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Social life requires people to predict the future: people must anticipate others’ thoughts, feelings, and actions to interact with them
successfully. The theory of predictive coding suggests that the social brain may meet this need by automatically predicting others’ social
futures. If so, when representing others’ current mental state, the brain should already start representing their future states. To test this
hypothesis, we used fMRI to measure female and male human participants’ neural representations of mental states. Representational
similarity analysis revealed that neural patterns associated with mental states currently under consideration resembled patterns of likely
future states more so than patterns of unlikely future states. This effect manifested in activity across the social brain network and in
medial prefrontal cortex in particular. Repetition suppression analysis also supported the social predictive coding hypothesis: consid-
ering mental states presented in predictable sequences reduced activity in the precuneus relative to unpredictable sequences. In addition
to demonstrating that the brain makes automatic predictions of others’ social futures, the results also demonstrate that the brain
leverages a 3D representational space to make these predictions. Proximity between mental states on the psychological dimensions of
rationality, social impact, and valence explained much of the association between state-specific neural pattern similarity and state
transition likelihood. Together, these findings suggest that the way the brain represents the social present gives people an automatic
glimpse of the social future.
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Introduction
Social life requires people to predict the future: we must predict
what others think, feel, and do to interact with them successfully.

Much of how we behave toward other people depends on what we
anticipate they will do next. We intuitively know to tread gingerly
around frustrated colleagues, to anticipate and allay children’s
fears, or to order-in comfort food after a friend’s stressful job
interview. Humans have many means for perceiving others’ cur-
rent thoughts and feelings: we read facial expressions, hear tone
of voice, and interpret situational contexts (Zaki et al., 2009; Bar-
rett et al., 2011; Becchio et al., 2018). However, we cannot see or
hear others’ emotions before they happen. How do we satisfy our
need to glimpse the social future?

We propose that the brain meets this need by automatically
predicting the social future when considering the social present.
Our perceptual system engages in this kind of reflexive prediction
(Rao and Ballard, 1999; Hohwy et al., 2008; Vuust et al., 2009):
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Significance Statement

When you see a ball in flight, your brain calculates, not just its static visual features such as size and shape, but also predicts its
future trajectory. Here, we investigated whether the same might hold true in the social world: when we see someone flying into a
rage, does our brain automatically predict their social trajectory? In this study, we scanned participants’ brain activity while they
judged others’ mental states. We found that neural activity associated with a given state resembled activity associated with likely
future states. Additionally, unpredictable sequences of states evoked more brain activity than predictable sequences, consistent
with monitoring for, and updating from, prediction errors. These results suggest that the social brain automatically predicts
others’ future mental states.
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when we observe a ball in flight, we not only represent its current
location, but also automatically predict its trajectory. The brain
compares its predictions with incoming sensory information,
calculates mismatch between the two, and adjusts subsequent
predictions accordingly. This algorithm, which is called predic-
tive coding, offers a biologically plausible mechanism for imple-
menting Bayesian-optimal prediction (von Helmholtz, 1910;
Gregory, 1980; Friston and Kiebel, 2009; Clark, 2013). Research-
ers have already begun to demonstrate that the brain may employ
an algorithm like predictive coding in the social and affective
domains (Koster-Hale and Saxe, 2013; Barrett, 2017; Theriault et
al., 2017). For example, research on the human mirror neuron
network suggests that predictive coding of others’ actions may
help us infer their intentions (Kilner et al., 2007).

In this study, we focused on how people use knowledge about
a person’s current mental state to predict their future mental
states. Experience-sampling data indicate that a person’s current
mental state reveals much about their likely future states (Thorn-
ton and Tamir, 2017). For example, if a person currently feels
rage, then they are more likely to next feel disgust than gratitude.
Moreover, perceivers successfully make use of this regularity:
people can make accurate explicit predictions up to two emotions
into others’ futures.

