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The Neural Correlates of Hierarchical Predictions for
Perceptual Decisions
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Sensory information is inherently noisy, sparse, and ambiguous. In contrast, visual experience is usually clear, detailed, and stable.
Bayesian theories of perception resolve this discrepancy by assuming that prior knowledge about the causes underlying sensory stimu-
lation actively shapes perceptual decisions. The CNS is believed to entertain a generative model aligned to dynamic changes in the
hierarchical states of our volatile sensory environment. Here, we used model-based fMRI to study the neural correlates of the dynamic
updating of hierarchically structured predictions in male and female human observers. We devised a crossmodal associative learning
task with covertly interspersed ambiguous trials in which participants engaged in hierarchical learning based on changing contingencies
between auditory cues and visual targets. By inverting a Bayesian model of perceptual inference, we estimated individual hierarchical predic-
tions, which significantly biased perceptual decisions under ambiguity. Although “high-level” predictions about the cue-target contingency
correlated with activity in supramodal regions such as orbitofrontal cortex and hippocampus, dynamic “low-level” predictions about the
conditional target probabilities were associated with activity in retinotopic visual cortex. Our results suggest that our CNS updates distinct
representations of hierarchical predictions that continuously affect perceptual decisions in a dynamically changing environment.
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(s )

Bayesian theories posit that our brain entertains a generative model to provide hierarchical predictions regarding the causes of
sensory information. Here, we use behavioral modeling and fMRI to study the neural underpinnings of such hierarchical predic-
tions. We show that “high-level” predictions about the strength of dynamic cue-target contingencies during crossmodal associa-
tive learning correlate with activity in orbitofrontal cortex and the hippocampus, whereas “low-level” conditional target
probabilities were reflected in retinotopic visual cortex. Our findings empirically corroborate theorizations on the role of hierar-
chical predictions in visual perception and contribute substantially to a longstanding debate on the link between sensory predic-
tions and orbitofrontal or hippocampal activity. Our work fundamentally advances the mechanistic understanding of perceptual
inference in the human brain. j

ignificance Statement

changes in the statistical properties of the environment that com-
promise predictions based on previous experience (“unexpected
uncertainty”; Yu and Dayan (2005)).

To make adaptive inferences about the causes of uncertain
information, the brain recurs to learned predictions, which are
thought to match the hierarchical structure of the world (Friston,
2005). For instance, when estimating the flight trajectory of the
shuttlecock during a badminton match, the current shuttlecock
position depends on previous shuttlecock positions and this de-
pendence of current on previous positions in turn depends on the
current wind situation. Sensory signals indicating the current

Introduction

When dealing with complex and volatile environments, agents are
faced with uncertainties introduced by imprecise sensory signals
(“perceptual uncertainty”), the known stochasticity of predictive re-
lationships within a stable environment (“expected uncertainty”), or
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shuttlecock position may be noisy (e.g., due to partial occlusion),
resulting in “perceptual uncertainty”. Furthermore, expected un-
certainty arises from the known irregularity of the shuttlecock
trajectory within stable wind conditions, whereas unexpected un-
certainty results from changes in wind conditions that affect the
relation between successive shuttlecock positions. To deal with
these uncertainties, a badminton player cannot only rely on sen-
sory signals generated by the shuttlecock, but also requires a
“high-level” prediction about the likely shuttlecock trajectory
given the current wind condition, which he or she can then use to
generate a “low-level” prediction about the current shuttlecock
position based on previous positions. Here, we investigated how
such hierarchically related predictions are updated and main-
tained in the brain.

Hierarchical predictions can be elegantly formalized by Bayes-
ian predictive coding. Bayesian theories propose that our brain
entertains a predictive model of the environment, enabling infer-
ence and learning under uncertainty (Knill and Pouget, 2004; Yu
and Dayan, 2005; Behrens et al., 2007; Hohwy et al., 2008; Nassar
et al., 2010; Payzan-LeNestour et al., 2013). These perspectives
are tightly related to hierarchical predictive coding schemes (Rao
and Ballard, 1999; Lee and Mumford, 2003), which assume that
predictions are serially implemented across hierarchical levels and
that prediction errors are generated in cases of mismatch between
predictions and incoming signals. Please note that, here, we do not
use the term “predictive coding” in its narrow sense for the specific
instantiation of top-down predictions proposed by Rao and Bal-
lard (1999), but in its broader sense referring to hierarchical pre-
dictive models aiming at the minimization of prediction errors
(Clark, 2013) or free energy (Friston, 2005).

To investigate the neural implementation of hierarchical pre-
dictions, we devised a crossmodal associative learning task (Fig. 1,
Schmack et al. (2016)) in which participants made inferences
about volatile cue—target associations. In brief, we presented par-
ticipants with flashing dot quartets that elicited the perception of
either clockwise (CW) or counterclockwise (CCW) tilt motion.
These dot quartets were preceded by auditory cues that probabi-
listically predicted the tilt direction of the upcoming visual target.
Over time, observers learned the relation between auditory and
visual stimuli, whereas cue—target contingencies changed unpre-
dictably at times unknown to the participants. Crucially, percep-
tually ambiguous dot quartets equally compatible with CW and
CCW tilt were covertly interspersed in the sequence of visual
stimulation. In relation to the example of the badminton match,
the CW or CCW tilting dot quartet (i.e., the visual target stimulus)
corresponds to the current shuttlecock position. The auditory cue in
our experiment corresponds to the current wind condition in the
badminton example. That is, by introducing changes in cue—target
association, our paradigm induces varying degrees of predictability
of the visual target given the cue, akin to changes in predictability of
the shuttlecock position due to changing wind conditions. More-
over, perceptual uncertainty is introduced by the use of ambiguous
visual stimuli, akin to perceptual uncertainty caused by, for example,
temporary partial occlusion of the shuttlecock.

We used computational modeling in a Bayesian framework
(Mathys et al., 2014a) to estimate hierarchically related predic-
tions on a trial-by-trial basis. Correlating these trialwise estimates
with fMRI time courses allowed us to dissociate the neural cor-
relates of “high-level” predictions regarding the coupling of tones
and visual stimuli from “low-level” predictions regarding the
probability of binary perceptual outcomes.

J. Neurosci., May 23, 2018 - 38(21):5008 -5021 « 5009

Materials and Methods

Participants

Twenty-five participants took part in the experiment, which was con-
ducted with informed written consent and approved by the local ethics
committee. One participant had to be excluded because of not following
the experimental instructions correctly. A second participant was ex-
cluded due to excessive movement inside the scanner (5 mm maximum
average translational movement across runs. All remaining participants
(N = 23, age 19-34 years, mean 25.6 years, 14 female) had normal or
corrected-to-normal vision and no prior psychiatric or neurological
medical history.

Experimental procedures

Main experiment. In this fMRI experiment, we aimed at disentangling the
neural representations of continuously updated hierarchical predictions.
To this end, participants performed an associative reversal learning task
(Fig. 1A) similar to Schmack et al. (2016), which induced changing ex-
pectations about visual stimuli. High or low tones were coupled with
subsequently presented CW or CCW tilting dot pairs, which could be
either unambiguous or ambiguous with regard to the direction of tilt. On
unambiguous trials, tilt direction was determined by a motion streak, yield-
ing a clear impression of the corresponding movement. The association of
tones with tilting directions was probabilistic (75% correct and 12.5% incor-
rect associations with 12.5% ambiguous trials, see below) with contingencies
changing unpredictably every 16—32 trials. Ambiguous trials used the phe-
nomenon of apparent motion (Muckli etal., 2005; Sterzer et al., 2006; Sterzer
and Kleinschmidt, 2007) to induce the percept of tilting movement and were
covertly interspersed in the experimental sequence (12.5% of all trials). Here,
the motion streak was omitted and the physical visual stimulus was hence
uninformative with regard to the direction of tilt.

