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Retinoic Acid Receptor RAR�-Dependent Synaptic Signaling
Mediates Homeostatic Synaptic Plasticity at the Inhibitory
Synapses of Mouse Visual Cortex
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Homeostatic synaptic plasticity is a synaptic mechanism through which the nervous system adjusts synaptic excitation and inhibition to
maintain network stability. Retinoic acid (RA) and its receptor RAR� have been established as critical mediators of homeostatic synaptic
plasticity. In vitro studies reveal that RA signaling enhances excitatory synaptic strength and decreases inhibitory synaptic strength.
However, it is unclear whether RA-mediated homeostatic synaptic plasticity occurs in vivo, and if so, whether it operates at specific types
of synapses. Here, we examine the impact of RA/RAR� signaling in the monocular zone of primary visual cortex (V1m) in mice of either
sex. Exogenous RA treatment in acute cortical slices resulted in a reduction in mIPSCs of layer 2/3 pyramidal neurons, an effect mimicked
by visual deprivation induced by binocular enucleation in postcritical period animals. Postnatal deletion of RAR� blocked RA’s effect on
mIPSCs. Cell type-specific deletion of RAR� revealed that RA acted specifically on parvalbumin (PV)-expressing interneurons. RAR�
deletion in PV � interneurons blocked visual deprivation-induced changes in mIPSCs, demonstrating the critical involvement of RA
signaling in PV � interneurons in vivo. Moreover, visual deprivation- or RA-induced downregulation of synaptic inhibition was absent in
the visual cortical circuit of constitutive and PV-specific Fmr1 KO mice, strongly suggesting a functional interaction between fragile X
mental retardation protein and RA signaling pathways. Together, our results demonstrate that RA/RAR� signaling acts as a key compo-
nent for homeostatic regulation of synaptic transmission at the inhibitory synapses of the visual cortex.
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Introduction
More than two decades after its initial discovery in invertebrate
and vertebrate nervous systems (Turrigiano et al., 1994, 1998;

O’Brien et al., 1998), homeostatic plasticity is now well accepted
as an essential mechanism through which neural circuits main-
tain their stability in response to chronic changes in neuronal
firing activity and/or synaptic excitation and inhibition (Turri-
giano, 2012). Numerous efforts have been made to understand
the signaling pathways that are involved in the process of homeo-Received May 4, 2018; revised Sept. 17, 2018; accepted Oct. 10, 2018.
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Significance Statement

In vitro studies established that retinoic acid (RA) and its receptor RAR� play key roles in homeostatic synaptic plasticity, a
mechanism by which synaptic excitation/inhibition balance and network stability are maintained. However, whether synaptic RA
signaling operates in vivo remains undetermined. Here, using a conditional RAR� KO mouse and cell type-specific Cre-driver
lines, we showed that RAR� signaling in parvalbumin-expressing interneurons is crucial for visual deprivation-induced homeo-
static synaptic plasticity at inhibitory synapses in visual cortical circuits. Importantly, this form of synaptic plasticity is absent
when fragile X mental retardation protein is selectively deleted in parvalbumin-expressing interneurons, suggesting a functional
connection between RAR� and fragile X mental retardation protein signaling pathways in vivo. Thus, dysfunction of RA-
dependent homeostatic plasticity may contribute to cortical circuit abnormalities in fragile X syndrome.
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static synaptic plasticity (Yu and Goda, 2009). Many signaling
molecules, such as CaMKII�/�, CaMKIV, calcineurin, MeCP2,
Arc/Arg3.1, BDNF, eEF2K/eEF2, homer 1a, and TNF�, have
been shown to be involved in various forms of homeostatic syn-
aptic plasticity in the vertebrate CNS (Thiagarajan et al., 2002;
Shepherd et al., 2006; Stellwagen and Malenka, 2006; Ibata et al.,
2008; Hu et al., 2010; Jakawich et al., 2010; Blackman et al., 2012;
Qiu et al., 2012; Kim and Ziff, 2014; Kavalali and Monteggia,
2015). Among these, retinoic acid (RA) and its receptor RAR�,
acting through a nongenomic mechanism, have emerged as es-
sential new players mediating homeostatic synaptic plasticity
(Chen et al., 2014). RA, produced in an activity-dependent man-
ner, binds to its receptor RAR� and relieves its translational re-
pression onto a whole array of mRNAs, including those encoding
�-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid recep-
tor (AMPAR) GluA1 subunits (Aoto et al., 2008; Poon and Chen,
2008). It has been established that RA regulates both synaptic
excitation and inhibition (Sarti et al., 2013; Yee and Chen, 2016),
and that postsynaptic calcium signaling is involved (Wang et al.,
2011; Arendt et al., 2015b). Importantly, RA signaling and RA-
mediated homeostatic synaptic plasticity are completely absent
in the fragile X syndrome (FXS) model mouse (Soden and Chen,
2010; Sarti et al., 2013) and FXS human neurons (Z. Zhang et al.,
2018), indicating that compromised synaptic RA signaling may
be implicated in neuropsychiatric disorders. However, it remains
unclear whether RA functions in an in vivo setting and where in a
specific neural circuit RA executes its function.