People may predict others’ future states with such high fidelity
because prediction is built into the way that people represent
social knowledge. That is, these social predictions occur automat-
ically because the brain directly incorporates representations of
likely future states into representations of others’ current states. If
so, then whenever someone thinks about a mental state, their
brain’s representation of that state would include, not only its
static features, but also features of predicted future states. In other
words, if people use predictive coding to anticipate others’ states,
then when one observes a friend fly into a rage, the brain should
automatically predict that person’s emotional trajectory. Here,
we used representational similarity analysis (Kriegeskorte et al.,
2008) and repetition suppression in fMRI data to test this
hypothesis.

In addition to testing whether the brain reflexively predicts
others’ mental states, we also tested a theoretical model devel-
oped to explain specifically how it might make these predictions
(Tamir and Thornton, 2018). Specifically, we tested whether a
dimensional model of mental state representation serves as scaf-
folding for social prediction. In this model, people represent
mental states using three psychological dimensions (Tamir et al.,
2016): rationality, social impact, and valence. Each mental state is
defined by its coordinates on these dimensions (e.g., envy is emo-
tional, socially arousing, and negative). This organization should
facilitate automatic social prediction because a state’s position on
these dimensions determines its transitional probabilities (Thorn-
ton and Tamir, 2017). That is, the closer two states are on each
dimension, the greater the likelihood of transitions between them.
Here, we test the extent to which proximity on these dimensions
statistically mediates the neural predictions of future states from cur-
rent states.

Materials and Methods
Code accessibility
Data and code have been deposited on the Open Science Framework
(https://osf.io/x32te/) and are freely available. We report how we deter-
mined sample size, all data exclusions, all manipulations, and all mea-
sures in the study. We drew on previously published studies for two
datasets: the scores of each mental state on four psychological dimen-
sions (Tamir et al., 2016) and ratings of transitional probabilities

between mental states (Thornton and Tamir, 2017). Data were ana-
lyzed with a combination of common fMRI software packages
detailed below and custom in-house code in MATLAB (RRID:
SCR_001622) and R (RRID:SCR_001905).

Participants
Imaging participants (N � 29) were recruited from Princeton University
Credit and Paid Study Pools. One participant was excluded due to data
loss in the image reconstruction process. The remaining participants (17
female, 11 male; age range 18 –22, mean age � 19.6) were right-handed,
neurologically normal, fluent in English, and had normal or corrected-
to-normal vision. Participants provided informed consent in a manner
approved by the Princeton University Institutional Review Board.

Sample size was determined via resampling-based power analysis us-
ing data from a previous study of similar design and content (Tamir et al.,
2016). In that study, participants made judgments on �60 mental states
(including the 15 studied here). Three orthogonal psychological dimen-
sions were found to explain similarity between the activity patterns elic-
ited in this task: rationality, social impact, and valence. Here, we targeted
the smallest significance effect size (r � 0.12, for valence) and drew
bootstrapped samples of participants from the original study to deter-
mine statistical power for replicating this effect with varying sample sizes.
Due to the subset of states chosen, the expected effect size was larger than
in the earlier dataset, yielding a target of 28 participants to achieve 95%
power.

Behavioral participants (N � 29) were recruited online via Amazon
Mechanical Turk. These participants rated the pairwise perceived simi-
larity between the mental states presented in the imaging study. One
participant was excluded for indicating that English was not their native
language and that their fluency was less than excellent (leaving N � 28; 10
female, 18 male; age range 20 – 64, mean age � 34.3). Sample size for this
group was chosen to match the high reliability of ratings of transitional
probabilities collected in a previous study (Thornton and Tamir, 2017)
that were reused as an independent variable here.