During the main experiment, participants completed a total of 576
trials, which were divided into 9 individual runs of varying length with a
medium duration of ~9 min. Visual and auditory stimuli were produced
using MATLAB 2014b (The MathWorks) and Psychophysics Toolbox 3.
Frames were projected at 60 Hz using a Sanyo LCD projector (resolution
1024 X 768 pixels) on a screen placed at 60 cm viewing distance at the
Trim Trio Siemens 3T fMRI scanner’s bore.

Auditory stimuli were presented binaurally at —15 dB (relative to
maximum intensity) using MRI-compatible headphones powered by
MR-ConFon hardware. At the beginning of every trial (Fig. 1B), a high
(576 Hz) or low (352 Hz) tone was presented for a total of 300 ms. Immedi-
ately afterwards, participants indicated their prediction about whether the
upcoming visual stimulus would tilt CW or CCW by pressing a left or
right button on a standard MRI button box using the index and middle
fingers of their right hand. The prediction screen was displayed for 1 s
and consisted of 2 single arrows (displayed at 2.05° eccentricity right and
left of fixation and turning from white to red after the response). The
offset between the prediction screen and the onset of the visual stimuli
was jittered between 100 and 300 ms (mean offset: 200 ms). Visual stim-
uli consisted of two light-gray dots of 1.2° diameter presented simulta-
neously at an eccentricity of 4.01° on the vertical (starting position) or
horizontal (final position) meridian. The circumference of the tilting
movement was depicted by a dark-gray circular streak of 1.2° width,
which was displayed throughout the trial. Starting and final dot positions
were presented for 600 ms, separated by trajectories of 33 ms duration.

On unambiguous trials, the tilting direction was defined by motion
streaks (upper right and lower left quadrant for CW tilt, upper left and
lower right for CCW tilt). On ambiguous trials, no motion streak was
presented and visual stimuli were compatible with CW and CCW tilt.
Immediately after presentation of the visual stimulus, participants re-
ported their perception by pressing a left or right button using the index
and middle finger of their right hand. The video response screen con-
sisted of two double arrows (displayed at 2.05° eccentricity right and left
of fixation and turning from white to red after response) and was pre-
sented for 1 s. Trials were separated by fixation intervals jittered between
0.5 and 2.5 s (mean fixation interval: 1.5 s) and amounted to a mean
duration of 5.25 s each.

Perceptual rating. Subsequent to the main experiment, we aimed at
assessing the perceptual quality of ambiguous and unambiguous trials in
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A, Experimental paradigm. In this experiment, we coupled CW (motion trajectory highlighted in red) or CCW (motion trajectory highlighted in blue) tilting dot pairs (visual targets) with

high or low tones (auditory cues), which were predictive of the upcoming visual stimulus at a contingency of 75%. Importantly, the association between tones and visual stimuli reversed
unpredictably for the participants every 16 —32 trials. Furthermore, 12.5% of tilting dot pairs were ambiguous with regard to the perceived direction of tilt. Such test trials enabled us to quantify the
influence of predictions formed during crossmodal associative learning on visual perception. B, Trial structure: Main experiment. After presentation of a high (576 Hz) or low pitch (352 Hz) auditory
cue, participants indicated their predicted tilting direction. After presentation of the visual target (which could be either unambiguous or ambiguous), participants reported their perception. In an
additional perceptual rating experiment, this sequence was followed by a rating on the certainty associated with the perceptual response. €, Trial structure: Localizer. At the end of the fMRI
experiment, we conducted localizer sessions mapping the meridians and the dot trajectories of CW and CCW tilt, respectively. Checkerboards were flickered in the respective areas eight times for 15 s

in alternation while participants performed a challenging change detection task at fixation.

an additional perceptual rating experiment, which was performed during
the anatomical scan. Here, trial structure was identical to the main ex-
periment. However, the video response screen was followed by a confi-
dence rating (offset to perceptual response jittered between 100 and 300
ms, mean offset: 200 ms), which displayed a 4-point scale where 1 = very
sure, 2 = rather sure, 3 = rather unsure, and 4 = very unsure with regard
to the visual percept for a total of 1 s. Participants reported their rating
using the index, middle, ring and little finger of the right hand. The

selected rating turned from white to red after response. In total, partici-
pants rated their perceptual confidence for a total of 60 trials.

Localizer. Given that the binary perceptual outcomes of the visual
target were spatially separated, our design enabled us to investigate how
activity in retinotopic stimulus representations in primary visual cortex
would relate to predictive processes evoked during the main experiment.
To identify voxels corresponding to CW or CCW tilt, we conducted two
localizer scans (Fig. 1C) at the end of experimental session. The first
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localizer was designed to map the dot trajectories. Black-and-white
checkerboards covering the circular dot trajectories from the main
experiment were flickered at a frequency of 8 Hz in each visual field quad-
rant, but did not cover the starting and final position of the dot pairs. Spe-
cifically, the upper right and lower left (CW tilt) as well as the upper left and
lower right quadrant (CCW tilt) were flickered in alternating sequence for
15 s each for a total of 8 repetitions separated by 5 s of fixation.

The second localizer was conducted with identical temporal structure,
but mapped the vertical and horizontal meridian spanning over starting
and final dot positions. For both localizers, checkerboards were scaled by
the cortical magnification factor and participants performed a fixation
task, responding to color changes in the fixation dot (alternating between
white and red in unpredictable intervals) with their right index finger.

Behavioral analysis

The behavioral analysis outlined here is directed at the influence of the
current cue—target association on perceptual decisions under ambiguity.
In previous work using a similar experimental design with a different
visual stimulus (Schmack et al., 2016), we found that in addition to a
main effect of “associative learning,” perceptual history also had an in-
fluence on perceptual decisions under ambiguity in the form of “prim-
ing” and “sensory memory.” Whereas “priming” refers to the influence
of the immediately preceding trial on the current trial, the term “sensory
memory” (Pearson and Brascamp, 2008) is defined by the influence of
the preceding ambiguous trial on the current ambiguous trial and there-
fore acts over longer timescales. In our current work, we used an opti-
mized experimental design with a different visual stimulus that we
expected to maximize the effect of associative learning while minimizing
the effects of perceptual history. Nevertheless, in our behavioral analyses,
we considered not only the main effect of associative learning but also the
effects of priming and sensory memory to account for variance of no
interest caused by perceptual history.

Conventional analysis. To establish that prior predictions acquired
during the course of the experiment biased perceptual decision under
ambiguity, we performed a series of conventional behavioral analyses,
which furthermore served as a validation for our inverted Bayesian
model (see below). Our central interest was in the effect of learned tone—
target associations on perceptual decisions under ambiguity. We there-
fore calculated the proportion of ambiguous percepts congruent to the
currently prevalent hidden contingency (associative learning) averaged
across runs and participants. Given our previous findings suggesting
additional effects of perceptual history on perceptual decisions under
ambiguity, we further quantified the proportion of trials perceived in
congruence with the preceding unambiguous trial (priming) or the pre-
ceding ambiguous trial (sensory memory; Schmack et al., 2016).

We further investigated the effectiveness of the disambiguation by
calculating the proportion of unambiguous trials perceived according to
the disambiguation and averaged across runs and participants.

To assess the results from our perceptual rating experiment, we calcu-
lated the proportion of trials rated as 1 = very sure, 2 = rather sure, 3 =
rather unsure, and 4 = very unsure for unambiguous and ambiguous
trials separately and averaged across participants. To assess a potential
mediation of the effect of predictions on perceptual decision under
ambiguity by perceptual uncertainty, we conducted an across-parti-
cipants correlation between average perceptual ratings and the pro-
portion of ambiguous trials perceived according to the current cue—
target contingency.

