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Review of Bowman and Zeithamova

The hippocampus has long been thought
to play an important role in remembering
details of specific experiences. Only recently
has it been implicated in integrating infor-
mation across events to generalize knowl-
edge (Preston et al., 2004; Zeithamova et
al., 2012; Pajkert et al., 2017). One such
type of generalization, episodic inference,
allows memory of past and current events
to be combined so that one can make in-
ferences requiring knowledge from both
episodes. Studies of episodic inference
have defined a role for the hippocampus
in conjunction with the ventromedial pre-
frontal cortex (VMPFC) in generalization
(Schlichting and Preston, 2015). How-
ever, whether VMPFC and hippocampal
networks contribute to other kinds of
generalization, such as concept learning,
has been unclear.

Concept learning requires defining
new categories based on trial and error.
Research on patients with hippocampal
damage suggests that concept generaliza-
tion does not depend on the hippocampus
(Knowlton and Squire, 1993; Filoteo et al.,
2001), but categorization in healthy indi-
viduals is successfully tracked by hip-
pocampal activation (Zeithamova et al.,
2008). Still, the precise role of this activity
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is debated. Some have argued that the hip-
pocampus retrieves exemplars, previously
learned members of a category, to compare
against current, novel stimuli (Koenig et al.,
2008). Others have found evidence that the
hippocampus integrates information across
multiple exemplars (Collin et al., 2015;
Schlichting and Preston, 2015). Such inte-
gration might be the basis of a prototype
strategy, in which the attributes of known
members of the category are generalized
to form an “average member” that is later
accessed for comparison with novel
stimuli. There are important theoretical
distinctions between comparing novel
stimuli with exemplars and comparing
with a prototype (Zaki et al., 2003). How-
ever, it is unknown which, if either, of these
strategies occurs in the hippocampus.
Bowman and Zeithamova (2018) sought
to determine whether the hippocampus con-
sistently uses either an exemplar or prototype
strategy by combining model-based fMRI
analysis with a conceptual generalization
task. The behavioral paradigm, borrowed
from Bozoki et al. (2006), has participants
categorize cartoon animal stimuli that
differ along eight dimensions (e.g., foot
shape, head orientation, color), each of
which could assume 1 of 2 values. A par-
ticular stimulus was randomly designated
as the prototype for the first category, and
the “opposite” stimulus (along all dimen-
sions) served as the prototype for the other
category. These prototypes define a linear
space of stimuli with each prototype at
one extreme, allowing every other stimu-
lus to be numerically ranked according to

its perceptual distance from the proto-
types. Stimuli are therefore assigned to the
category with the prototype for which
they have greater perceptual similarity.
Participants were trained, with feedback,
to assign a subset of the available stimuli
to the appropriate category. Importantly,
the two category prototypes were not used
in the training set. In a generalization
phase following training, participants
were shown the full spectrum of stimuli,
including category prototypes, and were
asked to categorize them without feed-
back. Participants underwent fMRI dur-
ing this generalization phase.

To distinguish whether participants
used prototype and exemplar strategies,
the authors fit two previously established
models to the trial-by-trial behavioral data
(Nosofsky, 1987; Minda and Smith, 2001;
Zaki etal., 2003; Maddox etal., 2011). The
prototype model considers the expected
response of participants, given the dis-
tance of the current stimulus from the
category prototype. The exemplar model
considers the expected response of partic-
ipants given the perceptual distance of the
current stimulus from known members of
the category (Bowman and Zeithamova,
2018, their Fig. 1 D). While both models
performed better than chance, the proto-
type model provided a better fit to the data
in 73% of participants. This suggests that
most participants compared stimuli with
stored prototypes (i.e., integrated evi-
dence from previous experiences) as op-
posed to exemplars.
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To investigate the neural contributions
to this process, Bowman and Zeithamova
(2018) conducted model-based analyses
on specific ROIs and, separately, over the
whole brain. They found that activity in
VMPEC and anterior hippocampus tracked
category membership probability outputs
from the prototype model but not the ex-
emplar model. That is, an increase in
membership probability for a given cate-
gory is correlated with an increase in
category-specific hippocampal activity.
Whole-brain analysis further identified
several regions tracking outputs from
the prototype model. The dominance of
prototype-model correlates in the brain
activity nicely corroborates the behavioral
results.

