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Mirror neurons (MNs) have the distinguishing characteristic of modulating during both execution and observation of an action. Al-
though most studies of MNs have focused on various features of the observed movement, MNs also may monitor the behavioral circum-
stances in which the movement is embedded, including time periods preceding and following the observed movement. Here, we recorded
multiple MNs simultaneously from implanted electrode arrays as two male monkeys executed and observed a reach, grasp, and manip-
ulate task involving different target objects. MNs were recorded from premotor cortex (PM-MNs) and primary motor cortex (M1-MNs).
During execution trials, hidden Markov models (HMMs) applied to the activity of either PM-MN or M1-MN populations most often
detected sequences of four hidden states, which we named according to the behavioral epoch during which each state began: initial,
reaction, movement, and final. The hidden states of MN populations thus reflected not only the movement, but also three behavioral
epochs during which no movement occurred. HMMs trained on execution trials could decode similar sequences of hidden states in
observation trials, with complete hidden state sequences decoded more frequently from PM-MN populations than from M1-MN popu-
lations. Moreover, population trajectories projected in a 2D plane defined by execution trials were preserved in observation trials more
for PM-MN than for M1-MN populations. These results suggest that MN populations represent entire behavioral sequences, including
both movement and non-movement. PM-MN populations showed greater similarity than M1-MN populations in their representation of
behavioral sequences during execution versus observation.
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Introduction
Mirror neurons (MNs) discharge both as a movement is being
performed by the subject (execution) and when the subject ob-

serves the same movement being performed by another individ-
ual (observation). MNs that discharged in relation to grasping
actions of the hand were originally identified in area F5 of the
macaque ventral premotor cortex (PMv) (di Pellegrino et al.,
1992; Gallese et al., 1996; Rizzolatti et al., 1996). Neurons that
discharge during both execution and observation also have been
found in other cortical areas, including the dorsal premotor cor-
tex, the primary motor cortex (M1), and the inferior parietal
lobule (Cisek and Kalaska, 2004; Tkach et al., 2007; Rozzi et al.,
2008; Kilner et al., 2009; Kraskov et al., 2009; Dushanova and
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Significance Statement

Mirror neurons (MNs) are thought to provide a neural mechanism for understanding the actions of others. However, for an action
to be understood, both the movement per se and the non-movement context before and after the movement need to be repre-
sented. We found that simultaneously recorded MN populations encoded sequential hidden neural states corresponding approx-
imately to sequential behavioral epochs of a reach, grasp, and manipulate task. During observation trials, hidden state sequences
were similar to those identified in execution trials. Hidden state similarity was stronger for MN populations in premotor cortex
than for those in primary motor cortex. Execution/observation similarity of hidden state sequences may contribute to understand-
ing the actions of others without actually performing the action oneself.
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Donoghue, 2010; Vigneswaran et al., 2013). MN activity tradi-
tionally has been interpreted as providing an abstracted represen-
tation of the action’s goal (Gallese et al., 2004). However, MN
activity can differ depending on a variety of circumstances under
which the goal of the observed action remains unchanged. MN
activity may vary depending on whether the observed movement
occurs within versus beyond the reach of the subject’s arm
(Umiltà et al., 2001; Caggiano et al., 2009) or depending on the
subject’s point of view in observing the movement (Caggiano et
al., 2011; Maranesi et al., 2017). MNs thus carry information
about the context in which particular movements are made.

Although most studies of MNs have focused on discharge
during the movement, contextual information is present before,
during, and after the movement occurs. When having dinner with
someone, you might expect to observe the other person pick up a
piece of bread and put it in his/her mouth, but not to put it on his/her
shoulder, although the movement would be very similar. MNs have
been shown to discharge as monkeys both grasped-to-eat and
grasped-to-place an object near the shoulder (Fogassi et al., 2005;
Bonini et al., 2010). We hypothesized that MNs monitor not only
observed movements per se, but entire sequences of behavioral ep-
ochs in which movements are embedded.

Although the firing rate of MNs before and after movements
generally is relatively low, the simultaneous activity of MN pop-
ulations nevertheless might carry information not only about the
movements, but also about behavioral epochs preceding and fol-
lowing the movements. Hidden Markov models (HMMs) can be
used to infer unobservable state sequences based on the statistics
of observable neural events (Rabiner, 1989; Jones et al., 2007).
Neural activity recorded from M1 and/or the PM of nonhuman
primates has been shown to evolve through sequences of hidden
states during trials of reaching and grasping movements (Abeles
et al., 1995; Kemere et al., 2008; Kang et al., 2015). Such hidden
states provide one way of representing high-dimensional neural
population activity in a discretized lower dimensional state space.

We therefore applied HMMs to detect hidden state sequences
in populations of MNs during both execution and observation of
a reach, grasp, and manipulate (RGM) task. We recorded neural
activity from both PM and M1 as monkeys performed the RGM
task and again as the monkeys observed a human experimenter
performing the task. We then selected neurons that were modu-
lated significantly during both execution and observation, and
applied HMMs to these MN populations in PM (PM-MNs) and
in M1 (M1-MNs) separately to preserve any characteristics dis-
tinguishing the two cortical areas. Rather than showing one state
during movement and another non-movement state, MN popu-
lations showed four distinct hidden states during individual
RGM trials, which we named according to the behavioral epoch
during which each state began: initial, reaction, movement, and
final. HMMs trained on execution trials identified similar se-
quences of hidden states during observation trials more robustly
for PM-MN than for M1-MN populations. Moreover, when
mapped to a lower dimensional subspace, the four sequential
hidden states corresponded to sequential regions of neural pop-
ulation trajectories.

Materials and Methods
Experimental preparation
All procedures for the care and use of nonhuman primates followed the
Guide for the Care and Use of Laboratory Animals and were approved by
the University Committee on Animal Resources at the University of
Rochester. Two male rhesus monkeys (Macaca mulatta; Monkey L and
Monkey X, weights 9 and 11 kg, respectively) were used in the present

experiments. As described previously (Mollazadeh et al., 2011), both
monkeys had been implanted with floating microelectrode arrays
(FMAs; MicroProbes) in the M1 and the PM of the left hemisphere. Each
FMA had 16 recording electrodes of various lengths (1–9 mm). Record-
ings for the present study were obtained from four FMAs implanted in
M1 and four in PM for Monkey L and from six FMAs in M1 and two in
PM for Monkey X. For both monkeys, the PM electrodes were located
in the posterior bank and lip of the arcuate sulcus, with the majority in
the PMv.

Behavioral task
Execution. Each monkey was trained to sit in a primate chair and perform
a RGM task with its right arm as described in detail previously (Mollaza-
deh et al., 2011). The center “home” object was a coaxial cylinder 20 mm
in diameter and 60 mm in length. Surrounding the home cylinder were
four target objects: a perpendicular cylinder, another coaxial cylinder, a
button, and a sphere (Fig. 1). The target objects were located at 45°
intervals on a circle of 13 cm radius centered on the home object. Each
monkey used its right hand to perform the task while the left arm was
restrained in the primate chair. The monkey initiated each trial by pulling
the home object for a variable initial hold period (1.0 –1.5 s). Then, a ring
of blue LEDs illuminated around the base of one of the target objects,
instructing the monkey to reach to, grasp, and manipulate that object,
pulling the perpendicular or coaxial cylinder, pushing the button, or
turning the sphere. When a given object was manipulated, a second ring
of green LEDs at the base of that object was illuminated. The monkey
then was required to maintain the manipulated position for a final hold
of fixed duration (Monkey L: 0.9 s; Monkey X: 1.0 s). Upon successful
completion of a trial, a liquid reward was delivered.