Finally, correlating the metrics for the strength of the impact of learned
associations on perceptual decisions under ambiguity between conven-
tional and model-based behavioral analyses allowed us to validate our
Bayesian modeling approach.

Bayesian modeling. To investigate the neural correlates of hierarchical
predictions, we adopted a Bayesian modeling approach (implemented
previously in Schmack et al., 2016), which allows for the estimation of
individual trial-by-trial model quantities such as the dynamic and con-
tinuously updated “high-level” prediction about the association between
auditory cues and visual target or the inferred “low-level” conditional
probability of a binary visual outcome given a specific auditory cue.
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Our model, which is defined in detail in the section “Mathematical
model description,” frames perception as an inferential processes in
which perceptual decisions are based on posterior distributions. Ac-
cording to Bayes’ rule, such posterior distributions are derived from
likelihood distributions representing the sensory evidence, and prior
distributions, which, in the context of this experiment, can be used to
formalize expectations about perceptual outcomes.

Crucially, here, we were interested in such perceptual expectations or
priors that are formed by associative learning; that is, the subjects’ con-
tinuously updated inference on the probabilistic coupling between tones
and visual stimuli (please note that this is not equivalent to the hidden
contingency used for conventional analysis, which is in principle un-
known to the participant). As indicated by our previous work (Schmack
et al., 2016), perception might be further influenced by priors that are
derived from perceptual history: priming (the influence of a visual per-
cept on the subsequent trial) and sensory memory (the influence of the
visual percept in an ambiguous trial on the subsequent ambiguous trial).
Inclusion of these priors based on perceptual history into a model helps
to explain away additional variance of no interest. Please note that the factors
of associative learning and priming constitute potential priors for perceptual
decisions on all trials regardless of ambiguity, whereas sensory memory is
defined as a prior for perceptual decisions under ambiguity only.

All of these priors (associative learning, priming, and sensory mem-
ory) can be modeled by Gaussian probability distributions, which are
defined by their respective mean and precision (the inverse of vari-
ance). Importantly, the precision term represents the impact of a
prior on the posterior distribution and thus relates to its influence on
visual perception.

In the analysis presented here, we fitted our model on two behavioral
responses given by our participants: The prediction of upcoming tilting
direction ¥, edicrion (Which we hypothesized to depend on the conditional
probability of tilting direction given the tone as expressed by the prior
distribution “associative learning”) and the perceived tilting direction
Vperception (Which we reasoned to be based on a specific combination of
the prior distributions “associative learning”, “priming”, “sensory mem-
ory”, and the likelihood-weight “disambiguation”). Therefore, our
model is divided into two interacting parts: a “contingency” model,
which was built to model the inferred association between tones and CW
or CCW tilt and used to extract “high-level” model quantities, and a
“perceptual” model, which was designed to predict the participants’ per-
ceptual choices and enabled us to assess “low-level” model quantities.

To determine which factors drive perceptual predictions relevant for
perceptual decisions under ambiguity, we used Bayesian model selection.
In addition to the factor “associative learning”, which we were interested
in primarily, we considered the additional factors “priming and sensory
memory” to allow for models that account for the variance caused by
perceptual history. We constructed behavioral models incorporating all
combinations of the prior distributions “associative learning” (A),
“priming” (P), and “sensory memory” (S), whereas all models consid-
ered incorporated the distribution “disambiguation”, which adjusts the
weight of the fixed bimodal likelihood. This yielded a total of eight be-
havioral models to be compared (A-P-S-, A-P-S+, A-P+S-, A-P+S+,
A+P-S-, A+P-S+, A+P+S-, A+P+S+), which were optimized for the
prediction of both behavioral responses using a free energy minimization
approach. This allowed us to compare the behavioral models using ran-
dom effects Bayesian model selection (Stephan et al., 2009). We used a
version of the hierarchical Gaussian filter for binary inputs (Mathys et al.,
2014a, 2014b), as implemented in the HGF 4.0 toolbox (distributed
within the TAPAS toolbox translationalneuromodeling.org/tapas/), for
model optimization and SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) for
model selection.

After identifying the optimal model using Bayesian model selection, we
analyzed its posterior parameters using classical frequentist statistics and
extracted model quantities for model-based fMRI. To test for a relation
between fMRI activity and “high-level” predictions, we extracted the abso-
lute cross-model prediction fi, from the contingency model. To account for
additional variance in the BOLD signal, we further extracted the precision of
the absolute cross-model prediction 71, and the precision-weighted cross-
modal prediction error |&,| from the contingency model.
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Hierarchical Gaussian filter. A, The behavioral model consists of a standard hierarchical Gaussian filter for binary perceptual outcomes (contingency level), representing the inferred

association between tones and tilting directions during the experiment. This part of the model is coupled to the perceptual level, which determines the influence of prior predictions derived from
previous cue—target associations as well as priming and sensory memory on perceptual decisions. B, Exemplary model quantities for one individual participant and run. The top displays the time
course of the “high-level” prediction p,, its variance (i.e., the inverse precision 7r,) as well as the precision-weighted “high-level” prediction error ,. The middle panel shows the sigmoid transform
of the “high-level” prediction s(u.,), the time course of the underlying contingency (black dotted line) as well as inputs and responses (both transformed on the level of the contingency between
auditory cues and visual targets). The bottom displays the “low-level” conditional probability of CW tilt (in blue) as well as the “low-level” posterior probability of CW tilt (in black).

To investigate the relationship between fMRI activity and “low-level”
predictive processes, we assessed the dynamic stimulus-specific predic-
tion w, (i.e., the inferred conditional probability of CW tilt given the
tone) and its analog 1 — p, (i.e., the inferred conditional probability of
CCW tilt given the tone) from the perceptual model. To capture addi-
tional variance in the recorded BOLD signal, we furthermore extracted
the following model quantities from the perceptual model: the posterior
probability of CW tilt P(6,) and CCW tilt P(6,), the choice prediction
EITOT €,0;cc and the perceptual prediction error |5,].

Please see the section “Mathematical model description” for a detailed
definition of our modeling procedures. Figure 2A provides a graphical
illustration of the modeling approach. We provide exemplary time courses

for “high-” and “low-level” model quantities in Figure 2B. Table 1 provides
a summary of model quantities and model parameters, including prior
mean and variance for inversion as well as average posterior parameter
estimates across participants.

Mathematical model description

Here, we applied a Bayesian modeling approach to assess the continuous
updating of predictions about the causes of sensory input and their im-
pact on perceptual decisions under ambiguity. We devised a model that
was inverted on two behavioral responses given by the participants: The
prediction of upcoming tilting direction ¥, .4iccion and the perceived tilt-
ing direction ¥pe,cepiion- With this, we inferred on model parameters that
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Table 1. Summary of model parameters and quantities

