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Marsel Mesulam’s (Mesulam, 1990) vi-
sion that “complex behavior is mapped
at the level of multifocal neural systems
rather than specific anatomical sites” has
triggered an overwhelming interest in un-
derstanding the organizational architec-
ture of the brain. Research over the past
several decades has shown that the brain
is organized in hierarchical networks that
shape behavior and cognition, both in
healthy and pathological states (Zhou et
al., 2006; Honey et al., 2007; Hagmann et
al., 2008; Bullmore and Sporns, 2009). At
a macroscale level, intrinsic connectivity
of parcellated cortical brain regions has
been used to characterize neural networks
in an attempt to understand their influence
on information processing. By examining
fluctuations in neural activity, measured by
vascular hemodyamic changes, resting-state
functional magnetic resonance imaging (rs-
fMRI) has reliably been used to investigate
network connectivity. Networks are char-
acterized as a collection of nodes and
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edges: nodes represented by focal neural
parcellations identifiable with three coor-
dinates (x, y, and z) and edges as the con-
nections between these nodes (Sporns,
2011). Networks are classified as struc-
tural (physical anatomical connections),
functional (statistical dependencies among
neurophysiological measurements), and ef-
fective (one region exerting a causal influ-
ence over another) (Friston et al., 2011).
Investigation of effective connectivity is a
relatively recent development. Corticocor-
tical evoked potential (CCEP) research,
which combines invasive (electrode-based
EEG recording etc.) and noninvasive
(rs-fMRI, diffusion tensor imaging, etc.)
methodologies, provides a distinct advan-
tage in such studies by allowing research-
ers to observe whether stimulation of one
site can activate another and drive net-
work variability (Matsumoto et al., 2012).

In a recent article, Shine et al. (2017)
combined intracranial stimulation and
recording with rs-fMRI to provide valu-
able insight into the temporal pattern of
effective connectivity between three large-
scale brain networks: the default-mode
network (DMN), the salience network
(SN), and the frontoparietal network
(FPN). These three networks have received
considerable attention due to their large
spatial extent, which provides a common
framework to understand dysfunction
across multiple disorders, especially re-

lated to cognition (Menon, 2011). Addi-
tionally, their dynamic synchronization
between resting and attentive states, and
ease of visibility, offer a unique opportu-
nity to study complex network dynamics
atrest.

Shine et al. (2017) recruited 7 subjects
that had depth electrodes implanted for a
clinical epilepsy study. Each intracranical
electrode was individually assigned mem-
bership to a predefined network using
rs-fMRI. A pair of electrodes within the
nodes of predefined networks were stim-
ulated while evoked responses were re-
corded from each other pair of electrodes,
for a duration of 200 ms. The authors found
marked heterogeneity in the network-
related temporal patterns across subjects;
therefore, they used a data-driven ap-
proach to identify three spatially and tem-
porally distinct clusters of evoked activity
patterns across the 7 subjects. The unsu-
pervised nature of the latter approach
adds strength to the study because it does
not depend on any a priori hypothesis
for expected results, yet the identified
clusters aligned with predefined net-
work topology.

Shine et al. (2017) provide evidence
that signal propagation among predefined
networks occurs along distinct temporal
scales. Understanding the temporal mod-
ulation of a network can provide unique
perspectives on how information is
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transmitted and influenced. The most
significant network pattern within the
first cluster (which occurred between 11
and 69 ms after stimulation) was evoked
within the SN when electrodes within the
FPN and SN were stimulated. The second
cluster (82—125 ms) was generated in the
FPN as a result of stimulating electrodes
within the SN and DMN. The third cluster
(132-200 ms) was generated by stimulat-
ing electrodes in the DMN, which lead to a
more general activation across all three
networks: the FPN, SN, and DMN. The
authors’ post hoc analysis revealed that
stimulation within the FPN and SN led to
maximal activations in the early window
after stimulus, whereas the DMN gener-
ated maximal activation in the delayed
window after stimulus. The authors also
replicated a finding from Keller et al.
(2014) demonstrating that intranetwork
stimulation generated higher amplitude
activation (within the DMN and FPN but
not SN) compared with internetwork stim-
ulation. Temporal network connectivity at
the individual subject level showed similar
activation patterns (i.e., early FPN/SN and
late DMN responses).