The target object for each trial was selected in a pseudorandom block
design. Blocks consisted of one trial involving each of the four target
objects presented in a random order. After successful completion of these
four trials in a given block, the order of objects was randomly reshuffled
for the next block. For trials ending in an error, the subsequent trial
instructed the same target object until a trial was performed successfully.
This prevented the monkey from avoiding trials of any particular object.
The behavioral task was controlled by custom software written in
TEMPO (Reflective Computing), which also sent 8-bit behavioral event
marker codes into the recorded data stream. These codes marked the
time at which certain behavioral events occurred, including the onset of
the instruction, release of the center object indicating movement onset,
start of the final hold period, and completion of the final hold period.
Behavioral epochs were defined based on these behavioral event markers:
the initial hold epoch was defined as the time from the start of a trial to

A

B

Coaxial Cylinder

Perpendicular
Cylinder

Button

Sphere

Home
Cylinder

Figure 1. Grasp hand shapes. A, B, Line drawings made from video frames depict the hand
shapes used by the monkey during execution trials (A) and those used by the human and
observed by the monkey during observation trials (B). The one central object (home cylinder)
and four peripheral target objects are labeled in A and illustrated here in positions reflecting
their relative spatial arrangement as viewed by the monkey, although each object has been
drawn in a side view as seen from a camera positioned to the monkey’s left side.
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instruction onset; the reaction time epoch was defined from instruction
onset to movement onset; the movement epoch was defined from move-
ment onset to the start of the final hold; and the final hold epoch was
defined from the start to the end of the final hold period.

Observation. During observation trials, with both hands restrained in
the primate chair, the monkey observed an experimenter perform the
same RGM task. Standing on the monkey’s right side, an experimenter
grasped the center object, received a blue LED instruction, reached to,
grasped, and manipulated the target object, and then held the target
object for the final hold duration. Upon successful completion of a trial
performed by the experimenter, the monkey received a reward. In addi-
tion, to keep the monkey attentive, the experimenter occasionally made
errors, after which the monkey received no reward. Incorrect trials were
repeated until successfully completed. Because the monkey therefore
could predict the object involved on any trial preceded by an error, only
successful trials not preceded by an error trial were included in offline
analyses of both execution and observation.

Neural recordings
During recording sessions, each monkey performed RGM trials itself
(execution) and then observed the experimenter performing RGM trials
(observation) in separate blocks of trials. Before beginning data collec-
tion, thresholds were set for spiking activity from each of 128 recording
electrodes using Plexon’s Sort Client. During both execution and observa-
tion trials, neuron spike times and action potential waveforms were captured
using a MAP System (Plexon MAP Software, RRID:SCR_003170), along
with the behavioral event marker codes generated by the TEMPO task-
control system. Offline, neuron spikes were sorted further using Plexon’s
Offline Sorter followed by a custom sorting algorithm.

Each sorted unit was analyzed for task-related modulation during ex-
ecution and observation trials using repeated-measures ANOVA (RM-
ANOVA). For each successful trial involving any of the four target
objects, the spike rate of the unit was binned in 100 ms nonoverlapping
windows aligned on instruction onset. Using the MATLAB functions
rmfit and ranova (The MathWorks, RRID:SCR_001622), a repeated-
measures model was fit to the data (rmfit) and a two-way ANOVA
(time � object) was performed to detect significant effects (RM-
ANOVA). The unit was considered to modulate significantly during ex-
ecution or observation if a significant effect of time or of the interaction
between time and object was detected (Bonferroni corrected for the
number of effects being examined, p � 0.05/2 � 0.025). Any unit that
modulated significantly for both behavioral conditions (execution and
observation) was considered to be a MN.

Each MN was classified as a definite single-unit, probable single-unit,
or multiunit based on the signal-to-noise ratio (SNR) of its captured
waveforms and the fraction of false-positive spikes (fF) that may have
originated from another neuron or from noise (Meunier et al., 2003; Hill
et al., 2011; Rouse and Schieber, 2016). The value of fF was estimated
from the number of interspike interval (ISI) violations (�1 ms), �ISI,
using the following equation (Hill et al., 2011):

fF � 1 � ��1

4
�

�ISI � T

2�tmax � tmin�N2 �
1

2� (1)

where N is the total number of spikes, T is the duration of the recorded
session, tmax is the refractory period (chosen at 1 ms), and tmin is the
waveform sort width after threshold crossing, during which no other
spikes could have been detected (0.675 ms). The SNR was calculated as
follows: SNR � A/2�noise, where A is the peak-to-peak amplitude of the
mean spike waveform and �noise is the SD of the residual noise after
subtracting the mean waveform from each of 32 sampled time points.
Each MN was classified as follows: (1) MNs with an SNR � 3 and no ISI
violations (�ISI � 0, fF � 0) were considered “definite” single units; (2)
MNs with SNR � 2.5 and an estimated 90% or more true spikes ( fF 	
0.1) were considered to be “probable” single units; and (3) MNs with
2.5 � SNR � 1.5 and/or fF � 0.1 were considered “multiunits.” Any units
with SNR � 1.5 were discarded from further analysis.

For each MN, we calculated two metrics to quantify the MN�s selec-
tivity across the four objects and its execution/observation similarity,

both focused on the movement epoch during which MNs typically have
been studied. First, we calculated the change in firing rate between base-
line (averaged over the 500 ms immediately preceding the instruction
onset) and the movement epoch (averaged from movement onset to the
start of the final hold) in each trial. We averaged this change in firing rate
across all trials separately for each object (R� obj). We then considered these
four average firing rates as a vector, and normalized them by the length of
that vector (L2 norm, �R� �2) as follows:

robj �
R� obj

�R� �2

thereby capturing the MN�s relative changes in firing rate associated with
each of the four objects as a 4D unit vector. If a MN was ideally selective
for one object, then the normalized firing rates, robj, would be 1 for one of
the objects and 0 for the others (e.g., r1 � 1, r2 � 0 , . . . , r4 � 0). If
a MN was ideally unselective, then the average firing rate would be equal
for all four objects (R� obj � R� unsel), yielding four normalized firing rates,
runsel, all of equal magnitude as follows:

runsel �
R� unsel

�R� unsel�2

�
1

�Nobj

� 

1

2

To calculate a selectivity index, SEL, the normalized firing rates for each
MN were rectified to treat increases and decreases equivalently. The unit
vectors for any given MN, for an ideally unselective MN, and for an
ideally selective MN then are as follows:

rabs � �
�r1�
�r2�
�r3�
�r4�
�, runsel � �

�runsel�
�runsel�
�runsel�
�runsel�

�, rsel � �
1
0
0
0
�.

The arc length distance (dmax) between the ideally selective (rsel) and the
ideally unselective (runsel) MN is then:

dmax � cos	1�runsel � rsel�

and the arc length between the unit vector representing any given MN
and the ideally unselective MN is:

d � cos	1�runsel � rabs�.

We then computed our selectivity index (SEL) as follows:

SEL �
d

dmax

SEL can vary between 0 (ideally unselective) and 1 (ideally selective for
one object, regardless of which object). For each MN, a SEL was calcu-
lated separately for execution and for observation.