Stimuli
The stimuli in the imaging paradigm consisted of 15 different mental
state terms: consciousness, desire, disgust, distrust, drunkenness, embar-
rassment, exhaustion, friendliness, lust, patience, playfulness, satisfac-
tion, sleepiness, trance, and transcendence. These states were selected
from a larger set of 60 used in a previous study (Tamir et al., 2016). We
selected these particular states to maximize asymmetries in transitional
probabilities (Thornton and Tamir, 2017) and thereby maximize antic-
ipatory repetition suppression effects and asymmetries in neural pattern
similarity. Each state was paired with 30 brief scenarios that had been
pretested to elicit the state in question (e.g., happiness: “pet a puppy”).
These were selected from larger sets of 36 scenarios for each state via
genetic algorithm. This ensured that the extent to which the scenarios
elicited their given states was as high as possible, but also balanced across
states (Tamir et al., 2016). Additionally, the algorithm sought to mini-
mize differences in variance in the scenario appropriateness across states
and variance in the average character length of the scenarios across states.

Experimental design and statistical analysis
Experimental design. In the imaging paradigm, participants rated how
much a given scenario would elicit a particular state in another person.
The target of mentalizing was deliberately generic, describe as only “an-
other person” or “a person” in the instructions. On each trial, a partici-
pant might be presented with the state “desire” and the scenario “walking
into a candy store.” The state initially appeared alone for 250 ms and then
the scenario and rating scale appeared below it and participants had 2.5 s
to read and respond. Participants made their ratings on a 1-to-5 Likert-
type scale using a button box positioned in their left hands. This was
followed by a 250 ms fixation period before the start of the next trial.
There were 225 trials in each of four runs, for a total of 900 trials. In each
run, each mental state was presented 15 times and proceeded by every
other mental state exactly once. An additional 6 s fixation period was
allowed at the end of each run to ensure capture of hemodynamic re-
sponses from the final trials. The order of presentation was counterbal-
anced and optimized for continuous-carryover repetition suppression
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(Aguirre, 2007) with respect to previously rated transitional probabilities
(Thornton and Tamir, 2017) via de Bruijn cycles (Aguirre et al., 2011).
Each scenario was presented twice over the course of the experiment,
either in the two even or in the two odd runs. Outside of the scanner,
participants rated their perceptions regarding the transitional probabil-
ities between the 15 mental states in the imaging paradigm, as well as how
long they thought each state typically lasted.

After the scanning session, participants completed measures of the
Autism Spectrum Quotient (Baron-Cohen et al., 2001b), the UCLA
Loneliness scale (Russell, 1996), a measure of social network size, a
single-item extraversion measure, the Narcissistic Personality Inventory
(Raskin and Hall, 1979), the MOS social support survey (Sherbourne and
Stewart, 1991), and the Reading the Mind in the Eyes task (Baron-Cohen
et al., 2001a), as well as demographics and open-ended feedback about
the experiment and its purpose. These measures were collected for cross-
study analyses and were not analyzed as part of the current investigation.

Ratings of the perceived similarity between mental states were pro-
vided online by a separate sample of participants. These participants were
recruited using TurkPrime (Litman et al., 2017) and then directed to a
Qualtrics-based survey. A “captcha” image was used to help protect the
survey from automated responding. In the survey, participants rated the
perceived similarity between each pair of mental states within the set of
15 states presented in the imaging study. Ratings were made using a
continuous line scale anchored at “not at all similar” and “very similar.”
To encourage the possibility of asymmetric similarity ratings, the prompt
was phrased “how similar is (state 1) to (state 2)?” Additionally, to min-
imize explicit attempts to be consistent across asymmetries, ratings cor-
responding to the upper and lower triangular portions of the similarity
matrix were separated into separate blocks. This procedure helped to
ensure that trials featuring the same mental states would rarely be pre-
sented close together. The order of the blocks and the trials within each
block were independently randomized for each participant. Participants
reported their demographics (age, gender, race, ethnicity, and English-
language proficiency) and had the option to provide open-ended feed-
back at the end of the study.