Homeostatic synaptic plasticity has been reported in a wide
range of brain regions, including, but not limited to, sensory
cortices and hippocampus (Feldman, 2009; Turrigiano, 2012; Lee
and Whitt, 2015). The visual cortex is a classic model system used
for synaptic plasticity studies. Visual inputs can be readily manip-
ulated to induce changes in the circuits of visual pathways by both
Hebbian and homeostatic mechanisms (Wiesel and Hubel, 1963,
1965; Gordon and Stryker, 1996; Desai et al., 2002; Frenkel and
Bear, 2004; Goel and Lee, 2007; Gao et al., 2010; J. Zhang et al.,
2011). For example, dark rearing in young animals prevents the
developmental decline of mEPSC amplitude in cortical pyrami-
dal neurons (PNs) (Desai et al., 2002) and delays the closure of
the critical period of the visual cortex (Hensch et al., 1998). By
contrast, dark rearing in adult animals increases mEPSC ampli-
tudes in visual cortical PNs (Goel and Lee, 2007) and reopens the
critical period in adults (He et al., 2007). Similarly, retinal lesion
induces an increase in excitatory synaptic transmission as well as
a decrease in synaptic inhibition, albeit at a different time point
after lesion (Keck et al., 2013). Both excitatory and inhibitory
neurons demonstrate homeostatic synaptic adjustment (Barnes
et al., 2017). Interestingly, in the adult frog visual system, RA
signaling is shown to be upregulated in response to optic nerve
injury, a manipulation that resembles visual deprivation in ro-
dent models (Duprey-Díaz et al., 2016).

We address two important questions in the present study.
First, does RA signaling play a critical role in homeostatic synap-
tic plasticity in the rodent visual cortex in vivo? Second, what are
the neuronal targets/synaptic loci of RA signaling? Combining
genetic manipulations and binocular enucleation (BE) approach,
we systematically tested the role of RA signaling in various
neuronal cell types and showed that RAR� expression in
parvalbumin-positive (PV�) neurons is critical for homeostatic
reduction of mIPSCs observed 3 d after BE. In addition, we found
that fragile X mental retardation protein (FMRP) deletion in the
FXS model mouse also prevented homeostatic plasticity of syn-
aptic inhibition in visually deprived animals, which further sup-

ports the notion that FMRP is required for normal RA signaling
in the context of homeostatic synaptic plasticity.

Materials and Methods
Mouse husbandry and genotyping. All animals were housed following
Stanford University Administrative Panel on Laboratory Animal Care
guidelines. The RAR� floxed mouse (C57BL/6 background) has been pre-
viously described (IGBNC) (Chapellier et al., 2002; Sarti et al., 2012). WT
(C57BL/6 background) and Fmr1 �/y mice (002700, The Jackson Labo-
ratory) in the FVB background were obtained from The Jackson Labo-
ratory. The conditional Fmr1 KO mouse was generated using
homologous recombination. Two loxP sites were introduced into the
Fmr1 gene flanking exon 3, which is an essential upstream out-of-frame
exon. Both male and female mice were used for the study.

For KO experiments, RAR� fl/fl mice were crossed to CaMKII-Cre
(005359, The Jackson Laboratory), GAD2-Cre (010802, The Jackson
Laboratory), PV-Cre (008069, The Jackson Laboratory), SST-Cre
(013044, The Jackson Laboratory), or EYFP reporter mice (007903, The
Jackson Laboratory). Their littermates without Cre expression served as
control. Litters were genotyped for Cre and flox by PCR using the pro-
tocol described previously (Sarti et al., 2012; Yee and Chen, 2016). Prim-
ers used for Cre are as follows: forward 5�-CACCCTGTTACGTATA
GCCG-3�; reverse 5�-GAGTCATCCTTAGCGCCGTA-3�. Primers for
genotyping flox site of RAR� are as follows: forward 5�-GTGTGTGTGT-
GTATTCGCGTGC-3�; reverse 5�-ACAA AGCAAGGCTTGTAGATGC-
3�. Two sets of primers used for constitutive Fmr1 are as follows: for WT:
forward 5�-GTGGTTAGCTAAAGTGAGGATGAT-3�; reverse 5�-CAG-
GTTTGTTGGGATTAACAGATC-3�; for Fmr1 KO: forward 5�-CAC-
GAGACTAGTGAGACGTG-3�; reverse 5�-CTTCTGGCACCTCCAGC
TT-3�. Primers for genotyping flox site of conditional Fmr1 are as
follows: forward 5�-TGTCCCAAGTTTCTTTACCCCA-3�; reverse 5�-
TAGCTCAATCCTCAGTGCCC-3�.

Binocular enucleation. P35–P40 mice were anesthetized with ketamine
(100 mg/kg) before eye removal. Ophthalmic ointment (Akorn) was
used to prevent infection. Enucleated mice were used after 3 d.

Stereotaxic injections of adeno-associated viruses (AAVs). Stereotactic
injections of AAVs were performed as described previously (Hammad et
al., 2015). Specifically, P0 mice were anesthetized by hypothermia. Ste-
reotactic coordinates for V1 injection were 0.1– 0.3 mm rostral to lambda
and 1.7–2.2 mm lateral to midline. The depth of needle penetration was
at 0.7 mm below the surface of the skull. Efficiency and localization of
AAV expression were confirmed by histochemistry of nuclear GFP en-
coded by the expressed inactive and active GFP-Cre recombinase fusion
proteins. Mice with AAV injection were used in the postcritical period
(P35–P40).

Immunocytochemistry. To verify sites of viral injection and for c-Fos
immunostaining, mice were perfused with 4% PFA in PBS and their
brains removed and postfixed in 30% sucrose and 4% PFA in PBS for 2
additional days. Coronal sections of V1 at the thickness of 30 �m were
obtained and stored in PBS at 4°C. For c-Fos staining, visual cortical
slices were first permeabilized with 0.3% Triton X-100 for 1 h, and then
blocked in 10% FBS for 1 h. Slices were subsequently incubated with a
c-Fos antibody (ABE457, EMD Millipore) overnight at 4°C, followed by
incubation with a Cy5-conjugated donkey anti-rabbit secondary anti-
body (711-175-152, Jackson ImmunoResearch Laboratories) for 1 h at
room temperature. The slices were washed and mounted on slides with
Vectashield-containing DAPI (H-1500, Vector Laboratories). Images
were taken from 2 or 3 slices per animal. A minimal of 3 animals were
analyzed for each group. Images were acquired using an Olympus
BX61WI laser-scanning confocal microscope with Olympus UPlanSAPO
20� objective and analyzed using Olympus OlyVIA software (RRID:
SCR_016167). The number of c-Fos � cells was quantified in a fixed area
of 630 �m � 180 �m (layer 2/3) within sections.