To quantify the similarity of MN activity during execution and obser-
vation, for each MN, we considered the four robj (without rectification)
from execution trials as one vector (rE) and the four robj from observation
trials as another vector (r0):

rE � 	
rE1

�
�
�

rE4


, rO � 	
rO1

.

.

.
rO4


.

We then calculated our execution/observation similarity index (SIM) as
follows:

SIM � rE � rO

If the MN�s movement epoch activity during execution and observation
was ideally similar, then the two vectors would align and the SIM would
be 1. If the MN�s activity was completely dissimilar during execution
versus observation, then the two vectors would be orthogonal and the
SIM would be 0. If activity was modulated in the opposite directions
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during execution versus observation but with the same relative magni-
tude for each of the four objects, then the SIM would be 	1.

HMMs
For both monkeys, HMMs were trained to detect four states in successful
execution trials separately for each target object and for each MN popu-
lation (PM or M1) in each session. Training on PM-MN and M1-MN
populations separately maintained any distinguishing population char-
acteristics during the task. Successful trials included for analysis required
that the trial had been performed correctly (i.e., a reward had been de-
livered) and that the preceding trial also had been performed correctly
(so that the monkey could not anticipate the instructed object).

For each trial, spike times of all MNs in the simultaneously recorded
population were used to create a single input observation sequence for
training the HMMs. The input observation sequence for each trial
spanned the time from 500 ms before the instruction onset until 500 ms
after completion of the final hold. Because the monkey’s reaction and
movement times varied from trial to trial, so did the duration of the input
observation sequences. Spike times were binned in 2 ms windows. A
unique MN identifier (ID) ranging from 1 to N, the total number of MNs
in the population, was assigned to any bin in which a spike from a given
MN had occurred. A zero was assigned to any bin in which no MN spike
occurred. In the event that multiple MNs discharged during the same 2
ms bin, the ID of one of the discharging MNs was selected randomly and
assigned to that bin. The resulting 1D sequence of MN IDs and zeroes
then described the population activity in each trial. These sequences were
used to train HMMs. The Baum–Welch algorithm (Baum et al., 1970)
recursively estimated the following HMM parameters: a transition ma-
trix (the probabilities of a transition from the current state to any of the
four states) and an emission matrix (the probabilities that a given unit
will fire in a given state). Estimates of the model parameters were updated
either for 500 iterations or until the log-likelihood converged to less than
a tolerance factor (�10 	6). The Baum–Welch algorithm guaranteed
approaching a local maximum log-likelihood, though not necessarily the
global maximum. Therefore, each model was trained starting at 10 dif-
ferent initial conditions to improve the chances of approximating the
global maximum log-likelihood. From these 10 trained models, the re-
sulting model with the greatest log-likelihood was selected for subse-
quent analyses (Jones et al., 2007). Note that the training of HMMs
incorporated no information about the timing of the behavioral events.

Hidden state analyses
Once an HMM had been trained for a given object and MN population,
we quantified the extent to which the sequence of hidden states was
consistent from trial to trial. A state was considered active if its probabil-
ity exceeded an arbitrarily chosen threshold of 0.6. An ordinal sequence
of active states then was determined for each trial. For execution trials,
the state sequence consistency was quantified as the percentage of all
trials for a given target object that had the same order of hidden states.
Because the monkeys’ reaction times and movement times varied from
trial to trial, hidden state sequences were analyzed from 500 ms before
until 1500 ms after instruction onset, sufficient to capture the early por-
tion of the final hold epoch across all trials.

The HMMs trained on the execution trials then were used to decode
hidden states during the observation trials for the same MN population.
Similar to the execution trials, the state sequence consistency across ob-
servation trials was quantified as the fraction of all trials involving a given
target object that had the same order of active hidden states from 500 ms
before until 1500 ms after instruction onset. During 273 of the 1114
observation trials (24.5%), only one state, and hence no sequence of
states, was detected for the duration of the trial. Such trials were excluded
from analyses identifying the most common state sequence.

Data shuffling
To examine the factors in the original data that enabled HMMs to iden-
tify consistent state sequences, shuffled datasets were used to train addi-
tional HMMs. For all types of shuffling, the original spike times of a given
unit within a given trial were conserved and these original spike time
sequences were shuffled without replacement. First, we shuffled the data
among the trials involving a given object (“trial-shuffled”). For example,

trial-shuffled “sphere trial 1” might consist of the recording from unit 1
during original sphere trial 7, the recording from unit 2 during original
sphere trial 3, the recording from unit 3 during original sphere trial 9, etc.
Trial shuffling thus preserved each unit’s firing rate histogram within and
across objects, but destroyed any precise temporal synchrony between
units. Second, we shuffled each unit’s spike times across trials involving
various objects (“object-shuffled”), which necessarily meant also shuf-
fling data from different trials. For example, object-shuffled “sphere trial
1” might consist of the recording from unit 1 during original button trial
5, the recording from unit 2 during original sphere trial 13, the recording
from unit 3 during original coaxial cylinder trial 4, etc. Shuffling across
objects preserved each neuron’s firing rate histogram across all objects
but not within each object. Third, we shuffled the ID of each neuron
within each original trial (“neuron-shuffled”). This neuron shuffling
preserved the precise timing and true simultaneity of the original record-
ings in each trial, but shuffled the recordings from different units among
the IDs used by the HMM. For example, neuron-shuffled “sphere trial 1”
consisted entirely of unit recordings from the original sphere trial 1, but
the recording from unit 1 might be assigned to ID � 4, the recording
from unit 2 to ID � 9, the recording from unit 3 to ID � 2, etc. Therefore,
the recording for ID � 1 in shuffled sphere trials 1, 2, 3, etc., might be the
recording from unit 8 in original sphere trial 1, from unit 3 in original
sphere trial 2, from unit 7 in original sphere trial 3, etc. Shuffling the
identity of the neurons preserved the precise timing simultaneity of the
original recordings in each trial, but not the mean firing rate histograms
for each neuron ID.

For each of the shuffled datasets, HMMs were trained in the same
fashion as the original, unshuffled dataset (described above). Spike times
from each trial were binned in 2 ms windows, 10 different HMMs were
estimated at different initial conditions, and the HMM with the greatest
log-likelihood was then selected as the model with which to continue
analysis. This process was repeated 15 times to obtain several HMMs
resulting from different iterations of shuffling. The resulting 15 HMMs
then were analyzed for consistent state sequences (described above) to
compare with the original unshuffled dataset.

Neural trajectory analyses
Patterns of covariation in a simultaneously recorded neural population
can be analyzed as trajectories through a neural space in which each
neuron’s firing rate constitutes an orthogonal dimension (Churchland et
al., 2012; Ames et al., 2014; Cunningham and Yu, 2014). The major
components of these high-dimensional trajectories then can be exam-
ined in a low-dimensional subspace. We projected the neural trajectories
of MN populations into low-dimensional subspaces using principal
component analysis (PCA). To convert the binned inputs used for the
HMMs to firing rate estimates, a 50 ms Gaussian filter was applied to the
spike times of each MN in each trial. The firing rates of each MN were
averaged across execution trials involving each object and PCA was per-
formed on the population of MNs for each object separately. The joint
neural trajectories during individual trials were mapped into the result-
ing subspace defined by the first two PCs and averaged across execution
and observation trials separately.