Imaging procedure. Imaging data were acquired at the Princeton Neu-
roscience Institute using a 3 tesla Siemens Skyra scanner with a 64-
channel head coil. Functional gradient-echo echoplanar images were
obtained from the whole brain using a simultaneous multislice imaging
procedure and online motion correction (66 interleaved slices of 2 mm
thickness, TR � 1500 ms, TE � 32 ms, flip angle � 70°, in-plane resolu-
tion � 2.00 � 2.00 mm, matrix size � 192 � 192 voxels, 162 measure-
ments per run). Functional images were preprocessed using a
multipackage imaging pipeline: corrections for slice timing and head
motion were performed using FSL (RRID:SCR_002823) (Jenkinson et
al., 2012), normalization to the ICBM 152 template (RRID:SCR_008796)
was completed using SPM8’s DARTEL (Ashburner, 2007), and
smoothing and the linear modeling were performed using SPM12
(Wellcome Department of Cognitive Neurology, London, UK) as part
of the SPM12w package (https://github.com/wagner-lab/spm12w)
(SPM, RRID:SCR_007037).

The general linear model (GLM) was used to prepare each partici-
pant’s data for representational similarity analysis. Each mental state was
modeled as a condition of interest (15 total) using a boxcar regressor that
began on each trial when the name of the state appeared and lasted until
the participant responded or the response window ended, whichever
came first. The regressors were convolved with a canonical hemody-
namic response function (HRF) and entered into the GLM along with
additional nuisance covariates: run means and linear trends and six mo-
tion realignment parameters.

Behavioral data analysis. Behavioral data were analyzed to assess the
quality of participants’ engagement with the imaging task. This included
calculation of descriptive statistics for response rate, average response,
average standard division of responses with respect to mental state, and
average reaction time. Additionally, because participants responded to
each scenario twice across the course of the experiment, we could calcu-
late a measure of test–retest reliability by correlating their first and sec-
ond rating of the same stimulus. The correlation values were r-to-z

transformed and entered into a one-sample t test versus zero to assess the
statistical significance of the reliability at the group level.

Representational similarity analysis. Neuroimaging data were subjected
to representational similarity analysis (Kriegeskorte et al., 2008) to test
whether transitional probabilities between states could explain the simi-
larity between corresponding patterns of brain activity. That is, if a pat-
tern of brain activity encodes predictions about likely future states, then
the pattern associated with each state should resemble the patterns asso-
ciated with likely future states more than the patterns associated with
unlikely future states. This hypothesis was tested at two levels of analysis:
in a whole-brain similarity searchlight procedure (Kriegeskorte et al.,
2006) and across the entire social brain network.

In the searchlight analysis, a small, approximately spherical region
with a 4-voxel radius was centered at each voxel in the brain. Local
patterns of regression coefficients from the GLM on unsmoothed data
were extracted from each region for each of the 15 mental states in the
study. These local activity patterns were vectorized and correlated to
measure their similarity. The lower triangular elements of the resulting
correlation matrix thus represented the neural similarity between each of
the 15 states. A separate set of participants provided ratings for how likely
each of the 15 states is to transition to every other state (Thornton and
Tamir, 2017). The neural similarities were vectorized and correlated with
the transitional probability ratings. This correlation measured the extent
to which neural patterns for an individual state resembled the states to
which it is likely transition. Because the pattern similarity measure (cor-
relation) was necessarily symmetric, we averaged transitional probabili-
ties across the diagonal before correlating these ratings with pattern
similarity. This procedure was repeated with the searchlight centered at
every voxel in the image provided it contained at least 30 voxels. The
result was a whole-brain map of correlation coefficients for each partic-
ipant. These correlation maps were smoothed with a 6 mm FWHM
Gaussian kernel and then entered into a one-sample t test (vs zero) to
assess statistical significance at the group level. The results were corrected
for multiple comparisons ( p � 0.05) using maximal statistical permuta-
tion testing with threshold free cluster enhancement (TFCE; Smith and
Nichols, 2009).