Single-cell qRT-PCR. Single-cell mRNAs were amplified using the
protocol as previously described (Park et al., 2018). Acute slices were
obtained from P35–P40 mice and single PV � neurons visualized with
a YFP reporter were extracted from L2/3 of the primary visual cortex.
Cell extract volume was minimized to 1 �l. mRNA obtained from the
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extracts was amplified using Superscript III One-Step RT-PCR Sys-
tem with Platinum Taq High Fidelity DNA polymerase (Invitrogen,
catalog #12574035). qRT-PCR was then performed using TaqMan
Gene Expression Master Mix (Applied Biosystems, catalog #4369016)
with TaqMan primers from Invitrogen: RAR� (Mm00436262_m1),
Actin� (Mm02619580_g1), GFAP (Mm01253033_m1), and PV
(Mm00443100_m1). Actin� was used as the endogenous control.
Cells expressing GFAP, a marker for astrocytes, were excluded from
the sample.

Drugs and chemicals. All-trans RA (R2625), and picrotoxin (P1675)
were purchased from Sigma-Aldrich. TTX (1078), D-APV (0106), and
CNQX (0190) were from Tocris Bioscience.

Acute slice electrophysiology recordings. Mice between P21 and P40 were
anesthetized with CO2, and brains were quickly removed and transferred
into ice-cold high sucrose solution containing the following (in mM): 70
NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 25 glucose, 75 sucrose, 4
MgCl2, and 0.5 CaCl2. Coronal slices of 300 �m were made with a vi-
bratome (Leica Microsystems, VT1200) in high sucrose solution. After
cutting, slices were immediately moved to 32°C–34°C ACSF containing
the following (in mM): 120 NaCl, 26 NaHCO3, 2.5 KCl, 11 glucose, 2
CaCl2, 2 MgSO4, and 1 NaH2PO4. ACSF and high sucrose solution are
balanced with 5% CO2/95% O2. Slices were allowed to recover at 32°C–
34°C for 30 min, followed by incubation in ACSF at room temperature.
RA (2 �M) was added to the incubating ACSF at room temperature. To
compensate for the loss of RA resulting from oxidation by bubbling with
5% CO2/95% O2, two additional supplements of RA (2 �M) were added
45 min and 90 min after the first treatment. Electrophysiology recordings
were done between 2 and 4 h after the first RA treatment.

For synaptic responses, voltage-clamp whole-cell recordings were ob-
tained from PNs or PV � neurons at layer II/III of the monocular zone of
the primary visual cortex, under visual guidance using transmitted light
illumination. The recording chamber was perfused with ACSF gassed
with 5% CO2/95% O2. Spontaneous miniature transmission was ob-
tained in the presence of 1 �M TTX in the external solution. The 100 �M

picrotoxin or 50 �M D-APV and 10 �M CNQX were added to perfusion
ACSF for mEPSC or mIPSC recordings, respectively. Patch recording
pipettes (3– 6 M�) are filled with an internal solution containing the
following (in mM): 140 CsCl, 10 HEPES, 2 MgCl2, 4 Na2ATP, 0.4
Na3GTP, and 5 EGTA, pH 7.3. Stable recordings were ensured by online
monitoring of Rm, Ra, and Cm. Neurons with �10% changes in Rm, Ra,
or Cm were excluded from further analysis.

For membrane excitability experiments, whole-cell recordings in
current-clamp mode were obtained from PV � neurons at layer II/III of
the monocular zone of the primary visual cortex. PV � neurons were
identified with Cre-dependent YFP reporter expression in PV-Cre mice.
Internal solution used in this experiment contains (in mM): 130
K-gluconate, 10 KCl, 10 HEPES, 5 MgATP, 0.3 Na3GTP, and 0.2 EGTA,
pH 7.3. Cell excitability was assessed with injections of incremental cur-
rent steps (50 –350 pA at a step interval of 50 pA for 1 s). The number of
action potentials elicited by injected currents was counted.

Pclamp version 10.1 (Molecular Devices, RRID:SCR_011323) was
used for data visualization and collection. Synaptic responses were
analyzed with Clampex 10.1 (Molecular Devices), MiniAnalysis soft-
ware (Synaptosoft, RRID:SCR_002184), and Excel (Microsoft, RRID:
SCR_016137). Cumulative plots of mEPSC and mIPSC interevent
intervals and amplitudes were generated by pooling 50 randomly selected
events from each cell.

Statistical analysis. All graphs represent mean � SEM values. For each
experimental group, N and n indicate the number of independent
experiments and total number of neurons, respectively, and are indi-
cated in the figures. Normality test, Student’s t test, Komolgrow–
Smirnov test, Mann–Whitney test, or two-way ANOVA followed by
post hoc Tukey’s test was used for statistical analysis using OriginPro
(RRID:SCR_015636).

Based on actual effect sizes and sample sizes, the range of power
achieved in our experiments is between 0.85 and 0.99 (� 	 0.05).