Results
Neural activity was recorded and analyzed initially from execu-
tion trials (263 trials for Monkey L; 294 for Monkey X) and from
observation trials (239 for Monkey L; 278 for Monkey X) of the
RGM task from three sessions in each monkey. A summary of the
number of execution trials, reaction times, and movement times
for each monkey and for the human experimenter is given in
Table 1. Reaction times for Monkey L, Monkey X, and the exper-
imenter were significantly different from one another (pairwise
Wilcoxon rank-sum tests with Bonferroni correction for three
comparisons, p � 0.05/3 � 0.0167; pL,X � 5e-70, pL,E � 3e-109,
pX,E � 7e-39). Movement times for both monkeys differed sig-
nificantly from those of the experimenter (pL,E � 4e-104, pX,E �
2e-90), but not from one another (pL,X � 0.055). The experi-
menter took longer to react and to move than either monkey.
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Using RM-ANOVA, we identified 272 single units and multi-
units from Monkey L and 258 from Monkey X that had signifi-
cant task-related modulation during execution trials. Table 2
summarizes the total numbers of significantly modulated units
from each monkey, along with a breakdown for each session. Of
the units with significant modulation during execution, 101
(37.1%) units from Monkey L also demonstrated task-related
modulation during observation, as did 139 (53.9%) from Mon-
key X. Although our criteria may differ from those used by others,
we refer to units that modulated significantly during both execu-
tion and observation as MNs. We also divided MNs into sub-
populations recorded from PM or M1. Of the 101 MNs recorded
in the three sessions from Monkey L, 75 (74.3%) were recorded in
PM and 26 (25.7%) in M1; for Monkey X, 23 (16.6%) were re-
corded in PM and 116 (83.5%) in M1. Across all experimental
sessions from both monkeys, 49 MNs were classified as definite
single units, 51 as probable single units, and 140 as multiunits.
Because our analyses are based on simultaneously recorded pop-

ulations, we made no attempt to determine which of these units
were recorded in more than one session.

Although MNs often are thought to discharge almost identi-
cally during execution and observation of a particular movement
and not discharge during other movements, previous studies
have shown that many MNs discharge during both execution and
observation of multiple different grasps (Rochat et al., 2010; Bo-
nini et al., 2014b) and that the discharge of a given MN during
execution versus observation of the same grasp may vary
from “congruent” to “noncongruent” (Gallese et al., 1996; Vi-
gneswaran et al., 2013). We likewise observed that individual
MNs showed different degrees of similarity in the timing and
amplitude of their activity during execution versus observation
(Fig. 2). Some MNs had similar discharge patterns during both
execution and observation for each target object. The example
MN in Figure 2A began to discharge shortly after movement
onset (circle in each raster line) and increased its firing rate until
the start of the final hold (upward triangle). Although this MN
discharged at similar times in the trials involving all four objects,
its peak firing rate varied among objects, being highest for the
button during both execution and observation. For other MNs,
however, the modulation patterns during execution and obser-
vation were less similar. The MN shown in Figure 2B discharged
a burst between the appearance of the instruction and movement
onset, but thereafter, its firing rate decreased below its tonic base-
line during execution trials, whereas during observation trials the
burst was less intense and firing remained above baseline except
for trials involving the perpendicular cylinder. Moreover,
whereas this neuron achieved similar peak firing rates during
execution trials involving the button and the coaxial cylinder in
execution trials, in observation trials, its firing rates were substan-
tially lower for the coaxial cylinder. Note that, although the dis-
charge of these MNs had differing degrees of similarity during
execution and observation trials, the overall pattern of discharge
tended to be conserved in each MN. The former (Fig. 2A) had no
baseline firing and discharged a burst during movement, whereas
the latter (Fig. 2B) had a tonic firing rate that increased after the
instruction appeared and then decreased.

We developed two metrics to quantify how selective each MN
was for a particular object (a selectivity index, SEL) and how
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whereas the spike rasters below depict only five trials per object. Behavioral events in each rastered trial are represented by black markers (instruction onset: square, movement onset: circle, start
of the final hold period: upright triangle, and end of the final hold period: inverted triangle). All data have been aligned on instruction onset (squares).

Table 1. Reaction and movement times during execution and observation

Monkey L
(execution)

Monkey X
(execution)

Experimenter
(observation)

No. of sessions 3 3 6
No. of trials 263 294 517
Reaction times (ms)

(median �25% 75%�)
278 �253 300� 379 �336 427� 489 �405 591�

Movement times (ms)
(median �25% 75%�)

298 �244 344� 292 �250 390� 544 �488 634�

Table 2. Summary of the recorded number of neurons

Monkey L Monkey X

Session no. 1 2 3 All 1 2 3 All
Execution 90 87 95 272 71 83 104 258
MN 38 30 33 101 44 35 60 139
Non-MN 52 57 62 171 27 48 44 119
PM-MN 30 22 23 75 3 7 13 23
M1-MN 8 8 10 26 41 28 47 116
PM non-MN 22 21 20 63 5 11 7 23
M1 non-MN 30 36 42 108 22 37 37 96

Mazurek et al. • Mirror Neurons Represent Behavioral Epochs J. Neurosci., May 2, 2018 • 38(18):4441– 4455 • 4445



similar each MN�s discharge was during the movement epoch of
execution versus observation trials (a similarity index, SIM). The
SEL compared the absolute change in firing rate from the initial
hold to the movement epoch averaged across trials involving each
object. An SEL of 1 indicates that the MN discharged for only one
object, whereas an SEL of 0 indicates that the MN discharged
equivalently for all four objects.

For each MN, we calculated an SEL separately for execution
and for observation trials. Figure 3A depicts the SEL distributions

for PM-MNs versus M1-MNs, each pooled across sessions and
monkeys. For PM-MNs, SEL values for execution trials (0.46
[0.32 0.58], median [25 th, 75 th percentiles]) and for observation
trials (0.47 [0.34 0.56]) were not significantly different (p � 0.52,
Wilcoxon signed-rank test). For M1-MNs, however, SEL values
for execution trials (0.40 [0.23 0.54]) were lower than for obser-
vation trials (0.45 [0.33 0.59]) (p � 0.009, Wilcoxon signed-rank
test). The selectivity of PM-MNs and M1-MNs differed for exe-
cution trials (p � 0.01, Kruskal–Wallis test), but not for obser-
vation trials (p � 0.92, Kruskal–Wallis test). M1-MNs thus
tended to be slightly less selective during execution trials.

We also compared the SEL distributions for definite single
units, probable single units, and multiunits, pooling across PM-
MNs and M1-MNs from all three sessions in both monkeys (Fig.
3C). For definite single units, the median SEL for execution trials
was 0.42 [0.26, 0.64] and for observation trials was 0.44 [0.35,
0.56]. For probable single units, the median SEL for execution
trials was 0.42 [0.32, 0.50] and for observation trials was 0.46
[0.32, 0.58]. For multiunits, the median SEL for execution trials
was 0.44 [0.25, 0.55] and for observation trials was 0.47 [0.33,
0.59]. In none of these three MN classes did SEL differ between
execution and observation (Wilcoxon signed-rank tests, p � 0.95
for definite single units, p � 0.32 for probable single units, and
p � 0.12 for multiunits). In addition, SEL did not differ among
the three classes for either execution or observation trials
(Kruskal–Wallis tests, p � 0.69 for execution trials, p � 0.95 for
observation trials).

