every SWR, we obtained a low-pass filtered version
(0-50 Hz) of the co-occurring SWR-locked compound EPSCs.
The rectified version of such a slow current describes the time
course of the excitatory input that we refer to as excitatory sharp
wave (eSW, Fig. 6F, top). To be able to precisely characterize the
time course of an eSW, we calculated its first derivative. This
allowed us to reduce the eSW to a single cycle in which a positive
part marks the ascending phase of the eSW, the zero crossing
demarcates the peak, and the subsequent negative part marks the
descending phase (Fig. 6F, middle). The relative timing of the two
simultaneously recorded eSWs can be described by their cross-
correlation. The lag of the peak of the cross-correlation quantifies
the time lag between the signals, and the peak value determines
the amount of correlation (Fig. 6F, bottom). Figure 6G shows the
peak correlations and the time lags of eSWs obtained for all
the events recorded in one pair of cells (gray dots). From all the
events in one recording, we calculated the average time lag and
the average correlation coefficient (black circle). Figure 6H shows
the average time lag and the average correlation values in seven
cell pairs. In all of these recordings, high values of correlation
coefficients (range, 0.66—0.92) and low time lags (range, —2.9 to
1.4 ms) were observed. High correlation values between pairs of
cells imply that the time course of excitation recorded in one cell
is a reliable predictor of the excitatory input experienced by other
cells in the network. From these results, we concluded that it is pos-
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sible to use the excitatory synaptic input onto a single pyramid to
assess the phase of the excitatory burst driving the CA1 network.

IFA and its relation to the time course of excitation

Having confirmed our main assumptions on the correlation of
SWR-associated currents in pairs of pyramids, we could use one
pyramidal cell (of a pair) to probe the output of the inhibitory
CAL1 network while we simultaneously used another pyramidal
cell to probe the excitatory input to CA1. For every SWR recorded
in the LFP, the inhibitory current was recorded in one cell by holding
its membrane potential at the reversal potential of excitation. Simul-
taneously, the excitatory current was recorded in another cell by
holding it at the reversal potential of inhibition (Fig. 7A). An inhib-
itory ripple and a coarse excitation were obtained from the bandpass
(120-300 Hz) and low-pass (0-50 Hz) filtered versions of the re-
spective currents. From the inhibitory ripple current obtained in one
cell, the instantaneous frequency was calculated using the wavelet
spectrogram (Fig. 7B, top, middle). From the rectified coarse excita-
tion, we obtained an eSW. By combining the instantaneous fre-
quency with the eSW (Fig. 7B, bottom), we were able to describe the
temporal relationship between the instantaneous frequency of inhi-
bition and the time course of excitatory input onto CA1 during a
single SWR.

We collected data in one configuration of holding potentials
(i.e., cell 1 at 6 mV and cell 2 at —55 mV), and then switched the
holding potentials (i.e., cell 1 at =55 mV and cell 2 at 6 mV). This
approach allowed us to control for any bias that might be intro-
duced by the particular cells used. Figure 7C shows the instanta-
neous ripple frequencies obtained from inhibitory currents and
its relation with the time course of excitatory currents. We
confirmed the prediction of the model in 6 of 7 pairs: the instan-
taneous frequency peaked during the ascending phase of excita-
tion, and the instantaneous frequency started to decay before the
peak of excitation was reached. To characterize the typical time at
which the frequency peaked with respect to the maximum exci-
tation, we measured this interval in all 1972 recorded events
across cells and conditions (Fig. 7D), obtaining an average delay
of —6.2 £ 0.2 ms. We also obtained average times of the fre-
quency peaks for all events recorded in each cell pair (Fig. 7E).
Pairs displayed times of frequency peaks ranging from —8.0 to
—2.0 ms. The average across cell pairs was —5.3 = 0.9 ms.

To conclude, inhibitory oscillations during SWRs in vitro ex-
hibit prominent IFA in the ripple band. Experiments confirmed
the model prediction that during SWRs the oscillation frequency
exhibits its peak during the ascending phase of the coarse excit-
atory input.