We conducted the same representational similarity analyses within the
social brain network as a whole. This network was defined independently
using a mask consisting of 10,216 (noncontiguous) voxels implicated in
social cognition. Previous research indicated that these voxels maximized
both voxelwise and patternwise reliability of neural activity when men-
talizing about a large group of people (Thornton and Mitchell, 2018).
Within these voxels, we repeated the analysis performed at the search-
light level to measure the extent to which neural similarity across the
entire network reflected transitional probabilities. We tested both aver-
age transition ratings from an independent set of participants (Thornton
and Tamir, 2017), as well as the ratings of individual participants in the
imaging study. In both cases, we calculated statistical significance by
Fisher transforming the resulting correlations and performing a one-
sample t test (vs zero) at the group level.

Asymmetric representational similarity analysis. Typical representa-
tional similarity analyses such as those in the previous section use sym-
metric metrics such as a correlation matrix to estimate the similarity
between patterns of brain activity. This approach suffices when theoret-
ical predictions are likewise symmetric. However, in the present case,
transitional probabilities are meaningfully asymmetric (e.g., “drunken-
ness” is more likely to precede “sleepiness” than to follow it). To further
test our hypothesis that patterns of brain activity reflexively encode the
transitional probabilities between mental states, we developed a novel
extension of representational similarity analysis that relies on an asym-
metric similarity measure from information theory: Kullback–Leibler
(KL) divergence, also known as relative entropy.

KL divergence is typically used to compare different probability distri-
butions to each other. It can be thought of as a measure of how much
information is gained when updating from one distribution to another. It
is the directed nature of this comparison that gives KL divergences its
potential for asymmetry. So, for example, a normal distribution is more
similar to (i.e., less divergent from) a uniform distribution than a uni-
form distribution is to a normal distribution. The reason is that uniform
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distribution embodies very little information (i.e., a flat prior, a repre-
sentation of complete ignorance, in Bayesian terms), so relatively more
information is gained when updating from the uniform distribution to
the binomial distribution. In contrast, updating from the normal distri-
bution to the uniform distribution involves minimal information gain
and thus a smaller KL divergence (i.e., higher similarity).

We computed neural pattern similarity by calculating KL divergence
between the patterns corresponding to each pair of mental states. In
preparation for this procedure, neural patterns were transformed to re-
semble the expected input to the empirical KL divergence function in the
“entropy” package in R. Specifically, all values in each pattern were made
positive by subtracting the minimum for each pattern. The decimals were
then converted to integers without loss of precision by multiplying each
pattern by the minimum absolute difference between any pair of values
within a given pattern for each participant and then rounding. Finally, a
constant value of 1 was added to each pattern to avoid division by 0.

The similarity values resulting from KL divergence consist of both
symmetric and asymmetric components. To isolate the asymmetric com-
ponents for further analysis, we first computed the purely symmetric
component by averaging the asymmetric neural pattern similarity matrix
with its transpose. We then subtracted this symmetric component from
the original partially asymmetric similarity matrix to produce a purely
asymmetric matrix that was orthogonal to the symmetric component.
We applied the same procedure to the transitional probability matrices to
likewise compute their asymmetric components. This included both the
transitional probabilities provided by independent raters and the transi-
tional probabilities provided by the imaging participants in the present
study.

Finally, we correlated the transitional probability asymmetries with
the neural pattern similarity asymmetries, leaving out the diagonal of
each matrix. Due to the computationally intensive nature of the comput-
ing the KL divergence, we performed this asymmetric pattern analysis
only once, at the level of the social brain network as a whole, and not
within searchlights throughout the brain. Group level significance testing
was performed via t tests on Fisherized correlation coefficients, as in the
traditional symmetric representational similarity analysis.

Controlling for perceived similarity. The traditional and asymmetric
representational similarity analyses described above test the association
between transitional probability ratings and neural pattern similarity.
However, in previous research, we found that transitional probability
ratings were highly related with perceptions of similarity between mental
states (Thornton and Tamir, 2017). We suggested in that work that this is
likely because people form their intuitions about state similarity based, at
least in part, on mental state dynamics. That is, people may judge two
states to be similar because they regularly co-occur or follow one another.
If so, then statistically controlling for perceived similarity when measur-
ing the association between transitional probability and neural pattern
similarity would produce misleading results. However, the nature of cau-
sation between state transitions and perceived similarity has not yet been
empirically established. To the extent that people make their transitional
probability judgements based on perceived similarity, rather than vice
versa, perceived similarity constitutes a potential confound in the present
analyses.