J. Neurosci., May 23, 2018 - 38(21):5008-5021 + 5013

Name Explanation Inversion
Sensory Stimulation Mg Mean of sensory stimulation
B High- or low-pitch tone
Responses Yprediction Binary prediction
Yperception Binary perceptual decision
Model Parameters Prior mean Prior variance Posterior
Perceptual Model ™, Associative precision 0.5 1 1.6052 =+ 0.0456
M, Priming precision 0.5 1 00
L Sensory memory precision 0.5 1 0.6138 == 0.0511
T gis Disambiguation precision 15 0 15%0
Contingency Model w, Learning rate of 2nd level —1.28 1 —0.0483 = 0.0713
[ON Learning rate of 3rd level —6.14 1 —6.6800 = 0.0469
K, Coupling strength between 3rd and 2nd level 1 0 1£0
s Initial mean of 2nd/3rd level 0/1 0/0 0/1
a) Initial variance of 2nd level 4.6413 1 4.5739 =+ 0.0536
a) Initial variance of 3rd level 4 1 3.3315 £ 0.0536
Response Mapping I4 Inverse decision temperature (response model) 1 0 1
Selected Model Quantities
Predicted Responses Y prediction Model prediction on ¥, cicgion
yperception Model predi(tion ony, perception
Perceptual Model [ Inferred conditional probability of CW-tilt (“low-level” prediction)
9, Perceptual prediction error
€ hoice Choice prediction error
P(6,) Posterior probability of perceiving CW-tilt
Contingency Model [, and 1T, Prior mean (“high-level” prediction) and precision of 2nd level
€, Precision-weighted (“high-level”) contingency prediction error
Table 2. Model-based fMRI Results with thresholds p < 0.05, FWE, for | &t,| and p < 0.001, uncorr., for g1,
i
Region Hem. X y z T Region Hem. X y z T
Mid. Orbital Gy. R 6 40 =10 11.04 Post. Hippocampus R 10 —40 5 7.65
Mid. Orbital Gy. L —4 50 -8 1.44 Post. Hippocampus L -7 -4 5 8.70
Caudate Nucleus L =7 18 -8 9.06 Precuneus R 8 =50 8 6.49
Insula R 43 —12 5 11.01 Precuneus L —4 —54 12 9.04
Precentral Gy. R 16 -2 78 9.61 Postcentral Gy. R 48 —12 35 6.50
Post. med. frontal Gy. R 10 =17 78 7.95 Postcentral Gy. L -20 —30 72 7.05
Mg
Region Hem. X y z T Region Hem. X y z T
Rolandic Operculum L —60 3 5 447 Inf. Temporal Gy. L —42 —62 =10 3.70
Inf. Occipital Gy. L —42 —70 -8 3.79 Caudate Nucleus L —14 6 15 4.29
Inf. Frontal Gy. R 48 38 0 3.89 Caudate Nucleus R 18 =17 20 427
govern the updates in model quantities belonging to two different inter- 1:  high pitch
acting parts of our model: A “contingency” model dealing with the in- B(t) = { 0: low pitch (3)

ferred contingencies between concurring auditory and visual stimuli and
a “perceptual” model, which integrates different sources of prior and
likelihood information to predict individual perceptual choices.
Perceptual model. At each time point ¢, the two alternative visual per-
cepts are predicted on the basis of a posterior probability distribution

over 6:
01

Participants responded with button presses indicating the current visual
percept as follows:

>0.5: CW tilt
<0.5: CCW tilt (1)

1. CW it
ypcrccpli(m(t) = 0: CCW tilt (2)

Based on previous work (Schmack et al., 2016), we formalized a number
of prior distributions that could influence on participants’ perception,
considering separate contributions of priming, sensory memory, and
associative learning. The latter was driven by the co-ocurrence of the
direction of tilt (see above) and the pitch of the preceding tone, which
was defined as follows:

To map the dynamic inference on the contingency between tones 8 and
perceived direction of tilt y, we constructed a three-level hierarchical
Gaussian filter (Mathys et al. (2014b), see below for details), which re-
ceived the conjunction of tone and posterior probability of tilt direction
as input. From here, we extracted first level prediction (i, (), which rep-
resents the inferred contingency over tones and rotations. This was trans-
formed into the conditional probability of CW tilt given the tone as
follows:

B(t) =0

aa(1): for
B =1 )

Halt) = { 1 — . ():  for
This defines the mean of the prior distribution “associative learning”
(associative learning ~ N{p,, 7, ")), while 77, represents its precision.
Please note that the conditional probability of CCW tilt is given by 1 — .
We refer to these model quantities as “low-level perceptual predictions”.

Likewise, the mean of the prior distribution “priming” (priming
~ Ny, m, ")) in trial t was defined by the visual percept in the preced-
ing trial:
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Table 3. Explorative model-based fMRI Results. Statistical thresholds are p < 0.05 FWE for the regressors “Tone”, “Tile”, | x|, |6q| and |e,| as well as p < 0.001 uncorr. for
the remaining regressors

Tilt Tone

Region Hem. X y z T Region Hem. X y z T

Inf. Occipital Gy. R 38 —74 —12 12.30 Sup. Temporal Gy. R 53 —14 0 14.29

Inf. Occipital Gy. L —37 —84 =5 11.75 Sup.Temporal Gy. L —60 —42 15 12.06

Mid. Occipital Gy. R 30 —92 0 12.60 Cerebelum (V1) R 33 —62 —28 12.54

Mid. Occipital Gy. L =22 —97 -2 11.49 Cerebelum (V1) L =30 —67 -28 9.20

Fusiform Gy. R 30 =72 —18 12.81 Thalamus R 8 -12 2 8.64

Fusiform Gy. L —32 =77 —18 15.10 Thalamus L -7 =17 0 9.82

Lingual Gy. R 23 -9 =5 14.45 Post. med. frontal Gy. R 8 23 52 747

hMTI+/V5 R 50 —70 5 12.29 Post. med. frontal Gy. L -7 3 55 7.28
Precentral L =37 =17 55 7.78
Insula R 30 23 —2 7.06

|P«2|

Region Hem. X y z T Region Hem. X y z T

Heschls Gy. R 43 -22 8 7.65 Insula L —44 0 -2 6.52

Heschls Gy. L —37 -27 10 6.48 Postcentral Gy. R 23 —37 72 n

(A le|

Region Hem. X y z T Region Hem. X y z T

Insula L —32 26 5 8.29 Precentral Gy. R 46 6 28 7.89

Mid. Temporal Gy. L —50 —60 2 6.93

Precentral Gy. R 46 6 28 7.89 Inf. Parietal Lob. R 46 —50 50 7.31

Inf. Parietal Lob. L —40 —80 22 7.54 Inf. Parietal Lob. L —50 —47 55 7.02

Insula L —32 26 5 5.81 Sup. Parietal Lob. R 6 —67 48 6.48

Inf. Frontal Gy. L —47 16 30 5.20 Caudate Nucleus R 13 0 20 5.25

€(hoire P(O = 1)

Region Hem. X y z T Region Hem. X y z T

Inf. Occipital Gy. L -4 =77 =10 5.25 Sup. Occipital Gy. R 20 —97 28 421

- Posterior-medial frontal Gy. L —12 18 60 4.55
l“’p(t) = ypen'eptinn(t - 1) (5)

The mean of the prior distribution “sensory memory” (sensory me-
mory ~ N, 7, ")) in trial t was defined by the visual percept in the
preceding ambiguous trial 7,;:

M#(t) = )/Prcccption(tu) (6)

In addition to these prior distributions, we defined the disambiguation (i.e.,
the presence of motion streaks along the trajectory of tilt) by means of the
likelihood weight “disambiguation” (disambiguation ~ M, s )) in trial £

1: Ccw (disambiguation)
wai(t)y 0.5: CW/CCW  (ambiguous) (7)
0: cCcw (disambiguation)

To predict the perceptual outcomes, we derived the posterior distribu-
tion with respect to CW or CCW tilt from the model. This distribution
results from a weighting of a bimodal likelihood distribution by a com-
bination of prior distributions such as “associative learning”, “priming”,
“sensory memory”, as well as the likelihood weight “disambiguation”.
For a specific combination of these prior distributions, a joint prior
distribution with mean u,,, and variance 7, can be calculated by adding
up the means of influencing factors relative to their respective precision:

s (t) = Tata(t) + o, (t) + mopy(t) )

T

Ty = W, + W, + 9)

This joint prior distribution (described by w,, and ) as well as the
disambiguation (defined by g, and m4;) is used to adjust the density
ratio of the posterior for the two peak locations , = 0 and 6, = 1:

P(0,(1)
P(0(1))

r(t) =

0 — Tobon(8) + Taihtais() ) * (g - Tobon(8) + Taistrais(t) ) *
! T+ Tais ! T+ TWais
exp

25 (my + )

(10)