Results
Acute RA treatment modulates mIPSC frequency and
amplitude in L2/3 PNs
We have previously shown that RA modulates both excitatory
and inhibitory synaptic strength onto hippocampal PNs (Aoto et
al., 2008; Soden and Chen, 2010; Sarti et al., 2013; Arendt et al.,
2015a) and inhibitory synapses onto somatosensory cortical L2/3
PNs (Yee and Chen, 2016). Thus, we first wanted to determine
whether RA is able to regulate synaptic strength in visual cortical
circuits as well. Given the established role of RA in homeostatic
synaptic plasticity, we focused on L2/3 PNs in the monocular
zone of the primary visual cortex (V1m) where robust visual
experience-induced homeostatic synaptic plasticity has been pre-
viously reported (Goel and Lee, 2007; Keck et al., 2013). Incubat-
ing acute cortical slices from postcritical period (P35–P40) mice
in 2 �M RA for 2– 4 h did not significantly alter spontaneous
mEPSCs (frequency: control, 1.14 � 0.15 Hz; RA, 1.30 � 0.14 Hz;
amplitude: control, 9.91 � 0.26 pA; RA, 9.64 � 0.25 pA) (Fig.
1A–C) but significantly reduced both mIPSC frequency (control,
7.55 � 0.28 Hz; RA, 4.60 � 0.26 Hz) and amplitude (control,
36.63 � 1.09 pA; RA, 30.51 � 1.40 pA) (Fig. 1D–F).

Cortical neurons often exhibit distinct synaptic properties
during and after the critical period. We thus examined RA’s effect
on synaptic transmission during the visual cortical critical period.
In slices taken from younger animals within the critical period
(P21-P30), acute RA treatment did not change mEPSCs (Fig. 1G;
frequency: control, 1.65 � 0.12 Hz; RA, 1.54 � 0.12 Hz; ampli-
tude: control, 8.73 � 0.14 pA; RA, 8.63 � 0.16 pA) but induced a
small yet significant increase in mIPSC amplitudes (Fig. 1H; fre-
quency: control, 4.09 � 0.20 Hz; RA, 4.22 � 0.22 Hz; amplitude:
control, 23.77 � 0.63 pA; RA, 25.84 � 0.62 pA). Together, our
data suggest that RA signaling does operate in L2/3 visual cortical
circuits and that it primarily affects inhibitory synaptic transmis-
sion onto L2/3 PNs in the postcritical period (P35–P40).

RAR� mediates synaptic RA signaling at both excitatory and
inhibitory synapses in hippocampal neurons (Aoto et al., 2008;
Poon and Chen, 2008; Sarti et al., 2012). To investigate whether
RAR� also mediates RA’s effect in cortical neurons in the post-
critical period, we injected AAV-expressing Cre recombinase or a
truncated and thus inactive Cre (mCre control) under the synap-
sin promoter in the V1m of P0 RAR� conditional KO mice (Fig.
1I) (Kaeser et al., 2011). mIPSC frequencies in the WT (mCre-
infected) neurons responded to RA treatment as expected (Fig.
1J) (Control, 5.62 � 0.26 Hz; RA, 4.00 � 0.25 Hz). However, in
the Cre-infected neurons, RAR� deletion completely blocked
RA-induced reduction in mIPSC frequency (Fig. 1J) (Control,
6.04 � 0.30 Hz; RA, 5.77 � 0.32 Hz). RAR� deletion also signif-
icantly reduced mIPSC amplitude in neurons treated with vehicle
(Fig. 1K) (mCre, 28.87 � 1.42 pA; Cre, 23.90 � 0.64 pA). These
results demonstrate that RAR� is a key mediator for RA’s effect
on spontaneous inhibitory synaptic transmission.

RAR� expression in PV � interneurons mediates RA’s impact
on mIPSCs of L2/3 PNs
Cortical PNs receive inhibitory input from multiple sources, in-
cluding PV- and somatostatin (SST)-expressing GABAergic in-
terneurons (Pfeffer et al., 2013). RA signaling in either the
presynaptic neurons (i.e., inhibitory interneurons) or the post-
synaptic neurons (i.e., PNs) could contribute to mIPSC altera-
tions by RA. To determine the loci of RA signaling that mediate
the reduction of mIPSC frequency in L2/3 PNs, we crossed the
CaMKII�-Cre and GAD2-Cre mouse driver lines with the RAR�
conditional KO mouse. RAR� deletion in forebrain excitatory
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neurons (CaMKII�-Cre; RAR� fl/fl) or inhibitory neurons did
not affect mIPSC baseline (Fig. 2A). In CaMKII�-RAR� KOs, RA
treatment still significantly reduced mIPSC frequencies and am-
plitudes in PNs (Fig. 2B,C; frequency: Control, 7.24 � 0.42 Hz;
RA, 4.27 � 0.34 Hz; amplitude: Control, 30.02 � 1.26 pA; RA,
27.11 � 0.73 pA). By contrast, deletion of RAR� from most
inhibitory neurons (GAD2-Cre; RAR� fl/fl) completely elimi-
nated RA’s effect on mIPSCs (Fig. 2B,C; frequency: Control,

6.46 � 0.39 Hz; RA, 6.23 � 0.33 Hz; amplitude: Control, 27.07 �
0.78 pA; RA, 27.09 � 0.83 Hz).