Effect of GABA modulators on inhibitory networks

The modeling and experimental results presented so far support
the idea that the frequency dynamics of ripples in vitro is well
described by a directly driven interneuron network. Could such a
model also account for the impact of GABA modulators on ripple
frequency as reported in the literature? The oscillation frequency
of ripples in vitro is remarkably resistant to drugs that alter the
time constant and peak conductance of GABAergic synaptic
transmission (Papatheodoropoulos et al., 2007; Koniaris et al.,
2011; Viereckel et al., 2013) and such resistance has been used as
an argument against a ripple pacemaker relying on interneuronal
networks (e.g., Viereckel et al., 2013). To investigate the validity
of this argument, we tested the effect of GABA modulators on
ripple oscillations generated by a directly driven CA1 interneuron
network model (Figs. 8, 9).
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Figure 8.  Simulation of the effect of three different GABA modulators: 17, Uptake-blocker NNC711; 2, thiopental; and 3, zolpidem. 4, Left, Average IFA signatures obtained for control (black,

identical to Fig. 3D) and under the effect of the drug (orange). Insets, The action of the drug on the inhibitory postsynaptic conductance. Right, Normalized average power spectra of network activity
for control (black) and during exposure to the drug (orange). B, Average time courses of ripple power of network activity for control (black) and during exposure to the drug (orange). C, Examples
of simulated ripple extracellular potentials obtained from the average inhibitory current across the population (see Materials and Methods). D, Changes in frequency, firing rate (FR), and duration

with respect to control values. Each average trace was obtained from 20 simulations.

The effect of GABA modulators on ripples in silico

We focused on the effect of three drugs that induce changes in the
GABAergic synaptic transmission, namely, NNC-711 (Viereckel
etal.,2013), thiopental (Whittington et al., 1996; Dickinson et al.,
2002), and zolpidem (Whittington et al., 1996; Thomson et al.,
2000). Remarkably, during SWRs in vitro, these drugs have little
effect on the ripple frequency, despite the marked changes they
induce in other features such as the neuronal activity and the
ripple duration (Papatheodoropoulos et al., 2007; Koniaris et al.,
2011; Viereckel et al., 2013).

Here, we used the interneuron-network response to an excit-
atory burst from CA3 as a model of ripples in vitro (Fig. 3). The
action of a drug was simulated by modifying the peak conduc-
tance g, and/or the decay time constant 7, of inhibitory
conductances in the model (Fig. 84, insets). The altered charac-
teristics due to the simulated application of the drugs are
shown as orange traces juxtaposed against the control (black)
traces in Figure 8, which are identical to the black traces in
Figure 3D-G.

The action of the GABA uptake-blocker NNC-711 was simu-
lated by increasing 7, by 100% and g, by 50% (Viereckel et al.,
2013) (Fig. 8A , inset). To simulate thiopental, we increased 7, by
80% and kept g, unaltered, as reported for a concentration of
50 uM (Whittington et al., 1996) (Fig. 8A,, inset). Finally, we
simulated the effect of a benzodiazepine, such as diazepam or
zolpidem, by selectively increasing g, by 100% without affect-
ing 7, (Fig. 843, inset) (Whittington et al., 1996; Pawelzik et al.,
1999; Thomson et al., 2000; but see Zarnowska et al., 2009).

NNC-711 and thiopental showed qualitatively similar effects
that were consistent with those reported in the literature (Pa-
patheodoropoulos et al., 2007; Viereckel et al., 2013). The overall
network frequency was not affected by these drugs (Fig. 84,,A,),

but the network activity was largely reduced, as revealed by the
average time course of the power (Fig. 8B,,B,). Such a reduction
in activity was paralleled by a reduction in the ripple duration
(Fig. 8D,,D,). For ripples in vitro, bath application of thiopental
at the concentration simulated here (50 um) did not affect the
frequency but reduced multiunit activity by ~44%, and ripple
duration by ~20% (Papatheodoropoulos et al., 2007), remark-
ably close to the ~40% and ~20% reductions obtained from our
simulations, respectively (Fig. 8D,).

In slight contrast, the simulated application of zolpidem in-
duced an overall frequency decrease of 6%, which was reflected in
both the IFA signature and in the average power spectrum (Fig.
8A;, left and right, respectively). The power and duration of the
transient response also decreased (Fig. 8B;,D;) but to a much
lesser extent than the previous drugs.