To address this issue, we repeated the social brain network represen-
tational similarity analyses while statistically controlling for perceived
similarity. Perceived similarity ratings were provided by a separate group
of participants and these values were averaged across participants to
provide a single set of estimates of the perceived similarities between
states. We then repeated the symmetric and asymmetric representational
similarity analyses described in the preceding sections, controlling for
any association between perceived similarity and neural pattern similar-
ity (i.e., regressing out the influence of perceived similarity on neural
pattern similarity, and correlating the residuals of these regressions with
transitional probability ratings).

The symmetric version of this analysis cannot distinguish between the
two accounts of perceived similarity described above (i.e., similarity as
either the effect, or as the cause, of transitional probabilities). Both of
these accounts imply a strong association between perceived similarity
and transitional probability ratings, and (potentially full) statistical me-

diation of the latter by the former. However, the same cannot be said of
the asymmetric representational similarity analysis. Asymmetries in
transitional probabilities represent regularities in mental state dynamics,
whereas asymmetries in the perceived similarity between concepts are
thought to result from the concepts in question having different numbers
of features associated with them (Tversky, 1977). Because mental state
dynamics have no prima facie connection with the number of features
possessed by each state, we expected the asymmetric components of
transitional probability ratings and perceived similarity ratings to di-
verge. This expectation made the asymmetric representational similarity
analysis the crucial test of whether the present analyses should be inter-
preted in terms of predictive coding or the perceived similarity between
mental states.

State frequency representational similarity analysis. Knowledge of the
transitional probabilities between different mental states would be a ma-
jor boon to social prediction. The long-run frequencies of mental states
are a downstream consequence of those transitional probabilities. For
instance, if a person highly likely to transition into happiness, they will
spend more time in this state than a person unlikely to transition into
happiness. The expected frequencies that result from transitional prob-
abilities are useful in their own right for making social predictions.
Therefore, if the brain tracks the transitional probabilities between men-
tal states, then one would expect it to also encode the resulting long-term
state frequencies.

We tested this hypothesis by computing expected state frequencies
from the average transitional probability ratings provided by indepen-
dent raters (Thornton and Tamir, 2017). These expected state frequen-
cies, known as the stationary distribution of the Markov chain, can be
computed by raising a transitional probability matrix to a high exponen-
tial power (i.e., in this case, multiplying it by itself 100 times). Before this
procedure, the rows of the rated transitional probability matrix were
normalized to sum to one, to create a valid Markov chain. The result of
the exponentiation procedure was a matrix with 15 identical rows, with
each row representing the expected state frequencies of the 15 mental
states. These values were converted to a similarity matrix by taking the
reverse-coded absolute differences between each pair of state frequen-
cies. The resulting similarity estimates were entered into a representa-
tional similarity analysis in which they were correlated with the
symmetric component of neural pattern similarity in the social brain
network. A positive correlation would indicate that mental states with
similar frequencies elicit similar patterns of brain activity or, more sim-
ply, that the social brain automatically encodes the expected frequencies
of mental states. Given that the frequency estimates were derived from
transitional probability ratings, we also repeated this representational
similarity analysis while controlling for the association between neural
pattern similarity and transitional probabilities to rule out the possibility
that apparent frequency effects were merely due to the transitions
themselves.

Note that the procedure for calculating expected state frequencies is
only well defined if the initial matrix in question is a transitional proba-
bility matrix. Therefore, if transitional probability ratings are merely a
proxy for perceived similarity, then we would expect this representa-
tional similarity analysis to show no effect. It is possible that raising a
similarity matrix to a high exponential power and then extracting its first
row might have some meaningful interpretation but, if so, to our knowl-
edge, it has yet to be described. Assuming that it does not, then we would
not expect the brain to encode this information unless similarity is
shaped by transitional probability rather than vice versa. Therefore, in
addition to testing a different facet of predictive coding, this analysis can
also indirectly help to arbitrate between a transitional probability inter-
pretation and a perceived similarity interpretation of the present set of
findings.