1
P(0,) denotes the posterior probability of CW tilt. Therefore, 1 — P(6,)
represents the posterior probability of CCW tilt. For simplicity, we refer
to P(6,) and P(6,) as “low-level” posteriors.”
The model prediction Ppe,cprion ON the participants percept is given by
applying a unit sigmoid function with inverse decision temperature { =
1to P(6,):

P(6,)*
P(Ol)g + (1 - P(Ol))g

}/}Pcrceplion = (12)
From here, we extracted a “perceptual prediction error”, which was
given by:

Bq = P(Ol) - yperception (13)

In addition, we defined a “choice prediction error”, which was obtained
by subtracting the inferred conditional probability of CW tilt given the
tone (i.e., w,) from the actual perceptual outcome y, ., ception:

€choice = Ma ™ Yperception (14)

Contingency model. To extract the inferred trial-by-trial prediction
&, (1), we used a version of the three-level hierarchical Gaussian filter
(Mathys et al., 2011). The input to the HGF modeling the inferred con-
tingency between auditory and visual stimuli was defined by the
following:

Input(t) = [P(6,(1)) — B(1)| (15)
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Please note that, due to the lack of a stereodisparity cue in ambiguous
trials, P(6,(t)) is closer to 0 or 1 on unambiguous trials. Therefore, up-
dates in the inferred contingency are smaller in ambiguous cases and the
HGF implemented here specifically takes differences in perceptual cer-
tainty between ambiguous and unambiguous trials into account.
Likewise, the participants’ prediction was defined as follows:

[ 1=B®|: Ccw it
yprcdicriun(t) - { ‘0 — B(t)| CCW tilt (16)
The posterior of the first level u,(¢) is set to be equal to Input(t):
(1) = Input(r) (17)

The second-level prediction of the HGF models the tendency of the first
level toward w,(¢) = 1 and is given by the following:

1
;m0=@®+€6*Mﬁ (18)

() = wa(t — 1) (19)

Please note that we refer to the strength of the second-level prediction
|,(2)| as the crossmodal or “high-level” prediction. The precision of the
second-level prediction evolves according to the following:

m(t) = A

70 (20)

The first-level prediction [, is defined by a logistic sigmoid transform of
the second-level prediction pw, as follows:

w(®) = s(u,(t — 1)) (21)

The difference between the first level prediction w, () and first-level
posterior () yields a prediction error 8,(¢) as follows:

8,(1) = u(t) — (1)

Crucially, 8,(¢) is combined with the second level precision I1,, yielding
the precision-weighted “high-level” prediction error &,(t), which up-
dates second-level prediction fi,(f) as follows:

(22)

qﬂ=%*am (23)

The precision of the prediction on the first and second level evolve ac-
cording to the following:

N _ 1

= (= A0 (24)
=R 1
(1) = (25)

o, (1) + exp(r; * us(t — 1) + ,)

The volatility prediction error 8, governs the update to the third level of
the HGF and is given by the following:

&m:<g%+04ﬂ—@®ﬂ*aw—u (26)

The third-level prediction [t;(t) and its precision 77;(t) are defined by the
following:

() = st = 1); (27)

1

- oyt —1) + ws; (28)

(1)

Finally, the third level posterior u;(#) and its precision 7r5(t) are given by
the following:

w,(1) = (1) * exp(iy * ps(t — 1) * w,) (29)
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m5(1) = T(0) + 0.5 = k2 = wy() * (wy(1)

+Q2xwy() — 1) % 8,(1) (30)

The model prediction Pp,.4ici0n ON the participants’ predicted tilting di-
rection of the upcoming visual stimulus is given by applying a unit sig-
moid function with inverse decision temperature { = 1 to [, as follows:

_om
ﬁlg + (1 - [’«\1);

Finally, combining the two log-likelihoods of Jp,gicrion a0d Pperceprion given
the actual responses yp ediciion 34 Vpercepion Yields the modeling cost.
From here, the precision of the prior distributions can be optimized via
the minimization of free energy (which represents a lower bound on the
log-likelihood) with regard to the predicted responses.

As an optimization algorithm, we chose the quasi-Newton Broyden-
Fletcher-Goldfarb-Shanno minimization (as implemented in the HGF
4.0 toolbox). To assess the evidence for existence of the prior distribu-
tions “associative learning”, “priming” and “sensory memory”, their pre-
cisions were either estimated as free parameters in the perceptual model
or fixed to zero (thereby effectively removing a prior distribution from
the model). The precision of the prior distribution “disambiguation” was
always estimated as a fixed parameter; therefore, this yielded 2° = 8
models.

The prior distributions for ,, m,, and 7, had a mean of 0.5 and a
variance of 1 when the corresponding parameter was estimated and 1,
,, and 7, were set to 0 when they were not estimated. my;; was fixed to
1.5. Parameters from the HGF were defined as follows: w,,0 = 0; 5,0 =
1; 0, 1 =log(4.6413); 05, 1 = log(4); k5, 0 = 1; w,, 1 = —1.28; w5, 1 =
—6.14; £, 0 = 1. Indices denote the level of the HGF.

Model inversion was performed separately for each run of the experi-
ment and estimated models were compared using Bayesian model selec-
tion (fixed effects on the subject level and random effects on the group
level) as implemented in SPM12. From the winning model, we extracted
posterior parameters and averaged across runs and participants.

fMRI

Acquisition and preprocessing. We recorded BOLD images by T2-
weighted gradient-echo echoplanar imaging (TR 2500 ms, TE 25 ms,
voxel size 2.5 X 2.5 X 2.5 mm) on a 3T MRI scanner (Tim Trio; Sie-
mens). The number of volumes amounted to ~1330 volumes for the
main experiment and 220 volumes for the localizers. We used a T1-
weighted MPRAGE sequence (voxel size 1 X 1 X 1 mm) to acquire
anatomical images. Image preprocessing (slice timing with reference to
the middle slice, standard realignment, coregistration, normalization to
MNI stereotactic space using unified segmentation, spatial smoothing
with 8 mm full-width at half-maximum isotropic Gaussian kernel) was
performed with SPM12 (http://www.filion.ucl.ac.uk/spm/software/
spm12).

(31)

4 —
Vprediction =

General linear models (GLMs)

Whole-brain analysis. To probe the potential neural correlates of predic-
tive processes in the main experiment, we conducted a model-based
fMRI approach using model quantities from the inverted behavioral
model. Here, we aimed at disentangling the neural representation of the
crossmodal “high-level” prediction |{&;| from the “low-level” prediction
W, In addition, we considered a number of model-based regressors of no
interest.

The “high-level” prediction |&,| describes the individual participants’
estimate in the predictive strength of the auditory cue with regard to the
visual target on a trial-by-trial basis. Due to changes in the contingencies
between auditory cues and visual targets at time points unknown to the
participants, such estimates in the predictive strength varied during
the course of the experiment. Importantly, this quantity is orthogonal to
the specific direction being predicted at a given trial.

In turn, the “low-level” prediction w, describes the inferred condi-
tional probability of CW tilt given the tone, which ranges from 0 to 1. Its
computation is contingent on the participants current estimate for the
“high-level” prediction, whereas the two entities |1, and w, are orthog-
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onal to each other. This is because the conditional probabilities are de-
fined on a stimulus-level (with regard to CW and CCW tilt), whereas the
“high-level” prediction describe the strength of the overall contingen-
cies. Importantly, because the conditional probabilities sum up to 1,
the conditional probability of CCW tilt is given by 1 — .