The similarity index, SIM, compared each MN�s firing rates
for the four movements during execution versus observation
(Fig. 3B). A SIM of 1 indicates that the ratios of the normalized
firing rates during the four movements were identical during
execution and observation. A SIM of 0 indicates the normalized
firing rates during the four movements were completely different
(orthogonal) during execution versus observation. A SIM of 	1
indicates that the ratios of the normalized firing rates for the four
movements were all of the same relative magnitude, but were
opposite in direction during execution versus observation. The
median SIM was 0.60 [0.02 0.88] for PM-MNs and 0.51 [	0.03
0.82] for M1-MNs, consistent with the common observation that
most MNs tend to modulate similarly during execution and ob-
servation. The SIM distributions of PM-MNs and M1-MNs were
not significantly different (p � 0.11, two-tail two-sample
Komogorov–Smirnov test).

We also compared the SIM distributions of the three unit
classes, again combining PM-MNs and M1-MNs from all ses-
sions in both monkeys (Fig. 3D). For definite single units, the
median SIM was 0.43 [	0.15 0.84]; for probable single units, 0.49
[	0.39 0.86]; and for multiunits, 0.64 [0.05 0.86]. The distribu-
tions of the SIMS were not significantly different between any of
the MN classes (two-tail two-sample Komogorov–Smirnov tests,
definite vs probable, p � 0.98; definite versus multiunit, p � 0.54;
probable versus multiunit, p � 0.41). Definite single units, prob-
able single units, and multiunits thus all had similar distributions
of both SEL and SIM. We therefore combined MNs in all three of
these classes for subsequent analyses.

Hidden state sequences during action execution
Figure 4A illustrates the sequence of hidden states detected dur-
ing three individual trials involving each of the four objects, all
from the same session. Each frame shows a raster of spike times
for the 23 simultaneously recorded PM-MNs. Colored lines and
the shaded areas beneath show the time course of the probability
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of each hidden state. Markers beneath the frame indicate the
times of four behavioral events in that trial: (1) instruction onset
(square), (2) movement onset (circle), (3) start of the final hold
period (upright triangle), and (4) the end of the final hold period
(inverted triangle). An initial state typically was present during
the initial hold epoch at the beginning of the trial and a different,
final state appeared after completion of the movement and con-
tinued beyond the end of the final hold epoch. Between these
initial and final states, two sequential states most often were de-
tected, with the probability of each state rising above 0.6, as illus-
trated by the trials involving the button, coaxial cylinder, and
perpendicular cylinder in Figure 4. When both of these states
were present, the former appeared during the reaction time ep-
och (between instruction onset and movement onset) and the
other appeared during the movement epoch (between movement
onset and start of the final hold). We will refer to these four
sequential states based on the behavioral epoch in which each
typically became active (i.e., achieved probability �0.6), namely
as the initial, reaction, movement, and final states. In some trials,
however, only one state became active between the initial and
final states, as seen in the three sphere trials shown in Figure 4A.
Overall for this 23 PM-MN population, during execution trials, 4
states were active sequentially in 87% (89/102) of the individual
trials, 3 states in 12% (12/102), 2 states in 1% (1/102), and 1 state
in 0% (0/102). Figure 4B shows the state probabilities aligned at
instruction onset and averaged across all individual trials involv-
ing each object from this session. That the average probability of
each state rose above 0.6 for trials involving each of the four
objects despite the trial-to-trial variability in reaction and move-
ment epoch durations, indicates that, for this population of PM-
MNs, the HMMs detected each state with high consistency.

Figure 5 shows such averaged hidden
state probability time courses for PM-MN
and M1-MN populations for each session
from each monkey, all for execution trials
involving the coaxial cylinder. Four states
were detected consistently in 9 of these 12
MN populations, with the average proba-
bility of each of the 4 states rising above
0.6. In contrast, only 3 states were de-
tected in 3 of the 12 sessions: Monkey L’s
M1-MNs from session 3 and Monkey X’s
PM-MNs from sessions 2 and 3. Although
the HMMs were trained to find four states,
in these populations, the average probability
of the third, “movement” state (green)
never rose substantially above 0.0 and only
the second state (brown) became active
(probability � 0.6) between the initial and
final states.

For each of the 12 combinations of
cortical area, monkey, and session, Figure
6 depicts the percentage of individual tri-
als (including all four objects) in which
4, 3, 2, or 1 hidden states were detected
as becoming active (probability � 0.6).
Overall, four states were detected most of-
ten, followed by three states. Indeed, four
states were detected in �50% of individ-
ual trials with all MN populations except
M1-MNs from the third session from
Monkey L. Two states were detected in
only a small percentage of trials and one

state alone rarely if ever. White numerals in each column give the
number of MNs in each population. Note that 1, 2, and even 3
states were detected primarily when fewer than 20 MNs were
available. When �20 MNs were available, four hidden states were
detected consistently in �85% of individual execution trials.

Timing of hidden state transitions during action execution
We examined the timing of hidden state transitions relative to the
behavioral events, focusing only on trials in which all four hidden
states (initial, reaction, movement, and final) became active. In
each trial, we identified the times at which the probability of each
hidden state rose above 0.6 and/or fell below 0.6 and then com-
puted the time difference between these hidden state transitions
and each of three behavioral events: instruction onset, movement
onset, and start of the final hold. Combining the results from all
12 MN populations across trials involving all four objects, Figure
7, A and B, shows the distributions of these time differences.

These distributions reveal that each transition on average oc-
curred closest to one of the three behavioral events (instruction
onset, movement onset, or start of the final hold) and during one
of the behavioral epochs (reaction epoch, movement epoch, or
final hold epoch). The fall of the initial state and rise of the reac-
tion state occurred, on average, 136 and 156 ms, respectively,
after instruction onset during the reaction time epoch. The fall of
the reaction state and the rise of the movement state occurred, on
average, 63 and 78 ms, respectively, after movement onset during
the movement epoch. The fall of the movement state and rise of
the final state occurred, on average, 64 and 89 ms, respectively,
after the start of the final hold during the final hold epoch. There-
fore, the transitions from one hidden state to the next occurred
most often after the nearest behavioral event. The SD of the times
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Figure 4. HMMs trained on execution trials for PM-MN population recorded from Monkey L in one experimental session. Each
column represents trials involving a different target object: sphere, button, coaxial cylinder (Coax), and perpendicular cylinder
(Perp). A, Three rows of individual trials illustrating the degree to which the state sequences were consistent across trials. Back-
ground colors indicate the ordinal sequence of hidden states. Different color schemes were used for each object. Spike rasters show
the simultaneous activity of individual MNs in the sampled population. The times of behavioral events are represented by black
markers beneath each plot: instruction onset (�), movement onset (E), start of the final hold (‚), and completion of the final
hold (ƒ). B, Averaged hidden state probabilities for each of the four objects. Dashed lines indicate the 0.6 probability level and the
number of trials averaged for each object (nT) is displayed above each subplot. All data have been aligned at the time of instruction
onset (�). Subsequent behavioral event markers have been plotted at their average time after instruction onset, with horizontal
black bars above the markers indicating 
2 SDs for the time of each marker across all analyzed trials. The 1.0 s time scale bar above
the bottom left plot applies to all plots.
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between the closest behavioral event and transitions, however,
ranged from 121 to 161 ms for falls and from 119 to 165 ms for
rises, values almost as large if not larger than the means. There-
fore, although occurring most often after the closest behavioral
event marker, each state transition often occurred before that
marker as well.