At this point, it is important to bear in mind that, in general,
the effect of a drug is not limited to the synapses between PV *
BCs but also affects the currents generating the LFP. This is of
particular importance when comparing experimental results
with those obtained in silico. In experiments, ripple oscillations
are often measured in the stratum pyramidale where the LFP is
mostly contributed by perisomatic GABAergic synapses onto py-
ramidal cells. This implies that, in addition to the effect exerted
on the interneuron network activity, the drug may also affect the
amplitude of the ripple measured in the extracellular field. To
capture qualitative changes in the ripple amplitude that might
stem from this “double effect,” we used the bandpass filtered
(120-300 Hz) inhibitory currents generated by the interneurons
in the model as an approximation of the LFP in the ripple band
(Fig. 8C; see Materials and Methods). In the case of the NNC-711
and thiopental, for example, the model predicts only a mild re-
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duction in LFP amplitude (Fig. 8C; and Fig. 8C,, respectively),
despite the large reduction in network activity (Fig. 8B; and Fig.
8B,, respectively). In this respect, zolpidem is a particularly inter-
esting case in which the reduction in unit activity (Fig. 8B;) is
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overcompensated by the increase in the GABAergic conductance.
This overcompensation resulted in an increase in the LFP-ripple
amplitude (Fig. 8Cj;), consistent with the reported effect of zolpi-
dem on ripples in vitro (Koniaris et al., 2011).

In summary, the effect of simulated GABAergic modulators
on the transient response of the interneuron network model was
consistent with effects reported in several experimental studies.
Notably, increases in the GABAergic transmission are counter-
balanced by a reduction in the network (i.e., unit) activity. The
model can explain why drugs that induce an increase in decay
time constant of GABAergic synaptic transmission can reduce
ripple duration and interneuron firing rates without affecting
ripple frequency.

To further generalize our results, we now return to the case of
persistent stimulation of an interneuron network.

The role of input noise in frequency sensitivity

In stark contrast to ripples, pharmacologically evoked oscilla-
tions in the gamma band that rely exclusively on inhibition are
frequency-sensitive to GABA modulators (Whittington et al.,
1995, 1996; Traub et al., 1996; Fisahn et al., 2004). In agreement,
in silico models of such interneuron-network gamma (ING) ex-
hibit oscillations whose frequency is sensitive to manipulation of
GABA parameters (Traub et al., 1996; Wang and Buzséki, 1996;
Bartos et al., 2002). How can interneuron networks generate os-
cillations that are frequency insensitive (as in our ripple model)
and also frequency sensitive (as in ING models)?

One commonality to ING models is that interneurons are
driven by tonic currents that are distributed across cells with low
variability (CV = 3%) (Traub et al., 1996; Wang and Buzsiki,
1996). Such a tonic driving input is intended to mimic the steady
currents induced by activation of metabotropic channels during
pharmacologically evoked ING. Would such a homogeneous
tonic drive generate frequency-sensitive oscillations in our
model? To examine this question and connect it to previous re-
sults, we compared the response of the network to GABA modu-
lators under two different driving conditions: spiking drive (as
during persistent stimulation; see Fig. 1) and tonic drive (as in
ING models). The results are summarized in Figure 9.

We first tested the effect of the GABA-uptake blocker NNC-
711 (Fig. 9A, middle, inset) during persistent stimulation at a rate
of 5500 spikes/s (Fig. 94, see also Fig. 1). In the control condition,
the network oscillated at a frequency of 185 Hz (Fig. 94, middle,
black) and units fired at an average rate of 138 spikes/s (range,
70-179 spikes/s) (Fig. 9A, bottom, black). Under the drug, the
frequency of the oscillation in the population exhibited only a 4%
increase (Fig. 9A, top, orange). In contrast, the distribution of
firing rates across units was shifted to much lower values (Fig. 9A,
bottom, orange). This effect of the drug closely resembled the
effect of a decrease in the excitatory drive (Fig. 1B, D).

We then stimulated the same network by driving the interneu-
rons with tonic excitatory conductances that were distributed
across the population with low (CV = 0.03) variability (Fig. 9B,
top). The mean value of the excitatory conductance used (17.4 nS)
was equivalent to the value induced by the spiking stimulation at
5500 spikes/s. The SD of the conductances was set to 3% of the
mean, in accordance with previous ING models (Traub et al.,
1996; Wang and Buzséki, 1996). Under such conditions of low
noise in the input, the network oscillated at 168 Hz (Fig. 9B,
middle, black) and all units fired at 168 spikes/s (Fig. 9B, bottom,
black), consistent with a fully synchronized (“low noise”) regime.

When NNC-711 was applied under the tonic-drive condition,
the network-oscillation frequency markedly decreased from
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168 Hz to 125 Hz (Fig. 9B, middle, orange). Also, the peak of
the firing-rate distribution decreased, matching the network-
oscillation frequency (Fig. 9B, bottom, orange). It is noteworthy
that the distribution of firing rates was not only shifted but also
smeared out to lower values (bimodal distribution in Fig. 9B,
bottom). Although a large fraction of units fired at a rate close to
the network frequency, the remainder of the distribution re-
vealed units that skipped cycles. The subpopulation expressing
low firing rates (=50 spikes/s) spiked irregularly but consistently
with the population oscillations (data not shown). Thus, the sim-
ulated application of NNC-711 under tonic drive not only de-
creased the network frequency but also allowed the emergence of
a sparsely synchronized subpopulation in the network.