Next to these quantities of interest, we considered a number of regres-
sors to account for additional variance of no interest. Here, we included
7, which represents the precision of the “high-level” prediction f, and
describes how persistent a participant’s belief in the audiovisual contin-
gency is over time as well as in the light of potentially contradictory
evidence. Furthermore, we took the absolute precision-weighted predic-
tion error |€,| into account, which describes the update in the “high-
level” prediction f,. It is larger for unexpected visual stimuli and for
situations in which the participant has an imprecise belief about the
current cue—target contingency. On the level of the visual stimuli, in turn,
we considered the “low-level” prediction error &g, ;.., which is given by
the difference between the actual visual outcome and the conditional
probability of CW tilt. We also considered the “low-level” posterior
probability of CW tilt P(6,), which results from the integration of the
visual stimulation and the prior predictions (i.e., “associative learning”,
“priming”, “sensory memory”). This entity predicts visual perception on
a trial-by-trial basis. Last, we considered the remaining evidence for the
alternative visual percept in the posterior distribution as the perceptual
prediction error §, (for an in-depth discussion of the quantity, see also
Weilnhammer et al., 2017).

The GLM contained the regressors tone and tilt, which were repre-
sented by stick functions and temporally aligned to the presentation of
the auditory cue and to the onset of the tilting movement (regardless of
direction or ambiguity).

Furthermore, the tone regressor was parametrically modulated by our
two model quantities of interest: the crossmodal “high-level” prediction
| 3] as well as the “low-level” prediction w, (i.e., the inferred conditional
probability of CW tilt given the tone). To account for additional vari-
ance, we included the precision of the “high-level” prediction 7, as a
further regressor.

The tilt regressor, in turn, accounted for additional variance and was
modulated by the “high-level” prediction error |e,| as well as the “low-
level” perceptual posterior P(6,(t)), the “low-level” choice prediction
EITOT £ ;» and the absolute perceptual prediction error |§,|. All model
trajectories were extracted separately for each experimental run from the
winning model of our Bayesian model comparison.

Regressors were convolved with the canonical hemodynamic response
function as implemented in SPM12. Please note that the regressors of
interest &, and u, were placed at the last positions of the design matrix.
To ensure that our design was able to segregate between regressors of
interest and regressors of no interest, we computed the colinearity be-
tween the SPM regressors and averaged across participants. The highest
values of colinearity for the cue-related regressor of interest [, (i.e., the
“high-level” prediction) with target-related regressors were 0.50 = 0.02
for the “high-level” prediction error &, and 0.4414 = 0.03 for the percep-
tual prediction error §;. The highest values of collinearity for the cue-
related regressor of interest u, (i.e., the “low-level” prediction) with
target-related regressors were 0.57 * 0.02 for the “low-level” prediction
eITOr € ice a0d 0.46 £ 0.04 for the perceptual posterior P(6,).

We added six rigid-body realignment parameters as nuisance covari-
ates and applied high-pass filtering at 1/128 Hz. We estimated single-
participant statistical parametric maps and created contrast images
which were entered into voxelwise one-sample t tests at the group level.
Anatomic labeling of cluster peaks was performed using the SPM Anat-
omy Toolbox Version 1.7b. We assessed our data across the whole brain
reporting voxels surviving FWE correction at p < 0.05.

ROI analysis. We hypothesized that the “low-level” conditional stim-
ulus probabilities would correlate with BOLD activity in retinotopic rep-
resentations of the motion trajectories during CW and CCW tilt in
primary visual cortex across all trials. To test this idea, we defined the
correlates of the trajectories of CW and CCW tilt (which are highlighted
in red and blue in Fig. 1A) by intersecting contrast images obtained from
both the localizer and the main experiment:
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From the localizer experiment, we estimated single-participant GLMs
that contained box-car regressors representing the presentation of check-
erboards over the upper-right and lower-left trajectories for CW tilt and
lower-right and upper-right quadrant for CCW tilt and computed statis-
tical parametric maps as well as contrast images for “CW tilt > CCW tilt”
(and vice versa), thresholded at p < 0.05, uncorrected.

To only select voxels that were highly specific for CW and CCW tilt in
the main experiment, we estimated a second set of single-subject GLMs
from the main experiment, containing CW and CCW tilt for ambiguous
and unambiguous trials separately, and computed single subject para-
metric maps as well as contrast images for “CW tilt > CCW tilt” (and vice
versa) for unambiguous trials only, thresholded at p < 0.05, uncorrected.
Please note that these contrasts are orthogonal to all predictive factors
and are thus apt for the definition of functional ROIs (see also Friston et
al., 2010).

ROIs were then defined by intersecting the respective contrast images
for “CW tilt > CCW tilt” and “CCW tilt > CW tilt”. Parameter estima-
tion was performed using MARSBAR (marsbar.sourceforge.net/) with a
design identical to whole-brain analyses. Specifically, we investigated the
correlation of activity in retinotopic representations of the motion tra-
jectories on all trials with the “low-level” prediction of tilt direction .,
(i.e., the conditional probability of CW tilt given the tone) and 1 — pu,
(i.e., the conditional probability of CCW tilt given the tone). Please note
that the design matrix contained information about the posterior P(6,)
and thus the actual sensory information. Therefore, any correlation be-
tween the BOLD signal and p, and 1 — u, will be due to variance that is
explained by “low-level” predictions independently of the sensory stim-
ulation per se.

Results

Behavioral analysis

Conventional analysis

Assessing the potential effect of crossmodal predictions on percep-
tual decisions under ambiguity, we found that 82.61 * 3.87% of all
ambiguous trials were perceived according to the currently prev-
alent hidden contingency (p < 10>, T = 11.4494, one-sided
test). The effect of priming on ambiguous trials (53.62 % 0.98%;
p = 0.0013, T = 3.6858) was substantially smaller, whereas con-
ventional analyses discarded a significant impact of sensory
memory on perceptual responses under ambiguity (52.90 *
2.59%; p = 0.2757, T = 1.1178, Fig. 3B). As expected, 97.46 =
0.62% of all unambiguous trials were perceived according to the
disambiguation.

We proceeded by evaluating a potential mediating role of per-
ceptual uncertainty for the influence of associative learning on
perceptual decisions under ambiguity. Here, our rating experiment
indicated that the majority of unambiguous trials (67.20 = 5.09%)
elicited very clear motion percepts. Such very clear motion per-
cepts were less frequent for ambiguous trials (31.59 * 6.00%; Fig.
3A). There was no significant across-subject correlation between
the average perceptual certainty at ambiguous trials and the
proportion of ambiguous trials perceived according to the
currently prevalent hidden contingency (p = 0.1238, p =
0.5735).

In brief, conventional analyses indicated that the crossmodal
associations significantly affected perceptual decisions under
ambiguity, whereas we could not observe a relation between the
strength of this effect and perceptual uncertainty.

Bayesian modeling

To infer the participants’ trial-by-trial prediction about the cross-
modal association and to quantify its impact for perceptual decisions
under ambiguity, we conducted a Bayesian modeling approach.
First, we used Bayesian model selection between models incorporat-

ing all combinations of the factors “associative learning”, “prim-
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Behavioural Results
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Figure 3.

Fraction of predicted ambiguous trials

Behavioral analysis. A, Perceptual rating. Participants tended to report a higher perceptual certainty at disambiguated trials (bottom) compared with ambiguous trials (top).

B, Conventional analyses. Here, we show the proportion of ambiguous trials perceived according to the current hidden contingency (associative learning, p << 10 ~%, T = 11.4494, one-sided test),
the preceding unambiguous trial (priming, p = 0.0013, T = 3.6858, one-sided ttest) and preceding ambiguous trial (sensory memory, p = 0.2757, T = 1.1178). Overall, the current cue—target
association most strongly affected perceptual decisions under ambiguity, whereas the effect of priming was much smaller and conventional statistics discarded a significant impact of sensory
memory. (, Bayesian model comparison. Random effects Bayesian model selection indicated that the model incorporating the factors “associative learning” (+A) and “sensory memory” (+S) best
explained the behavioral data collected in this experiment at a protected exceedance probability of 97.77%. This is reflected by the Bayesian model family comparison shown in the inset (A+
99.99%, P + 2.93%, S+ 94.86% exceedance probabilities). D, Posterior model parameters extracted from the winning model of our Bayesian model comparison. In analogy to conventional analysis
of the contributing factors, we found a stronger influence of “associative learning” (as expressed by 4r,) than for “sensory memory” (4r,). “Priming” (wp) is not displayed because it was not part of
the winning model. E, Correlation between conventional metrics and inverted model quantities. The fraction of ambiguous trials perceived according to the currently prevalent hidden contingency
was highly correlated with 77, (p = 0.5208, p < 0.0108, Pearson correlation), indicating successful model inversion. *p << 0.05, ***p << 0.001.

ing”, and “sensory memory” to establish which factors were likely
to affect visual perception.