One might not have expected hidden state transitions in
PM-MN and M1-MN populations to occur, on average, after
rather than before behavioral events. For comparison, we there-
fore trained HMMs on populations of neurons recorded simul-
taneously with the present MNs, but which modulated

significantly only during execution trials and not during obser-
vation trials (non-MNs, the number in each population is given
in Table 2). Figure 7, C and D, shows the distributions of hidden
state transition times relative to each behavioral event marker in
trials during which all four hidden states became active combined
across the 12 non-MN populations and four objects. As for MN
populations, state transitions in non-MN populations also oc-
curred on average after the closest behavioral event, with the
exception of the first change of state. The fall of the initial state
and rise of the reaction state for non-MNs also occurred during
the reaction time, on average, 183 and 195 ms, respectively, after
instruction onset, but only 	126 ms and 	114 ms, respectively,
before movement onset. Compared with the first change of state
in MN populations, however, these transitions in non-MN pop-
ulations occurred on average later: whether aligned on instruc-
tion onset or movement onset, both the fall of the initial state and
the rise of the reaction state occurred later in the non-MN pop-
ulations than in the MN populations (p � 10	6, two-tailed t
tests, Bonferroni corrected for 4 tests). The subsequent fall of the
reaction state and the rise of the movement state in non-MN
populations occurred, on average, 93 and 103 ms, respectively,
after movement onset. Although closest to movement onset like
the equivalent transitions in the MN populations, these transi-
tions in the non-MN populations again occurred later than those
in the MN populations (p � 10	3, two-tailed t tests, Bonferroni-
corrected for 2 tests). The fall of the movement state and rise of
the final state, then, occurred, on average, 84 and 106 ms, respec-
tively, after the start of the final hold, again slightly later than the
equivalent transitions in the MN populations, although in this
case the difference was not significant. Although equivalent se-
quences of hidden states thus occurred with similar timing dur-
ing execution trials in both the non-MN and MN populations,
hidden state transitions in the MN populations occurred, on av-
erage, before those in the non-MN populations.

Factors affecting consistency of state sequences
Figure 8A shows a scatterplot of state sequence consistency versus
the number of MNs for each of the 12 combinations of cortical
area (PM, M1), monkey (L, X), and session (1, 2, 3). Consistency
was �75% for all 6 sessions in which �20 MNs were available.
For three of the six sessions for which fewer than 20 MNs were
available, consistency was �70%, but for the other three, consis-
tency was �55%. Even though high consistency more often was
associated with larger numbers of MNs, some degree of consis-
tency could be obtained with as few as seven MNs.

HMMs rely on the simultaneity of the recorded neural activ-
ity. We examined the extent to which truly simultaneous record-
ings from each MN population contributed to state sequence
consistency by shuffling the recordings from each MN of a given
population among different trials involving the same object, re-
training the HMMs, and then reassessing consistency. Trial-
shuffled consistency for each session is shown in the scatterplot of
Figure 8B. Overall, this shuffling did not reduce the consistency
across the 12 combinations of area, monkey, and session, averag-
ing 81 
 17% compared with the unshuffled data, which aver-
aged 78 
 21% (p � 0.91, Kruskal–Wallis, Tukey’s post hoc test).
The consistency of hidden state sequences thus did not rely on
precise temporal synchrony across a MN population; rather, the
firing modulation pattern of each unit during trials involving a
particular object was sufficient.

We next evaluated the extent to which object tuning of MNs
contributed to HMM consistency. We shuffled MN activity
across trials involving different objects in the same session, re-
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trained the HMMs, and reevaluated
consistency (Fig. 8C). Shuffling across dif-
ferent objects produced only a slight de-
crease in HMM consistency averaging
68 
 18%, statistically different from the
trial shuffled datasets (p � 8e-7, Kruskal–
Wallis, Tukey’s post hoc test), but not the
original dataset (p � 0.08, Kruskal–
Wallis, Tukey’s post hoc test).

Last, we kept the same neurons in the
same trials but shuffled the ID assign-
ments of the MN recordings within each
trial, again retrained the HMMs, and
again reassessed consistency (Fig. 8D). In
all 12 MN populations, shuffling neuron
IDs reduced consistency to an average of
29 
 4%, a decrease of 49% relative to the
original, unshuffled data and significantly
different from each of the other shuffled
datasets (p � 4e-9, Kruskal–Wallis,
Tukey’s post hoc test)

Hidden state sequences during
action observation
We also trained HMMs on trials in which each monkey observed
the RGM task being performed by an experimenter. HMMs were
trained in the same manner as the execution trials presented
above. Figure 9 shows examples from a single session in which
four hidden states were detected consistently in trials involving
the sphere, button, or coaxial cylinder, but only three states in
trials involving the perpendicular cylinder. Overall, the number
of hidden states detected was both lower and more variable dur-
ing observation than during execution trials. Across all 12 com-
binations of monkey, area, and session, 4, 3, 2, and 1 states were
detected in 80.9%, 18.0%, 1.0%, and 0.1% of execution trials, but
only in 44.1%, 32.6%, 17.7%, and 5.6% of observation trials,
respectively.

Consistency also was lower for HMMs trained on observation
trials. For execution trials across all sessions and objects, PM-MN
populations from Monkey L had consistent state sequences in
86.7% [85.2%, 88.2%] (mean [25 th and 75 th percentiles]) of in-
dividual trials, and M1-MN populations, in 72.2% [70.3%,
74.1%]. PM-MN populations from Monkey X had consistent
state sequences in 54.1% [52.0%, 56.1%] of individual trials, and
M1-MN populations in 97.3% [96.6%, 98.0%]. However, in ob-
servation trials, PM-MN populations from Monkey L had con-
sistent state sequences in 62.8% [60.7%, 64.9%], and M1-MN
populations in 26.4% [24.3%, 28.5%]. PM-MN populations
from Monkey X had consistent state sequences in 34.5% [32.7%,
36.3%] of individual trials, and M1-MN populations in 45.0%
[42.8%, 47.1%].

Similar sequences of hidden states detected during execution
and observation
Although MNs are commonly thought to represent movements
per se, hidden state sequences in MN populations from both PM
and M1 appeared to reflect the entire sequence of behavioral
epochs in execution trials, including the initial hold, reaction
time, and final hold epochs during which no motion occurred.
Did the same sequence of hidden states occur in MN populations
during observation trials? Using HMMs trained on execution
trials, we decoded the observation trials recorded during the same
session. Figure 10 illustrates HMMs trained on sphere execution

trials and then used to decode sphere observation trials separately
for MN populations from PM (Fig. 10A–D) and from M1 (Fig.
10E–H), all recorded simultaneously in the same session from
Monkey L. In the three single-trial examples, the PM-MN popu-
lation consistently detected the four sequential states—initial,
reaction, movement, and final—in the execution trials used for
training (Fig. 10A) and decoded similar sequences in observation
trials that had not been used to train the model (Fig. 10C). Be-
cause of trial-to-trial variability in the timing of state transitions,
trial-averaged state probabilities for the PM-MN population did
not necessarily reach 1.0 (Fig. 10B,D). Nevertheless, the hidden
state consistency of this PM-MN population for execution trials
was 100%; that is, the initial, reaction, movement, and final state
each attained probability �0.6 in that order in every trial. During
observation trials, the hidden state consistency of this PM-MN
population decreased to 73.7%, which was not unexpected given
that the monkey may not have paid close attention on every
observation trial (Krakauer et al., 2017).