How do other drugs that alter GABAergic synaptic transmis-
sion affect the network oscillations under the two input condi-
tions? To outline the predictions of the in silico model regarding
the effects of GABAergic modulators in general, we measured the
network frequency and the mean unit firing rate at different com-
binations of g, and 7, under the two driving conditions de-
picted in Figure 9A, B. Figure 9C shows the network peak
frequency (top row) and the mean firing rate across units (bot-
tom row) as a function of g, (range, 1-10 nS) and 7, (range,
1-3 ms). Such a representation of the parameter space allows us
to visualize the effect of a drug as a displacement vector that starts
at the control value 7, = 1.2 ms and g,,,c = 5.0 nS and points at
the new values induced by the drug (Fig. 9C, black arrows).

During the spiking-drive condition (Fig. 9C, left column), the
network frequency remained in the ripple band for a wide range
of values of g, and 7p,. This behavior indicates that drugs af-
fecting the two parameters would induce only minor changes in
the network frequency, which is also consistent with the transient
regime investigated in Figure 8. Remarkably, however, a drug
could induce small but variable changes depending on the initial
condition (i.e., control) in the parameter space. For example, an
increase in 7, from 1.2 to 2.2 ms (e.g., thiopental) would result in
a small or no change in the network frequency if g, = 5 nS in
the control condition. In contrast, the same change in 7, would
induce a slight increase in the network frequency if g ... = 8 nS in
the control condition. The mean firing rate, on the other hand,
was much more sensitive to g, and 7, and ranged from <60 to
>220 spikes/s in the simulated parameter space (Fig. 9C, bottom
left). Firing rates strongly decreased when g,,.,. or 7, increased.

During the tonic-drive condition, in contrast, both the net-
work frequency and the mean firing rate were highly sensitive to
changes in g, and 7, (Fig. 9C, right column). The gradient of
network frequencies in the observed parameter space showed
that frequency and firing rate were inversely related to both g,
and 7p,. This trend is consistent with experimental results in the
context of induced gamma oscillations in vitro (Whittington et
al., 1995, 1996; Traub et al., 1996; Fisahn et al., 2004).

Interestingly, close to the highest values of 7, and g,,., tested
(upper right corners in color plots) in the tonic-drive condition
(Fig. 9C, right column), high network frequencies emerged from
units firing at low rates. This suggests that changes in 7, and g,
of GABAergig synaptic transmission can also affect the oscillatory
regime. To figure out the expression of different regimes in the
observed parameter space, we measured the average CV of unit
activity (Fig. 9C, bottom, black contour lines). In both conditions
of driving input, increasing 7, and/or g, increased the CV,
which means that units fired more irregularly. The transition
from full to sparse synchrony may be indicated by CV = 0.5
(dashed line). For spiking drive, a sparsely synchronized regime
was observed in most of the shown parameter space (Fig. 9C,
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bottom left). For tonic drive, on the other hand, full synchrony
appeared in a large area around the control values. It is notewor-
thy that the CV within this region is considerably lower than the
lowest level that could be achieved during the persistent-drive
condition at very high rates (Fig. 1D, middle).

In summary, the noise provided by spiking excitatory stimu-
lation favors the emergence of oscillations whose frequency is
insensitive to GABA modulators. On the other hand, the condi-
tions of low noise provided by the tonic excitation with low
neuron-to-neuron variability, typically used in ING models, fa-
vor the emergence of oscillations whose frequency is sensitive to
GABA modulators. In conclusion, the fact that ripple oscillations
are frequency-insensitive to GABA modulators cannot rule out
an interneuronal pacemaker.