Random effects Bayesian model comparison indicated evi-
dence for an influence of the factors “associative learning” and
“sensory memory” by identifying model 6 as a clear winning
model at an protected exceedance probability of 97.77% (Fig.
3C). This is also reflected by model family comparison, which
yielded clear evidence for a contribution of the factors “associa-
tive learning” (exceedance probability for associative learning
models: 99.99%) and “sensory memory” (exceedance probability
for sensory memory models: 94.86%), while rejecting a signifi-
cant influence of priming on perceptual decisions (exceedance
probability for priming models: 2.93%).

To assess the winning model on a parameter level, we ex-
tracted posterior model parameters from the perceptual model
and averaged across runs and participants (Fig. 3D). Consistent
with conventional analyses of the contributing factors, the effect
(i.e., precision) of associative learning on visual outcomes (1.5862 *=
0.0607) was enhanced compared with sensory memory (0.6612 *
0.0708; Fig. 3D).

Bayesian model comparison and posterior parameter esti-
mates paralleled the results from conventional analysis by show-
ing that the learned crossmodal association was most influential
in biasing perceptual decisions at ambiguous trials, whereas the
effects of perceptual history (sensory memory and priming) were
estimated to be much smaller or negligible.

As an indication of successful inversion of our Bayesian model,
7, (as the metric for the strength of the impact of crossmodal asso-
ciations on ambiguous trials) was highly correlated with the propor-
tion of ambiguous trials perceived according to the currently
prevalent hidden contingency (p = 0.5208, p < 0.0108; Fig. 3E). In
analogy to conventional analyses, we did not observe a significant
correlation between posterior HGF parameters describing the
strength of the influence of associative learning on perceptual
outcomes (i.e., 7,) with perceptual certainty at ambiguous trials
as indicated by the independent perceptual rating experiment
(p=-0.0184, p = 0.9338). With this, we corroborated a signifi-
cant impact of predictions on perceptual decisions regardless of
perceptual uncertainty and ensured successful inversion of our
model.
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Figure 4.

Imaging analyses. A, Whole-brain results. The time course of the “high-level” prediction about the cue—target contingency correlated with activity in bilateral medial orbital gyrus,

posterior hippocampus at the intersection to the precuneus, precuneus, postcentral gyrus, as well as right insula, precentral gyrus, posterior medial frontal gyrus, and left caudate nucleus (p << 0.05,
FWE). B, ROI-based analysis. Activity in retinotopic representation of the visual targets (i.e., the tilt trajectories for CW an CCW tilt) was related to the inferred conditional probability of CW () and

CCW (T — p,) at the time of cue onset (p = 0.0011, f(3) = 3.7585, one-sided t test).

In brief, our behavioral analysis indicate a major influence of
predictions driven by crossmodal associative learning next to a
minor influence by predictions derived from perceptual history
such as sensory memory and priming.

fMRI

GLM:s

Whole-brain analysis. Having identified the optimal behavioral
model, we aimed at identifying the neural correlates of “high-
level” versus “low-level” predictions while considering additional
model quantities as regressors of no interest. Because these entities
served as parametric modulators for the onsets of the auditory cue
and the visual target, respectively, we first mapped the contrasts
“tone > baseline” and “tilt > baseline”. As expected, “tone >
baseline” yielded significant clusters in bilateral superior tempo-
ral gyrus, cerebellum, and thalamus as well as bilateral posterior
medial frontal gyrus, left precentral gyrus, and insula, whereas the
contrast “tilt > baseline” showed significant activations in bilat-
eral inferior and middle occipital gyrus, right inferior temporal

gyrus (V5/hMT+), bilateral putamen, and right lingual gyrus, as
well as bilateral fusiform gyrus (FWE, p < 0.05).

For the main focus of whole-brain analysis, we found that the
“high-level” cross modal prediction |f&,| correlated with activity
in supramodal brain regions such as bilateral middle orbital
gyrus, bilateral rolandic operculum, bilateral Heschl’s gyrus,
right superior medial frontal gyrus, left caudate nucleus, bilateral
postcentral gyrus, right precentral gyrus and right insula. More-
over, |ft;| was also associated with activity in bilateral posterior
hippocampus at the intersection to the precuneus and bilateral
precuneus (Fig. 44, p < 0.05 FWE).

In contrast, “low-level” predictions (i.e., wu,) were not signifi-
cantly related to activity in any region of the brain when applying
the same rigorous threshold (p < 0.05, FWE). However, consis-
tent with the results of the ROI analyses described below, “low-
level” predictions as expressed by w, correlated with activity in
occipital cortex at a more liberal statistical threshold (p < 0.001,
uncorrected).
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The remaining parametric regressors (7, |€, Echoicer |8q| and
P(0,)) were added to the GLM to account for additional variance
in the BOLD signal and corroborated previous neuroimaging
results. The stability of the “high-level” prediction 7, which de-
termines how stable a given “high-level” prediction is over time,
correlated with activity right Heschl’s gyrus as well as left insula
and right postcentral gyrus (p < 0.05, FWE). Further explorative
analyses indicated that the “high-level” precision-weighted con-
tingency prediction errors (|e,|) correlated with activity in poste-
rior medial frontal cortex, right middle frontal gyrus, inferior
parietal lobulus, left insula, and right caudate nucleus (p < 0.05,
FWE), which overlaps with results from Iglesias et al. (2013).

In turn, “low-level” perceptual prediction errors (|8,]) were
associated with BOLD activity in areas such as left insula, right
precentral gyrus, and left middle temporal gyrus (p < 0.05,
FWE), which is consistent with results from Weilnhammer et al.
(2017). As expected, “low-level” choice prediction errors (& oice)
and the posterior probability of CW tilt P(6,) were associated
with activity in occipital cortex.

ROI-based analysis. We furthermore examined how BOLD
responses in retinotopic representations of motion trajectories of
CW and CCW tilt across all trials would relate to conditional
probabilities of the visual targets as defined by the inverted be-
havioral model. To account for interindividual variability in the
retinotopic organization of visual cortex, our approach was based
on ROIs that were functionally defined for each individual. As
predicted, we found that the “low-level” prediction parametrized
by the conditional probabilities of CW tilt p, and CCW tilt 1 — p,
were significantly correlated with BOLD time courses in voxels
corresponding to the respective trajectories of CW and CCW tilt
(p = 0.0011, t,3, = 3.7585, one-sided one-sample  test).

The “high-level” prediction | {&,| was not related to BOLD time
courses in retinotopic stimulus representations. In an explorative
analysis, we found that the posterior probabilities of CW tilt P(6,)
and CCW tilt P(6,) = 1 — P(6,) were related to activity in voxels
corresponding to the respective trajectories of CW and CCW tilt
(p<1077, tay = 9.0292, two-sided one-sample ¢ test). This
result is expected given that this posterior also contains informa-
tion of the sensory stimulation per se (CW tilt or CCW tilt).
When assessing the remaining parameters of our GLM as a neg-
ative control, we did not find any significant correlation to reti-
notopic BOLD data for the choice prediction error &,.; the
absolute perceptual prediction error |8,], or the absolute “high-
level” prediction error |e,|.