Substantially different results were obtained, however, on the
same trials using the simultaneously recorded M1-MN popula-
tion (Fig. 10E–H). In the single-trial examples, four states were
detected during sphere execution trials (Fig. 10E), but when the
HMM trained with M1-MNs on execution trials was used to
decode observation trials, only the initial state was detected as
active and remained so throughout each of the illustrated single
trials (Fig. 10G). Similar results for this M1-MN population are
evident in the trial-averaged probabilities (Fig. 10F,H). For this
M1-MN population, state sequence consistency across all sphere
trials was 100% for execution trials but fell to 5.3% for observa-
tion trials. For the sphere trials in this session, similar hidden state
sequences were present during execution trials and most obser-
vation trials in the PM-MN population, but not in the M1-MN
population.

For each MN population in each session, we trained an HMM
separately for each object on execution trials and then used that
HMM to decode hidden states during observation trials. We then
calculated the hidden state consistency for the execution trials
and for the observation trials separately. Figure 11 shows these
hidden state consistencies for the PM-MN and M1-MN popula-
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Figure 9. HMMs trained on observation trials for the PM-MN population recorded from Monkey L in a single experimental
session. A, Similar state sequence transitions are detected for each object on a trial by trial basis. B, Hidden state probabilities
averaged across trials for each object. Conventions the same as for Figure 4.

4450 • J. Neurosci., May 2, 2018 • 38(18):4441– 4455 Mazurek et al. • Mirror Neurons Represent Behavioral Epochs



tions from each of the two monkeys. Not unexpectedly, for each
type of MN population from each monkey, comparing across the
12 samples (4 objects � 3 sessions) showed lower consistency for
the decoded observation trials than for the execution trials used
to train the HMMs (Wilcoxon signed-rank tests, p � 0.01 after
Bonferroni correction for 4 tests). To compare the degree of the
drop in consistency from execution to observation, we calculated
the ratio of the consistency during observation versus execution
trials (observation consistency/execution consistency) for each of
the 12 samples (4 objects � 3 sessions). In Monkey L, the mean

ratio across the 12 samples was 0.54 for PM-MN populations and
0.40 for M1-MN populations; in Monkey X, the mean ratios were
0.79 and 0.17, respectively. In each monkey, the ratios for
M1-MN populations thus were lower than those for PM-MN
populations, although this trend reached significance only in
Monkey X (Wilcoxon rank-sum tests, p � 0.2 for Monkey L, p �
0.0003 for Monkey X). The hidden states found during execution
thus tended to persist during observation trials more in PM-MN
than in M1-MN populations.

Hidden states correspond to specific subspaces in population
activity during execution and observation
Sequences of four hidden states thus became active consistently
across the majority of execution trials in both PM-MN and
M1-MN populations. The same sequences could be detected in
many observation trials, particularly for PM-MN populations.
These findings suggest temporal patterns of covariation in the
activity of MN populations during execution trials that remain
similar during observation trials. To examine such covariation in
greater detail, we considered the firing rates of the N MNs in a
given population as an N-dimensional space and performed PCA
on the N firing rates for execution trials involving each object
separately. Across all 12 combinations of monkey, session, and
cortical area, the first two PCs accounted for 71.2–95.1% of the
variance in MN firing rates during execution trials.

For each object, we then projected the N-dimensional firing
rates for all execution trials onto the plane of the first two PCs for
that object and averaged across trials. Figure 12 illustrates such
averaged neural trajectories for the PM-MN and M1-MN popu-
lations (Fig. 12A,B, respectively) recorded simultaneously in ses-
sion 2 from Monkey L. In both the PM-MN and M1-MN
populations, these 2D trajectories progressed from the start of the
trial, through instruction onset (�), movement onset (E), start
of the final hold (‚), and completion of the final hold (ƒ) during
execution trials involving each of the four objects.

We then projected the firing rates of the same MNs averaged
across observation trials onto the same PC1 versus PC2 plane
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defined by execution trials for each object.
For the PM-MNs, these 2D neural trajec-
tories during observation trials were sim-
ilar to, albeit somewhat smaller than,
those found during execution trials. For
the M1-MNs, however, the 2D trajectories
during observation trials collapsed, indi-
cating that comodulation of these M1-
MNs during observation trials had little to
no projection in the plane defined by the
activity of the same MNs during execution
trials.

The area subtended by each unclosed
average trajectory was estimated (using
the “polyarea” function in MATLAB)
from the average trajectory beginning at
instruction onset and ending at the com-
pletion of the final hold. We then com-
pared these areas for each type of MN
population from each monkey across the
12 samples (4 objects � 3 sessions). For
both the PM-MN and M1-MN popula-
tions in both monkeys, area was smaller
for observation trials than for execution
trials (Wilcoxon signed-rank tests, p �
0.001 after Bonferroni correction for 4
tests). To compare the degree of the de-
crease in area from execution to observa-
tion, we calculated the ratio of the area
during observation versus execution trials
(observation area/execution area) for
each of the 12 samples. In Monkey L, the
mean ratio across the 12 samples was 0.33
for PM-MN populations and 0.08 for
M1-MN populations; in Monkey X, the
mean ratios were 0.22 and 0.05, respec-
tively. In each monkey the observation to execution area ratios
for M1-MN populations thus were lower than those for PM-MN
populations (Wilcoxon signed-rank tests, p � 0.005 for Monkey
L, p � 0.012 for Monkey X). The temporal patterns of covariation
in MN firing rates found during execution thus tended to persist
during observation trials more in PM-MN than in M1-MN pop-
ulations.

Discussion
Populations of MNs were found to encode sequences of hidden
neural states as detected by HMMs. These hidden states corre-
sponded approximately to behavioral epochs of the RGM task. By
decoding neural activity during observation trials with models
trained on execution trials, we found that populations of PM-
MNs tended to show similar hidden state sequences and neural
trajectories during execution and observation, whereas M1-MNs
did not.

MN populations encode sequences of hidden states related to
multiple behavioral epochs
Rather than only detecting a baseline state and a movement state,
HMMs most often detected four hidden states in the activity of
MNs during individual execution or observation trials. These
four hidden states corresponded approximately to behavioral ep-
ochs in each trial. MN populations thus represented not only the
movement per se, but also multiple non-movement behavioral

epochs—initial hold, reaction time, and final hold— of the RGM
trials.

The fall of one hidden state and the rise of the next typically
occurred during one of the behavioral epochs, most often after
the closest behavioral event marker (instruction onset, move-
ment onset, or the start of the final hold). We therefore chose to
label each hidden state based on the behavioral epoch (initial
hold, reaction time, movement time, final hold) during which
that state typically began. We found that, during execution trials,
non-MN populations progressed through similar hidden state
transitions with similar timing; therefore, the sequence of states
and the timing of their transitions were not unique to MNs. Non-
MNs, of course, were not modulated significantly during obser-
vation trials.