Discussion

Using a physiologically constrained computational model of the
PV ™ BCs network in CA1 and an in vitro model of SWRs, we
described mechanisms underlying the generation of fast oscilla-
tions in the ripple (140-220 Hz) and fast gamma (90-140 Hz)
ranges. In the computational model, we analyzed the transient
oscillatory responses of the PV * BCs network under two config-
urations of excitatory drive to interneurons. Under direct drive,
interneurons did not provide inhibitory feedback to the pyrami-
dal cells exciting them (Schlingloff et al., 2014). Under indirect
drive, on the other hand, the firing of the local pyramidal cells in
CA1 excited the interneurons, which projected back to the pyra-
mids (Stark et al., 2014). In both cases, we explored excitation
levels that evoked firing rates of interneurons within the physio-
logical range observed in vivo. The computational model showed
that (1) under direct drive, oscillation frequencies only weakly
depended on the excitation level, and remained constrained to
the ripple range; (2) single responses under such a condition
exhibited IFA and were frequency-resistant to GABA modula-
tors; (3) under indirect drive, the oscillation frequency increased
monotonically with the excitation level, covering the entire fast
gamma range and the lower ripple band; (4) IFA under indirect
drive was expressed in the fast gamma range only; (5) when IFA
was present, the maximum frequency occurred several millisec-
onds before the peak of excitation. In the in vitro model, we
showed that (6) SWRs in vitro exhibit IFA, and (7) double record-
ings from CA1 pyramidal neurons during SWRs confirmed the
relationship between the instantaneous ripple frequency and the
time course of excitation predicted by the computational model.

IFA and excitation-first models

Hippocampal ripples exhibit IFA both in vivo (Ponomarenko et
al., 2004; Nguyen et al., 2009; Sullivan et al., 2011; Stark et al.,
2014; Hulse et al., 2016) and in vitro, as shown here for the first
time. The finding that IFA is expressed in transiently excited
interneuron-networks poses a challenge to excitation-first mod-
els, which so far have not accounted for the phenomenon. To
produce IFA, an excitatory pacemaker should be able to slow
down its frequency within the time course of a single SWR. In the
axon-plexus model (Traub and Bibbig, 2000), for example, one
factor that could dynamically control the frequency is the spike-
to-spike propagation latency. Such a latency depends on the
action-potential amplitude, which has been shown to decrease
with somatic depolarization of pyramidal cells (Shu et al., 2006,
2007).



Donoso et al.  Ripples in Interneuron Networks

The role of noise in frequency-sensitivity to

GABA modulators

As shown here and elsewhere (Brunel and Wang, 2003; Maex and
De Schutter, 2003), the sensitivity of frequency to GABA modu-
lation is not an intrinsic property of interneuronal network oscil-
lations but rather depends on the noise and heterogeneities in the
system. The higher sensitivity of previous inhibition-first models
of ripple oscillations can be explained by factors that favor a
low-noise oscillatory state, such as homogeneously distributed
driving currents in the absence of noise (Taxidis et al., 2012) or
all-to-all connectivity (Malerba et al., 2016). In contrast to these
models, we drove units with excitatory conductances that were
heterogeneously distributed across the population in the pres-
ence of random synaptic activity, which led to the generation of
frequency-resistant ripple oscillations.

Fast hippocampal oscillations may reflect two

distinct processes

The sharp wave associated fast oscillations emerging in CA1 dur-
ing slow-wave sleep and awake immobility express a wide range
of frequencies spanning from ~80 to ~220 Hz (Csicsvari et al.,
1999; Sullivan et al., 2011). These events co-occur with sharp
wave sinks in the stratum radiatum, which reflect the depolariza-
tion of the apical dendrites of CAl pyramidal cells due to the
input from CA3. Given the correlation between sharp wave-sink
amplitude and ripple frequency, it has been suggested that an
indirect-drive model (Fig. 4A) can account for most of the fea-
tures of SWRs in vivo and in vitro (Stark et al., 2014). Indeed, this
model alone can generate a wide range of frequencies depending
on the excitatory input provided, allowing a continuum that en-
compasses both fast-gamma and ripple bands into a single pro-
cess (Fig. 5A). However, the indirect-drive condition alone is still
at odds with several features of SWRs: First, during slow-wave
sleep, a bimodal distribution of ripple frequencies emerges from
a unimodal distribution of sharp wave-sink amplitudes (Sullivan
et al., 2011). Second, during transient periods of immobility,
ripple-frequency does not correlate with sharp wave amplitude
(Buzséki, 2015, his Fig. 4). Third, during SWRs in vitro, oscilla-
tions that are limited to the ripple band (Maier et al., 2003, 2011;
Papatheodoropoulos et al., 2007; Koniaris et al., 2011) emerge
under extremely weak (0.0038 spikes/s) CA1 pyramidal-cell ac-
tivity (Bdhner et al., 2011). In line with these data, Sullivan et al.
(2011) suggested that transient oscillations in CA1 reflect the
presence of two “voltage-controlled” oscillators that exhibit dif-
ferent frequency gains but share anatomical substrates and
mechanisms. Here, we propose that these two “voltage-
controlled” oscillators correspond to the same interneuronal
network that is recruited either by direct excitatory drive or by
indirect excitatory drive via depolarization of local pyramids,
conforming a “ripple oscillator” and a “fast-gamma oscilla-
tor,” respectively. These putative oscillators cover different fre-
quency ranges and exhibit different excitation-frequency curves that
overlap at higher frequencies (Fig. 5A).