To further dissect interneuron subtypes through which RA
signaling acts upon, we selectively deleted RAR� from PV- and
SST-expressing neurons using their respective Cre driver lines.
Neither line had any significant change in basal synaptic trans-
mission (Fig. 2A). RAR� deletion in PV� neurons blocked
the effects of RA on both mIPSC frequency and amplitude (Fig.
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Figure 1. RAR� mediates regulation of inhibitory synaptic transmission by RA. A, Example traces of mEPSCs recorded from postcritical period (P35–P40) vehicle-treated and RA-treated V1m L2/3
PNs. Calibration: 20 pA, 0.5 s. B, Cumulative plot of mEPSC interevent interval and quantification of mEPSC frequencies in PNs of control and RA groups. C, Cumulative plot and quantification of mEPSC
amplitudes in PNs treated with vehicle or RA. D, Example traces of mIPSCs from control and RA-treated V1m L2/3 PNs. Calibration: 50 pA, 0.5 s. E, F, Quantification of mIPSC frequencies and
amplitudes. **p 
 0.01 (Student’s t test and Kolmogorov–Smirnov test). ***p 
 0.001 (Student’s t test and Kolmogorov–Smirnov test). G, Quantification of mEPSC frequencies and amplitudes
recorded from critical period (P20 –P30) V1m L2/3 PNs neurons treated with vehicle or RA. H, Quantification of mIPSC frequencies and amplitudes in critical period PNs from vehicle or RA groups.
*p
0.05 (Student’s t test). I, An example image of an acute brain slice taken from a mouse injected with Cre-GFP-expressing AAVs in V1. Scale bar, 500 �m. J, K, Quantification of mIPSC frequencies
and amplitudes recorded from mice in the postcritical period injected by AAV-Syn-Cre or AAV-Syn-mCre treated with either vehicle or RA. *p 
 0.05 (two-way ANOVA and Kolmogorov–Smirnov
test). **p 
 0.01 (two-way ANOVA and Kolmogorov–Smirnov test). ***p 
 0.001 (two-way ANOVA and Kolmogorov–Smirnov test).
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2B,C; frequency: Control, 6.35 � 0.35 Hz; RA, 5.87 � 0.37 Hz;
amplitude: Control, 26.96 � 1.22 pA; RA, 25.70 � 1.03 pA),
whereas RAR� deletion in SST� neurons did not (Fig. 2B,C;
frequency: Control, 6.48 � 0.38 Hz; RA, 4.48 � 0.26 Hz; ampli-
tude: Control, 31.52 � 1.37 pA; RA, 27.71 � 1.00 pA). Thus,
RAR� expression in PV� neurons is essential for RA’s effect on
mIPSCs onto PNs.

Visual deprivation causes a reduction in spontaneous
inhibitory synaptic transmission
Visual deprivation induces homeostatic compensation at cortical
synapses during both critical and postcritical periods (Desai et al.,
2002; Maffei et al., 2004; Goel and Lee, 2007; Keck et al., 2013).
We adopted BE as a model system to induce homeostatic synaptic
plasticity (Fig. 3A). To validate the effect of BE on cortical activ-
ity, we performed immunostaining of c-Fos, a marker for neuro-
nal activity, in visual cortex of brain slices obtained from mice
experienced with either normal rearing (NR) or 3 d of BE. Com-
pared with mice with NR, mice after 3 d of BE showed greatly
reduced c-Fos expression in all visual cortical layers (Fig. 3B). In
particular, in layer 2/3 of V1m, the number of c-Fos� cells was
reduced by �90% in the BE group compared with the NR group
(Fig. 3C; NR, 105.17 � 12.82; BE, 6.86 � 1.24), suggesting that
BE-induced visual deprivation drastically reduced neuronal ac-
tivity in the visual cortex. Next, V1m layer 2/3 PNs from P35–P40
mice were recorded 3 d after BE, and both mEPSC and mIPSCs
were measured. Similar to previous reports (Keck et al., 2013),
changes in mEPSC frequency (Fig. 3E; NR, 2.85 � 0.25 Hz; BE,
2.49 � 0.38 Hz) and mEPSC amplitude (Fig. 3F; NR, 10.56 �
0.32 pA; BE, 11.32 � 0.40 pA) at this late time point were no
longer obvious, likely because homeostatic changes at excitatory
synapses occur earlier (He et al., 2012), although the Kolmogo-
rov–Smirnov test showed significant differences in mEPSC am-
plitude and frequency distribution between NR and BE groups.
At this age, excitatory synaptic strength may have already re-
equilibrated back to prelesion levels 3 d after BE due to changes at
other loci of the network. However, consistent with previous
reports (Keck et al., 2013), both mIPSC frequency and amplitude
were significantly decreased after 3 d of visual deprivation (Fig.
3G–I; frequency: NR, 7.25 � 0.40 Hz; BE, 4.84 � 0.25 Hz; ampli-
tude: NR, 29.53 � 1.00 pA; BE, 25.03 � 1.01 pA).

RAR� deletion in PV � neurons blocks visual
deprivation-induced synaptic inhibition
Given RA’s established role in mediating homeostatic synaptic
plasticity and that RAR� expression in PV� interneurons is es-
sential for RA’s effect on mIPSC (Fig. 2), we sought to test
whether RAR� expression in PV� interneurons is also required
for homeostatic synaptic changes of mIPSC after visual depriva-
tion. Indeed, RAR� deletion in PV� interneurons completely
prevented the changes in mIPSCs induced by BE (Fig. 4A,B; WT
frequency: NR, 6.78 � 0.36 Hz; BE, 5.01 � 0.21 Hz; WT ampli-
tude: NR, 30.17 � 1.06 pA; BE, 25.42 � 0.92 pA; PV-RAR� KO
frequency: NR, 7.35 � 0.29 Hz; BE, 6.63 � 0.12 Hz; PV-RAR�
KO amplitude: NR, 30.63 � 0.92 pA; BE, 29.84 � 1.12 pA). By
contrast, deletion of RAR� in SST� interneurons had no effect
on homeostatic plasticity of mIPSCs induced by BE (Fig. 4C,D;
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WT frequency: NR, 8.31 � 0.32 Hz; BE, 5.04 � 0.29 Hz; WT
amplitude, NR, 30.72 � 1.08 pA; BE, 27.40 � 0.72 pA; SST-
RAR� KO frequency: NR, 8.11 � 0.47 Hz; BE, 5.82 � 0.26 Hz;
SST-RAR� KO amplitude: NR, 29.43 � 0.82 pA; BE, 25.82 � 0.70
pA). Thus, RAR�-dependent RA signaling in PV� interneurons
is critically involved in homeostatic synaptic plasticity in V1m.