Based on the Shine et al. (2017) study,
three temporal characteristics may be in-
terpreted to the SN and FPN interaction.
First, the fast-evoked activation of the SN
(Shine et al., 2017, their Fig. 3) is consis-
tent with this network’s key roles (i.e.,
monitoring and detecting salient events
and subsequent access to attention and
memory resources) (Menon, 2011). This
efficient SN modulation may be sup-
ported by a unique regional advantage.
The von Economo neurons in the fron-
toinsular and cingulate cortex (Dijkstra et
al., 2018) are rapidly conducting projec-
tion neurons. It is suggested that these
neurons support sophisticated social-
emotional-autonomic functions (Seeley,
2008). Hence, one may conclude that the
fast SN activation is in part supported by
its distinct cytoarchitecture, which has
evolved to facilitate an efficient, “knee-jerk”
assessment of changing (external and inter-
nal) environmental cues (Menon, 2011).
Second, the SN appears to be tightly cou-
pled with other networks: the DMN, but
more so the FPN. This is evidenced by its
prevalence across all three temporal clus-
ters. This adaptive coupling reinforces the
proposed active role of SN in network
switching (Menon, 2011) and mediating
internetwork connectivity (Sridharan et al.,
2008). Third, FPN stimulation leads to SN
activation in the early temporal cluster,
suggesting that FPN depends on the SN
for information acquisition. FPN has

been associated with initiating and adjust-
ing cognitive control based on salience in-
formation (Dosenbach et al., 2008).

Shine et al. (2017) report delayed acti-
vation of the DMN (i.e., evoked responses
in latter clusters). The authors suggest
that this indicates a late influence of the
DMN on the SN and FPN (i.e., after these
networks have completed early/local pro-
cessing). They also suggest that the delay
in DMN influence may expedite the inte-
gration of information processing, albeit
over time. While the authors attribute this
delayed DMN activation to multisynaptic
processing, and imply its role as an “influ-
encer” acting after early-level processing
(SN and FPN), the interpretation of de-
layed DMN activation appears to be more
challenging. Shine et al. (2017) report that
most of their DMN electrodes were lo-
cated in the medial temporal lobe regions
for clinical reasons. Here the polysynaptic
hypothesis, as suggested by Shine et al.
(2017), is well supported, as the medial
temporal lobe is a convergent zone of cor-
tical processing and receives input from
all sensory modalities creating multiple
subsystems (Simons and Spiers, 2003;
Squire et al., 2004). This may create a bot-
tleneck effect contributing to longer la-
tencies. Nevertheless, there are other
explanations that warrant consideration.
For example, there is evidence of reduced
DMN recruitment and alterations in hip-
pocampal networks associated with epi-
lepsy, which may also have contributed to
the delayed DMN activation (James et al.,
2013). Another study-specific limitation,
clearly unavoidable, is the somewhat ros-
tral placement of stimulation electrodes,
which may have biased recordings to-
ward delayed activation. Furthermore, it
has been suggested that the DMN plays a
role in functional integration of informa-
tion across segregated brain regions (Hag-
mann et al.,, 2008). This proposed role
could explain the delayed, and more im-
portantly, sustained activation. Can the
delayed yet sustained processing within
the DMN be the brain’s intrinsic effort to
reorganize and bind information in a re-
lational pattern to facilitate later retrieval?
The absence of DMN activation in the
early clusters, its large spatial span across
the cortex, and its estimated 20% con-
sumption of neural resources may hint to-
ward a global, more robust role in
information processing. However, this re-
mains to be explored.

A few considerations suggest that the
findings of Shine et al. (2017) should be
interpreted with caution. One of the most
evident limitations of interpreting CCEP
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data from epileptic participants is the lack
of generalizability to control populations
(Kunieda et al., 2015). Although the stim-
ulations do not trigger a recordable epi-
leptic discharge, there may be unexplored
alterations in brain activity with little to
no consequences for behavior. Also, while
it has been hypothesized that intracranial
electrode stimulation elicits activation of
the deep (layer IV-VI) cortical layers (Keller
et al., 2014), the lack of such validation
reduces interpretability and may require
methodological clarification. Despite these
limitations, CCEP studies offer an un-
precedented advantage to advance the
understanding of neural organization
patterns, albeit in a pathological state.

To reiterate, the results from Shine et
al. (2017) support the notion that, despite
obvious heterogeneity within the connec-
tome, the macroscale interactions within
and between neural networks follow a
temporal hierarchy. Their evidence lends
further support to the conceptual frame-
work that the region’s architectural thresholds
may help optimize signal propagation and
foster an environment of efficient connec-
tivity. Understanding this more global
temporal hierarchy along with regional
cytoarchitectural characteristics may pro-
vide insights about the connectome (van
den Heuvel et al., 2015). CCEP is a pow-
erful tool that can identify the time-
varying “chronnectome” (Calhoun et al.,
2014) and may possibly help predict be-
havior by increasing our understanding of
the hierarchical organization underlying
efficient information processing, and al-
terations that may manifest in pathologi-
cal disease states.
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