In sum, ROI-based analyses indicated that primary visual cor-
tex implements “low-level” predictions encoding conditional vi-
sual stimulus probabilities as opposed to “high-level” predictions
encoding crossmodal cue—stimulus associations.

Discussion

In this work, we studied the neural correlates of dynamically
updated prior predictions and their effect on perceptual decisions
in a crossmodal associative learning experiment. Crucially, this
task required participants to engage in hierarchical learning to
represent both the dynamically changing strength of cue—target
associations as well as conditional target probabilities given a
specific cue. Due to the existence of covertly interspersed ambig-
uous trials, our paradigm enabled us to study processes involved
in perceptual inference with regard to the combination of sensory
information with conditional target probabilities and prior influ-
ences from perceptual history such as priming and sensory mem-
ory. Thereby, our paradigm afforded the dissociation between
“high-level” predictions about the strength of cue—target associ-
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ations and “low-level” predictions about both the conditional
probability of the binary visual outcome.

Conventional and model-based behavioral analyses indicated
that participants successfully engaged in hierarchical associative
learning. Here, perceptual decisions under ambiguity were strongly
biased by changing cue—target associations. This is consistent with
our previous results from an analogous behavioral experiment using
ambiguous structure-from-motion spheres (Schmack et al., 2016).
Both in the current and in the previous study, individual percep-
tual uncertainty ratings of ambiguous stimuli were not correlated
to the size of the impact introduced by crossmodal associative
learning. To our minds, this is most likely because the ambiguous
trials elicited bistable perception while participants did not have
metacognitive access to the ambiguity of the visual stimuli.

However, there is an ongoing debate about the interaction of
bistable perception and perceptual uncertainty (Knapen et al.,
2011). Strikingly, in the current version of the experiment using
ambiguous apparent motion stimuli, the impact of associative
learning was substantially greater than in our previous study
using ambiguous spheres (Schmack et al., 2016). This intended
difference might arise because the stimulus interpretations induced
by apparent motion in our present experiment were characterized by
lower perceptual certainty compared with ambiguous spheres and
might thus be more susceptible to prior predictions. We believe that
future studies are needed to investigate how perceptual decisions
under ambiguity and their modulation by prior predictions might
interact with differing levels of perceptual uncertainty.

Although conventional statistics did not show evidence for a
significant contribution of sensory memory to perceptual deci-
sions under ambiguity, the winning model from Bayesian model
comparison statistics incorporated a minor impact of the factor
sensory memory. This discrepancy is most likely to be caused by
differences in the statistical approaches. In Bayesian analysis, the
factor sensory memory is embedded within a generative model
and evaluated in terms of protected exceedance probability, whereas
conventional statistics look at all factors in isolation.

Importantly, our model-based fMRI results indicate that
“high-level” predictions are related to activity in supra-modal
brain areas such as middle orbital gyrus, insula, posterior medial
frontal gyrus, postcentral gyrus, as well as the posterior hip-
pocampus extending into the precuneus. These findings suggest
that activity in such regions tracks an individual participant’s
trial-by-trial belief in the strength of the cue—target association.
In the context of the present experiment, our results suggest
that activity in these brain areas may determine the stability over
time of learned associations between auditory cues and visual
targets.

Therefore, increased activity in these areas reflects a currently
strong “high-level” prediction. In this case, the participant
strongly relies on past experiences for the prediction of future
outcomes. Furthermore, an unexpected visual outcome is rather
attributed to the inherent stochasticity of the experiment, that is,
expected uncertainty, and has therefore relatively little effect on
the currently assumed cue—outcome contingency. In contrast,
decreased activity in these brain areas reflects a currently weak
“high-level” prediction. In this case, the participant is unsure
about the prevalent cue—outcome contingency and therefore
only weakly relies on past experiences for the prediction of future
outcomes. Furthermore, unexpected visual outcomes have a rel-
atively strong affect the assumed cue—target contingency.

In more general terms, our results suggest that activity in re-
gions such as middle orbital gyrus, insula, posterior medial fron-
tal gyrus, postcentral gyrus, and posterior hippocampus encode
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the strength of an agents belief in the statistical dependencies
within the environment. With regard to the example of a bad-
minton game, this would translate to how strongly the current
wind condition is believed to be stable and therefore taken into
account when estimating the trajectory of the shuttlecock.

The encoding of the “high-level” prediction in these regions is
consistent with results from closely related experiments on unex-
pected and expected uncertainty (Payzan-LeNestour et al., 2013).
Here, the probability of a change in the statistical properties of the
experimental environment (i.e., the negative “high-level” predic-
tion) was negatively correlated with activity in left insula, bilateral
postcentral gyrus, left hippocampus, as well as posterior cingulate
cortex and left middle temporal gyrus. Furthermore, placebo ex-
periments related activity in orbitofrontal cortex to the build-up
and maintenance of predictions regarding sensory outcomes
(Petrovic et al., 2002; Wager et al., 2004). Finally, a recent exper-
iment using behavioral modeling and muscimol inactivation in
rats has revealed a potential implication of both the orbitofrontal
cortex as well as the dorsal hippocampus in model-based plan-
ning (Miller et al., 2017). This is interesting because behavior
associated with model-based planning relates to relying on a
“high-level” prediction about the statistical properties of the
environment.

Another important functional aspect of brain areas coding for
the “high-level” prediction could be the instantiation of the effect
of predictions on sensory processing through feedback processes.
Consistent with our results, regions in the orbitofrontal cortex
have repeatedly been discussed as mediators for the effect of pre-
dictions on sensory processing (Bar et al., 2006; Kveraga et al.,
2007; Summerfield and Koechlin, 2008). Moreover, studies on
the role of predictions for perceptual inference in healthy partic-
ipants and patients with paranoid schizophrenia have highlighted
the impact of feedback processes from orbitofrontal cortex to
sensory areas on the modulation of perceptual decisions under
ambiguity by prior knowledge (Schmack et al., 2013, 2017).

In contrast to “high-level” predictions about the strength of
the association between cue and target, “low-level” predictions
about the conditional probabilities of binary perceptual out-
comes at the time of cue presentation were reflected by retino-
topic representations of the visual stimulus. This finding provides
a potential neural correlate for the influence of predictions on
perceptual decisions. One might speculate that this phenomenon
is mediated by similar feedback mechanisms as those involved in
spatial- or feature-based attention, which are known to modulate
brain activity in primary visual cortex (Gandhi et al., 1999; Pos-
ner and Gilbert, 1999).

In relation to work by Iglesias et al. (2013), who focused on
hierarchical precision-weighted prediction errors, our study extends
these findings by looking more closely at the neural correlates of
hierarchical predictions, which are key elements of hierarchical pre-
dictive coding schemes. The computation of conditional target
probabilities represented in primary visual cortex is contingent on
the inferred cue—target association reflected by activity in regions
such as the orbitofrontal cortex, hippocampus, and precuneus.
This suggests an interplay between “high-level” and “low-level”
regions in human cortex via feedback connections, which might
mediate the influence of prior knowledge on perceptual deci-
sions. Therefore, the aforementioned regions and the effective
connectivity between them will be interesting targets for the in-
vestigation of aberrant predictive processes in neuropsychiatric
disorders such as schizophrenia (Adams et al., 2013; Powers et al.,
2017).

Weilnhammer et al. ® Neural Correlates of Hierarchical Predictions

Together, our results suggest that observers flexibly use dy-
namic predictions derived from hierarchical associative learning
adapted to a volatile environment to perform perceptual infer-
ence. Our imaging analyses indicate that “high-level” predictions
about cue—target associations are represented in supramodal brain
regions such as orbitofrontal cortex and hippocampus, whereas
“low-level” conditional target probabilities are associated with activ-
ity in primary visual areas, providing a potential neural correlate for
the influence of prior knowledge on perceptual decisions.
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