Anatomical substrates for the fast-gamma and

ripple oscillators

The difference in connectivity of deep versus superficial pyrami-
dal cells and PV * BCs in CA1 could provide the substrate for the
selective recruitment of the putative oscillators proposed here
(Lee et al., 2014). Pyramidal cells in the deep layers of stratum
pyramidale (i.e., closer to stratum oriens) are interconnected
with PV " BCs in a scheme that is dominated by feedback inhibi-
tion (as in our indirect-drive condition). Conversely, pyramidal
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cells in the superficial layer of stratum pyramidale (i.e., closer to
stratum radiatum) project heavily onto PV* BC and receive
comparably little inhibition from them (a scheme more rem-
iniscent of our direct-drive condition). We therefore hypoth-
esize that the selective depolarization of the deep calbindin-
immunonegative (CB ) pyramidal cells generates oscillations
preferentially in the fast gamma range whereas depolarization of
the superficial calbindin-immunoreactive (CB *) pyramidal cells
favors the expression of oscillations in the ripple band. The selec-
tive activation of these cell types in vivo could be mediated by
anatomically segregated excitatory pathways (Mizuseki et al.,
2011; Slomianka et al., 2011). In the general case where both
subclasses of pyramidal cells and PV " BC receive concurrent
excitatory input, the intralaminar connectivity between pyrami-
dal cellsand PV ™ BC could function as a winner-take-all network
where ripples and fast gamma oscillations compete for expression
(Viriyopase et al., 2016).

Ripple oscillations in vitro

In stark contrast to their in vivo counterparts, SWRs in vitro are
characterized by frequencies that are limited to the ripple range
(Maier et al., 2003, 2011; Papatheodoropoulos et al., 2007; Ko-
niaris et al., 2011) and by much lower firing rates of local pyra-
midal cells (e.g., in vitro: 0.038 spikes/s vs in vivo: 12.8 spikes/s on
average) (Bdhner etal., 2011; English et al., 2014). This low activ-
ity of pyramidal cells in CA1 is consistent with weak excitation; in
a hippocampal slice, the input to CAl pyramidal cells through
excitatory afferents is indeed compromised (Ishizuka et al., 1990;
Li et al., 1994). Our dual-pathway model suggests that the exci-
tation to pyramidal cells in CA1 in vitro is not strong enough to
engage the pyramidal-interneuron-network feedback loop into
an oscillatory regime (Brunel and Hakim, 2008), which explains
the absence of fast-gamma oscillations. The remaining excitatory
afferents might still be sufficient to drive the more excitable direct
pathways to interneurons, granting the expression of oscillations
in the ripple band. In such a scenario of weakened excitatory
input, pyramidal cells are dominated by a strong rhythmic peri-
somatic inhibition that allows only a very sparse but precisely
timed firing of pyramidal cells. Such rhythmic excitatory activity
is revealed as a ripple component in the excitatory currents mea-
sured in pyramidal cells (Maier et al., 2011) (Fig. 6E). We further
hypothesize that, in the isolated CA1 region, the more excitable
superficial pyramids can also excite the local interneurons in a
direct-drive fashion to evoke ripples (Maier et al., 2003, 2011),
provided they can initiate a sharp wave, presumably in a manner
similar to CA3 (de la Prida et al., 2006; Bazelot et al., 2016).

In conclusion, in the context of memory replay and consoli-
dation (Buzsédki, 1989, 1998; Siapas and Wilson, 1998; Lee and
Wilson, 2002), ripple oscillations synchronize the activity among
large ensembles of cells, which amplifies the output messages of
CA1 and may boost plasticity in downstream brain structures.
The observed bimodality in ripple frequency (Csicsvari et al.,
1999; Sullivan et al., 2011) may be underlied by two distinct pro-
cesses involving functionally different subpopulations of pyrami-
dal cells in CA1 (Valero et al., 2015), which receive input from
and project to different source and target areas, respectively (Slo-
mianka et al., 2011).
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