A critical aspect of using prototypes for
categorization is that it requires the brain
to construct and store those prototypes in
long-term memory for later comparison
with novel stimuli. Those prototypes must be
constantly updated during training to ac-
curately reflect the central tendency of
the evidence gathered for the relevant cat-
egories. That integrated category infor-
mation must then be reinstated and
referenced during generalization. Bow-
man and Zeithamova (2018) suggest that
integrated information is represented in
VMPFC and the anterior hippocampus, given
the presence of prototype-correlated activity,
but not exemplar-correlated activity (which
does not require the construction of ab-
stract concepts), in these areas during
generalization. No exemplar correlates
emerged in the initial analyses; however,
when significance thresholds were set
more leniently, activity correlating with
category membership predicted by an ex-
emplar strategy emerged in several areas,
such as lateral occipital and inferior pari-
etal cortex. It must be noted, however,
that exemplar-correlated activity would
not be expected in any case, given the be-
havioral results.

The authors conclude that a partici-
pant using a prototype-based categoriza-
tion strategy calculates the distance of a
presented stimulus from stored repre-
sentations in VMPFC and anterior hip-
pocampus. At a neural level, this could be
achieved by comparing sustained firing
patterns, representing a prototype stimu-
lus, with those evoked by the present stim-
ulus. The calculated distance information
is then entered as evidence for or against
the stimulus belonging to each category
during the decision-making process. How-
ever, it is unclear whether this is the only
comparison being made in VMPFC and
hippocampus. It is possible, given the

presented results, that participants si-
multaneously considered outputs from
an exemplar-based categorization pro-
cess. In both behavioral and fMRI analy-
ses, a weak signal was present for exemplar
use and a strong signal for prototype use.
The authors suggest that both strategies
may be used in the brain, but that their
particular task encouraged a prototype
strategy.

Supporting the above conclusion,
other work has identified exemplar cor-
relates under different task conditions
(Mack et al., 2013). This raises the ques-
tion of how the representation of one
strategy comes to dominate over the
other, specifically in terms of the strength
of that representation and its resultant
behavioral output. It is possible that evi-
dence for the efficacy of each categoriza-
tion model is accumulated over the course
of training. Accumulation may occur
when the models give differing estimates
of category membership probability dur-
ing training. In each instance of feedback,
the more accurate model, in terms of model
fit error, could be strengthened and the other
weakened. The decision “weight” of each cat-
egorization strategy could be tracked by the
associated overall network activity (e.g.,
VMPEC and anterior hippocampus for
the prototype model). The network with
greater activity, based on the weights as
accumulated in training, would then be
reflected in behavior, as seen in Bowman
and Zeithamova (2018). In other words,
the appropriate strategy would come to
more strongly influence the categoriza-
tion decision process over the course of
training. When prototype and exemplar
models give differing outputs for a given
stimulus, this process would serve to in-
crease decision certainty by biasing the
decision-making process toward a model
that yields better results.

The above account suggests a theoret-
ical mechanism for determining the rela-
tive influence of exemplar or prototype
strategies during categorization. It serves
to reconcile the prototype-based evidence
accumulation described by Bowman and
Zeithamova (2018) with other findings
that describe category determination by
comparison with exemplars (Mack et al.,
2013). Our proposed model for category
learning tasks is as follows. Sensory infor-
mation is received and fed into both ex-
emplar and prototype models and the
evidence is weighted according to the rel-
ative network activity associated with each
model. The weighted evidence is passed to
an accumulator, which collects evidence
until a threshold is reached, at which
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point a decision is made (as in the drift-
diffusion model) (for review, see Bogacz
et al., 2006). Accumulators are popula-
tions of neurons, previously observed in
dorsolateral PFC (van Veen et al., 2008),
thatincrease in activity as evidence in sup-
port of a conclusion is gathered. In this
case, evidence is accumulated to support
one model over the others. The output of
the accumulator, a decision, results in be-
havior. The subsequent feedback resul-
tant from that behavior is then used to
reweight the model-related network ac-
tivity. This process allows convergence to
the category model that best predicts
reward. By this account, Bowman and
Zeithamova (2018) find evidence for pro-
totype correlates in the brain because their
task rewards prototype-driven behavior,
which in turn increases the weights on
prototype network activity. In contrast,
Mack et al. (2013) observe exemplar corre-
lates because reward contingencies in their
task favor exemplar-driven behavior.

The model we propose bridges the gap
between the neural and behavioral results
observed in Bowman and Zeithamova
(2018). Fully accounting for behavior,
from perception to action, opens the door
to specific, theory-driven hypotheses and
complete computational accounts of how
neural processing drives behavior.
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