Visual deprivation causes similar synaptic inhibition in
PV � neurons
Visual deprivation not only induces homeostatic changes in ex-
citatory neurons of cortical circuit, but also in local inhibitory
neurons (Maffei et al., 2006). We thus asked whether our visual
deprivation paradigm (3 d BE) also induces changes in inhibitory
interneurons. PV-Cre and floxed RAR� double-mutant mice
were crossed with a Cre-dependent YFP-reporter line for visual-

ization of PV� neurons (Madisen et al., 2010). We first examined
whether RAR� expression in V1m PV� neurons was altered by
BE with single-cell qRT-PCR. As a proof of principle, percentage
of RAR�-expressing PV� neurons was largely reduced in P35
PV-RAR� cKO mice (Fig. 5A; RAR� fl/�-NR, 45.83 � 5.86%;
RAR� fl/fl-NR, 7.87 � 3.96%). However, 3 d BE did not change
the number of RAR�-expressing neurons in V1m L2/3 PV� neu-
rons (Fig. 5A; PV-RAR� fl/�-BE, 48.69 � 8.32%). Therefore, 3 d
of visual deprivation does not affect RAR� expression levels in
V1m L2/3 PV� neurons. We next recorded from visually identi-
fied PV� interneurons in L2/3 of V1m, which exhibited typical
fast-spiking firing patterns in response to current injections (Fig.
5B). Deletion of RAR� from PV� neurons did not affect basic
passive and active membrane properties, such as resting mem-
brane potential (Fig. 5C), membrane capacitance (Fig. 5D), input
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resistance (Fig. 5E), action potential
threshold (Fig. 5F), and rheobase (Fig.
5G). We further studied membrane excit-
ability of PV� neurons with step-current
injections (50 –350 pA at an interval of 50
pA) (Fig. 5H). Under NR conditions,
deletion of RAR� reduced membrane ex-
citability, indicated by a significant reduc-
tion in the number of action potentials in
response to current injections (Fig. 5I).
After 3 d of BE, both RAR fl/� and RAR fl/fl

mice exhibited excitability similar to that
of the RAR fl/fl group with NR experience
(Fig. 5I). Thus, in addition to synaptic
properties, RAR� expression in PV� neu-
rons may also regulate neuronal excitabil-
ity as an additional mechanism for
homeostatic adaptation to reduced over-
all network activity.

We next recorded basal synaptic trans-
mission from PV� neurons. Similar to
observations from PN neurons, no obvi-
ous change was observed with mEPSCs in
PV� neurons 3 d after BE (Fig. 6A,B; PV-
RAR� het frequency: NR, 13.44 � 1.51
Hz; BE, 10.85 � 1.65 Hz; amplitude, NR,
11.18 � 0.55 pA; BE, 10.94 � 0.47 pA). However, BE significantly
reduced the frequency of mIPSCs in PV� neurons without
changes in amplitude (Fig. 6C,D; frequency: NR, 8.59 � 0.49 Hz;
BE, 5.93 � 0.42 Hz; amplitude, NR, 29.81 � 0.87 pA; BE, 28.61 �
1.00 pA). The majority of inhibitory input onto PV� interneu-
rons comes from other PV� interneurons. Indeed, deletion of
RAR� from PV� neurons abolished the observed change in
mIPSCs in PV� neurons (Fig. 6C,D; frequency: NR, 8.06 � 0.52
Hz; BE, 8.01 � 0.62 Hz). Therefore, the effect of prolonged visual
deprivation on mIPSC frequency is similar between PNs and
PV� neurons, and RAR� expression in PV� neurons is required
to mediate homeostatic changes at the synapses connecting both
types of their postsynaptic targets, namely, L2/3 PNs and other
PV� neurons.

Fmr1 KO in PV � neurons blocks effects of visual deprivation
and RA
FMRP, the protein encoded by Fmr1 in mouse and FMR1 in
human, is critically involved in synaptic RA signaling. In the ab-
sence of FMRP expression, RA-mediated homeostatic synaptic
plasticity is completely abolished (Soden and Chen, 2010; Sarti et
al., 2013; Z. Zhang et al., 2018). Given the established importance
of RAR� expression in BE-induced homeostatic synaptic plastic-
ity at inhibitory synapses in L2/3 PNs, we asked whether FMRP is
also required for homeostatic synaptic plasticity in V1m. In the
constitutive Fmr1 KO V1m, visual deprivation failed to decrease
mIPSC frequency and amplitude in the L2/3 PNs (Fig. 7A,B;
frequency: NR, 7.82 � 0.32 Hz; BE, 8.35 � 0.34 Hz; amplitude:
NR, 27.70 � 0.59 pA; BE, 27.94 � 0.78 pA), whereas the WT
controls showed normal homeostatic responses (Fig. 7A,B; fre-
quency: NR, 8.39 � 0.36 Hz; BE, 5.35 � 0.36 Hz; amplitude: NR,
27.25 � 1.16 pA; BE, 22.61 � 0.61 pA).