The initial state generally was present during the initial hold
epoch and was replaced by the reaction state during the reaction
time epoch, consistent with the appearance of a visual instruction
cue resulting in neural activity that initiated movement in execu-
tion trials (Kaufman et al., 2016). In observation trials, however,
the rise of the reaction state in the reaction time epoch could
not have resulted from observation of the experimenter’s
movement, which had not yet started. Rather, the rise of the
reaction state during observation trials most likely resulted
from the monkey seeing the instruction with the expectation
that the experimenter was about to move, even though the
monkey itself would not be generating an RGM movement in
response to that visual cue.
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The fall of the reaction state and rise of the movement state then
occurred most often (but not always) after movement onset. We
speculate that two factors may have contributed to this change of
state. First, reafferent feedback, both visual and/or proprioceptive,
may have contributed by arriving in PM and M1 after movement
onset. PM and M1 both receive substantial somatosensory input
(Lemon and Porter, 1976; Fetz et al., 1980; Lemon, 1981; Rizzolatti et
al., 1981b) and visual information arriving in PM (Rizzolatti et al.,
1981a; Fogassi et al., 1999; Graziano, 1999) could influence M1 via
their interareal connections (Muakkassa and Strick, 1979; Shimazu
et al., 2004). Whereas proprioceptive feedback would not be present
during observation trials, visual input from the experimenter’s
movement would. Second, during RGM movements, the activity of
most M1 neurons (not distinguishing MNs vs non-MNs) shows two
sequential phases, the first phase encoding the location to which the
reach is being made and the second encoding the object being
grasped (Rouse and Schieber, 2016). The timing of this transition
between location and object encoding occurs near movement onset
but varies among individual M1 neurons—before movement onset
in some and after movement onset in others—and therefore may
also have contributed to the change from reaction to movement
state.

The subsequent fall of the movement state and rise of the final
state occurred, on average, after the start of the final hold. This
change of state could reflect the transition in control from move-
ment to posture (Venkadesan and Valero-Cuevas, 2008), the loss
of dynamic feedback from the moving limb (Ghez and Sainburg,
1995; Sainburg et al., 1995), and/or the somatosensory input
from contact with the object (Johansson and Flanagan, 2009).

In most reach-to-grasp tasks, the difference between the initial
and final states might be attributable to the hand grasping an
object during the final hold but not during the initial hold (Cag-
giano et al., 2009; Bonini et al., 2010). In the present RGM task,
however, the hand grasped and manipulated an object during
both the initial hold and the final hold. That the posture of the
arm and hand were different during the final hold compared with
the initial hold, however, may have contributed to the HMMs
detecting distinct initial and final states (Caminiti et al., 1990;
Sergio and Kalaska, 2003).

Previous studies also support the notion that MN populations
not only respond to observed motion of another individual’s arm
and hand, but also monitor the preceding behavioral context. Some
MNs discharge when the other individual withholds an expected
movement in the NoGo trials of a Go/NoGo task (Bonini et al.,
2014a). Some MNs show anticipatory discharge preceding the onset
of observed movements (Cisek and Kalaska, 2004; Maranesi et al.,
2014). Neither the NoGo discharge nor the anticipatory activity of
such MNs can be attributed to observation of a movement and in-
stead indicate that the context of expecting to observe a movement
engages at least some MNs. We found that hidden state transitions in
MN populations generally occurred slightly before, rather than after,
the equivalent transitions in non-MN populations, consistent with
the notion that even during execution MN populations incorporate
some expectation of what is about to happen rather than simply
responding to what has happened.

Although each RGM trial had the same behavioral structure—
initial hold, reaction time, movement, and final hold—regardless
of which object was instructed, we chose to train HMMs on each
object separately. As illustrated in Figure 2, MNs often discharged
differentially depending on the particular grasp being performed
and this variance during the movement epoch might have de-
graded the performance of the HMMs had they been trained
across objects. We therefore used random shuffling of the data

from execution trials to examine the extent to which the different
objects affected hidden state consistency (Fig. 8). When we shuf-
fled recordings of MN firing among trials from the same object
(Fig. 8B), the consistency of the hidden states was similar to the
original, unshuffled dataset (Fig. 8A). Although this shuffling to a
certain extent disrupted the relative timing of both the behavioral
events and the spikes discharged by MNs in different trials and
therefore may have blurred state transition times, the retained
consistency indicates that MNs generally progressed through a
similar sequence of hidden states in different trials involving the
same object. When we shuffled the assignments across objects,
hidden state sequence consistency decreased somewhat (Fig. 8C),
confirming that the four different grasps did affect HMM perfor-
mance to some extent. Nevertheless, state sequence consistency
by and large was maintained, indicating that the MN populations
captured the sequence of the four behavioral epochs in the RGM
task without relying entirely on object-specific information. This
hidden state representation of the general structure of the RGM
task was most substantially decreased, however, by shuffling neu-
ron IDs within a trial (Fig. 8D). The hidden states of MN popu-
lations thus encoded sequential behavioral epochs based on
differences in the general pattern of modulation of different MNs
across objects. For example, the MN illustrated in Figure 2A had
a very low baseline rate and discharged a burst during the move-
ment for all four objects, whereas the MN illustrated in Figure 2B
had a substantial baseline rate, fired a burst after instruction on-
set, and was suppressed after movement onset for all four objects.
We infer that HMMs detected hidden states largely based on such
overall patterns of modulation in the different MNs of a popula-
tion distinct from each MN�s individual variance in its own firing
related to particular grasps/objects.

PM versus M1 MN populations
During observation, MNs are generally thought to monitor the
movements of other individuals. Our findings reveal that MN pop-
ulations, particularly those in PM, monitor not only the observed
movement, but also the preceding and following behavioral epochs
during which no movement occurs. What about MN activity during
execution? MNs constitute a substantial fraction of the task-related
population in both PM and M1 and therefore commonly have been
assumed to participate in driving movements along with non-MNs.
Nevertheless, our findings, like those of most other studies of MNs,
do not address the question of whether MNs causally contribute to
driving movements during execution or simply monitor the move-
ment as it is executed. Addressing this issue directly awaits future
investigations in which MNs versus non-MNs can be stimulated
and/or inactivated selectively.

Two studies, however, have suggested that MNs with cortico-
spinal axons (pyramidal tract neurons, PTNs) contribute to driv-
ing movements during execution while serving to prevent the
subject’s own movement during observation (Kraskov et al.,
2009; Vigneswaran et al., 2013). The firing rate of PTN MNs in
both PMv and M1 often was found to increase during execution,
but to increase less or even to decrease during observation. Insuf-
ficient PTN excitation of the spinal cord could prevent the sub-
ject’s own movement during observation.

Although the present execution/observation similarity index
(SIM) distributions were not significantly different between pop-
ulations of PM-MNs and M1-MNs (in which we made no at-
tempt to identify PTNs), the simultaneous MN activity in these
two areas did show differences in hidden state sequences. HMMs
trained on execution trials decoded full sequences of hidden
states in observation trials more frequently for PM-MN than for
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M1-MN populations. Furthermore, PM-MN population trajec-
tories progressed similarly during execution and observation,
whereas the trajectories of M1-MN populations collapsed during
observation. M1-MN trajectories traveling through one neural
subspace during execution, but an orthogonal subspace during
observation may contribute to the absence of movement during
observation (Kaufman et al., 2014). If such execution/observa-
tion differential activity of M1-MN populations, together with
insufficient PTN activation of the spinal cord, prevents the sub-
ject’s own movement during observation, then PM-MN popula-
tions would be free to continue discharging as if the subject were
performing the movement, enabling the brain to monitor the
entire sequence of behavioral epochs being observed.
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