Although FMRP has been shown to be important for RA-
induced translational regulation (Soden et al., 2010), it was un-
clear whether FMRP and RAR� act cell-autonomously within the
same neurons. We generated an Fmr1 conditional KO mouse by
flanking the exon 3 of the Fmr1 gene with loxP sites (Fig. 8A).

Deletion of FMRP in PV� neurons was achieved using PV-Cre
driver line. Strikingly, selective deletion of FMRP in PV� neu-
rons completely phenocopied the Fmr1 constitutive KO (Fig.
8B,C; frequency: NR, 7.08 � 0.31 Hz; BE, 6.65 � 0.32 Hz; am-
plitude: NR, 27.87 � 0.82 pA; BE, 25.92 � 0.99 pA). Our previous
work showing that RA synthesis is normal in FMRP KO neurons
in hippocampus (Soden and Chen, 2010) supports the possibility
that FMRP is involved in homeostatic plasticity at a step down-
stream of RA synthesis. We thus asked whether, in V1m PV�

neurons, FMRP operates in a similar manner downstream of RA.
We found that, in PV-Fmr1 cKO mice, RA treatment failed to
alter mIPSCs in L2/3 PNs (Fig. 8D,E; frequency: NR, 7.03 � 0.32
Hz; BE, 6.12 � 0.26 Hz; amplitude: NR, 30.90 � 0.61 pA; BE,
30.15 � 0.54 pA), suggesting that indeed FMRP is required at a
step between RA synthesis and final synaptic changes. Together,
these results indicate that FMRP and RAR� act synergistically
and cell-autonomously in PV� neurons to enable RA signaling
and homeostatic synaptic plasticity.

Discussion
In this study, we show that RA signaling operates in mouse pri-
mary visual cortex and that RAR� expression is critical for ho-
meostatic downregulation of inhibitory synaptic transmission in
L2/3 cortical circuit after visual deprivation. Specifically, binoc-
ular deprivation mimics the effect of acute RA treatment and
causes a reduction in miniature synaptic inhibition onto L2/3
PNs: both require intact RAR� expression in PV� neurons. In-
terestingly, miniature inhibitory synaptic transmission onto PV�

neurons is affected by visual deprivation in a similar manner and
also requires RAR� expression in PV� neurons. Moreover,
FMRP, which has been previously shown to be involved in syn-
aptic RA signaling, is an integral part of the signaling machinery
in the V1m circuit. Global or PV-specific deletion of FMRP pre-
vents BE-induced reduction in synaptic inhibition. Together,
these data demonstrate the essential role of RA signaling in an in
vivo model in a cortical circuit outside of hippocampus, where
synaptic RA signaling was initially established. Thus, synaptic RA

0

2

4

8

6

m
IP

S
C

 fr
eq

ue
nc

y 
(H

z) 10

27/3 25/3 34/5 31/4

0
5

10
15
20
25

m
IP

S
C

 a
m

pl
itu

de
 (p

A
)

30
35

NR BE NR BE
Fmr1 KOWT

27/3 25/3 34/5 31/4

A
WT: NR

WT: BE

Fmr1 KO: NR

Fmr1 KO: BE

B

**

***

Figure 7. Constitutive Fmr1 KO blocks BE-induced changes in synaptic inhibition in L2/3 PNs. A, Representative traces recorded
from V1m L2/3 PNs of constitutive Fmr1 KOs and WT littermates under NR or BE conditions. Calibration: 50 pA, 0.5 s. B, Quantifi-
cation of mIPSC frequencies and amplitudes in PNs from WT and constitutive Fmr1 KO mice. **p 
 0.01 (two-way ANOVA).
***p 
 0.001 (two-way ANOVA).

10462 • J. Neurosci., December 5, 2018 • 38(49):10454 –10466 Zhong et al. • RA Signaling Mediates Homeostatic Plasticity in V1



signaling may be a widely adopted molec-
ular mechanism for homeostatic synaptic
plasticity throughout the brain.

Visual deprivation is an established
and effective protocol to induce homeo-
static synaptic plasticity in vivo, and
changes at both excitatory and inhibitory
synapses have been observed (Whitt et al.,
2014; Kaneko and Stryker, 2017). Our
findings on the regulation of synaptic in-
hibition by visual deprivation are consis-
tent with results reported by previous
studies performed in postcritical period
animals (Keck et al., 2013; Gao et al.,
2017). Reduction of mIPSC frequency in
L2/3 PNs has been observed 2 d after ret-
inal lesion (Keck et al., 2013) or after 7 d of
dark rearing (Gao et al., 2017). In addition
to these studies focusing on L2/3 circuits,
others have also found homeostatic com-
pensation at L4 and L5 circuits, and both
synaptic and nonsynaptic changes were
observed (Maffei et al., 2004, 2006; Nat-
araj et al., 2010). Although the exact na-
ture and time course of homeostatic
changes vary depending on the specific
types of manipulation to achieve visual
deprivation (e.g., retinal lesion, dark rear-
ing vs lid suture) (Maffei and Turrigiano,
2008; Whitt et al., 2014), modification of
inhibitory synapses and excitatory syn-
apses to readjust synaptic excitation/inhi-
bition balance seems to be a common
theme shared by many different sensory
manipulations.

Among the many molecular mecha-
nisms identified for homeostatic synaptic
plasticity in vitro, several have been shown
to play roles in vertebrate in vivo systems.
For example, TNF-� is a glial-derived sig-
nal that is required for homeostatic oper-
ation in vivo at primary sensory cortices
and in striatum (Kaneko et al., 2008;
Greenhill et al., 2015; Lewitus et al., 2016;
Barnes et al., 2017; Teichert et al., 2017).
Arc/Arg3.1 has been demonstrated to par-
ticipate in the homeostatic synaptic plas-
ticity of the excitatory, but not inhibitory,
synapses of visual cortex (Gao et al.,
2010). Homer1a, acting as a molecular in-
tegrator of arousal and sleep need via the
wake-promoting and sleep-promoting
neuromodulators, together with signaling
through mGluR1/5, mediates downscal-
ing of excitatory synapses during sleep
(Diering et al., 2017). RA, as a newly iden-
tified molecular player for synaptic plas-
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ticity, was shown to mediate homeostatic synaptic plasticity in
response to pharmacological blockade of excitatory synaptic ac-
tivity in hippocampal principle neurons from primary and slice
cultures (Aoto et al., 2008; Sarti et al., 2013). In this study, we
made three important conceptual advancements from our orig-
inal studies. First, we show that RA operates in a cortical circuit,
thus demonstrating that synaptic RA signaling is not a hippo-
campal-specific phenomenon but may likely be a widely present
signaling mechanism in multiple regions of the brain. Second,
using an in vivo homeostatic plasticity model, we show that syn-
aptic RA signaling is essential for visual deprivation-induced syn-
aptic compensation at inhibitory synapses in the visual cortex,
thus establishing its in vivo relevance and significance. Third, we
found unexpectedly that visual cortical homeostatic synaptic
plasticity hinges on RAR� expression in PV� interneurons, thus
extending the neuronal types in which RA signaling may be
functioning.

As one of the most important inhibitory neurons, PV� neu-
rons primarily target soma and/or perisomatic regions (Markram
et al., 2004) and participate in diverse categories of visual func-
tion, including feature selectivity and perceptual discrimination
(Runyan et al., 2010; Lee et al., 2012). Therefore, modulation of
GABAergic synapses from PV� neurons is likely to cause a sig-
nificant impact on the functional output of PV� target neurons.
The discovery that PV-mediated inhibition onto PNs and other
PV� neurons are both modified by BE is somewhat unexpected;
it suggests that visual deprivation impacts neuronal activity of
both excitatory and inhibitory neurons, and that homeostatic
changes in cortical circuits preserve both cortical responsiveness
to sensory input and excitation/inhibition balance of local net-
work. Given that PV� neuron is the common presynaptic part-
ner for both the PNs and PV� neurons examined, and that RAR�
expression in PV� neurons instead of PNs is required for the
observed homeostatic synaptic plasticity, it is likely that RA sig-
naling, in this context, operates in the presynaptic compartment,
which is different from its action in the hippocampal PNs. Our
previous studies show that RAR� regulates local protein synthesis
in dendrites, which underlies most of its action postsynaptically
(Aoto et al., 2008; Poon and Chen, 2008). Local protein synthesis
in axonal compartments of mature neurons was traditionally
thought unlikely due to lack of apparent translational machiner-
ies observed in axons. However, recent evidence indicates that
ribosomes are present in axon terminals, and local protein syn-
thesis could indeed occur in presynaptic terminals and is required
for long-term plasticity of GABA release (Younts et al., 2016).
Given our limited knowledge on the mRNA substrates whose
translation is regulated by RAR� (Poon and Chen, 2008), the
exact molecular details of presynaptic action of RA warrants fur-
ther investigation in a future study.

The connection between FMRP and RA/RAR� signaling was
first suggested when RA- and synaptic inactivity (TTX � APV
treatment)-induced local protein synthesis occur in dendritic
RNA granules enriched with both FMRP and RAR� (Maghsoodi
et al., 2008). In the Fmr1 KO hippocampal neurons, RA signaling
and RA-mediated homeostatic synaptic plasticity are absent from
both excitatory and inhibitory synapses (Soden and Chen, 2010;
Sarti et al., 2013), supporting the notion that RA signals through
an FMRP-dependent mechanism. Importantly, deficient RA sig-
naling is also found in human neurons derived from FXS patient
iPS cells (Z. Zhang et al., 2018), indicating that the functional link
between FMRP and RA signaling is conserved across different
mammalian species. In this study, we further explored the in-
volvement of FMRP in RA-dependent homeostatic synaptic plas-

ticity in cortical circuits and found that PV� interneurons are the
converging loci in which both FMRP and RAR� expression is
essential for normal homeostatic plasticity and synaptic RA sig-
naling at inhibitory synapses onto L2/3 PNs. Inappropriate exci-
tation/inhibition balance has been found as a major network
phenotype at multiple circuits of the FXS and autism spectrum
disorders brain (Gogolla et al., 2009; Contractor et al., 2015; Nel-
son and Valakh, 2015). Thus, in addition to altered Hebbian
plasticity (i.e., mGluR-dependent LTD) (Huber et al., 2002; Li et
al., 2002; Larson et al., 2005), impaired homeostatic synaptic
plasticity in both hippocampal and cortical circuits may exacer-
bate network instability in FXS, which has severe consequence in
information processing and cognitive functions (Eichler and
Meier, 2008; Nelson and Valakh, 2015).

In conclusion, our study shows that RA signaling plays a crit-
ical role in homeostatic plasticity elicited in an in vivo setting, and
that inhibitory synapses are one of the major loci regulated by
sensory experience. Findings from this study raise more ques-
tions. How does RA operate in presynaptic neurons to regulate
synaptic transmission? Is such presynaptic action specific to PV�

inhibitory interneurons? What is the molecular nature of the
interaction between FMRP and RAR�, and does sensory experi-
ence/synaptic activity modulate such interaction? Is there struc-
tural plasticity accompanying synaptic changes following RA
signaling? Understanding these questions will help generate a
general picture of RA signaling in the brain and provide further
insight into its functional significance in homeostatic plasticity,
information processing in cortical and subcortical circuits, and
eventually, cognitive functions.
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