Repetition suppression. The neuroimaging data were also analyzed to
determine whether voxelwise activity was consistent with repetition sup-
pression in response to expected mental state sequences. Repetition sup-
pression provides a valuable addition to the pattern analyses for two
reasons. First, it relies on a different form of signal, univariate activity,
instead of multivariate patterns and thus provides a partially indepen-
dent test of the predictive coding hypothesis. Second, like asymmetric
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representational similarity analysis, repetition suppression can capture
asymmetric transitions between states, whereas traditional pattern anal-
yses cannot.

If the social brain uses current states to reflexively predict future states,
then expected sequences (e.g., “drunkenness” followed by “sleepiness”)
should elicit repetition suppression, whereas unexpected sequences (e.g.,
“sleepiness” followed by “drunkenness”) should not. To test this hypoth-
esis, we repeated the GLM described above (i.e., with 15 boxcar regres-
sors convolved with a canonical HRF to model the 15 mental states in the
study). Smoothed preprocessed data (6 mm FWHM) were used because
fine-grained spatial resolution was not necessary for this analysis. In
addition to the condition regressors, this GLM also contained 15 para-
metric modulators, one for each mental state, to model the effects of
repetition suppression. The values of the modulators were fixed to the
values of the transitional probability from the state on the previous trial
to the state on the current trial. Following the GLM, the regression coef-
ficient maps from the 15 parametric modulators were averaged and the
resulting averages were entered into voxelwise one-sample t tests (vs
zero) across participants. This analysis targeted the negative direction of
the test because higher transitional probabilities were predicted to pro-
duce less activity. As in the searchlight analysis, the results were corrected
for multiple comparisons using maximal statistical permutation testing
with TFCE (Smith and Nichols, 2009).

Dimensional mediation. Finally, we tested whether a simple set of psy-
chological dimensions could explain the extent to which transitional
probabilities predict neural pattern similarity (Tamir et al., 2016; Thorn-
ton and Tamir, 2017; Tamir and Thornton, 2018). That is, we tested
whether proximity on four psychological dimensions statistically medi-
ated the relation between pattern similarity and transitional probability
ratings assessed above. If so, then this would suggest that these dimen-
sions provide a natural scaffolding for social prediction: merely encoding
a state’s position on these dimensions would imply its likely transitions.

We performed this mediation analysis in three steps. In step 1, we
examined whether these psychological dimensions could describe neural
pattern similarity. To do so, we computed proximity measures (reverse-
coded absolute differences) between each pair of states using ratings of
four dimensions: rationality (cognitive vs emotional states), social im-
pact (socially arousing vs nonsocial/low-arousal states), valence (positive
vs negative states), and human mind (uniquely human, purely mental
states vs those shared with other animals or with a somatic component).
We regressed neural pattern similarity onto these dimension-derived
proximity measures. This regression allowed us to determine the extent
to which each dimension could uniquely explain the similarity between
neural representations of mental states. As in the primary representa-
tional similarity analysis, we computed this regression separately for each
imaging participant and then tested whether these results were signifi-
cant via one-sample t tests across the regression coefficients. Here, a
significant association between neural pattern similarity and distance on
each dimension except human mind would replicate prior research dem-
onstrating the role of these dimensions in mental state representation
(Tamir et al., 2016).

In step 2, we measured the residual relationship between neural pat-
tern similarity and transitional probability after controlling for proxim-
ity on these psychological dimensions. If the dimensions statistically
mediate the relationship between pattern similarity and transitional
probability, then this residual relationship should be significantly smaller
than the full (zero-order) correlation. To measure this residual relation-
ship, we correlated the transitional probabilities ratings with residual
pattern similarity; that is, pattern similarity after the effect of the dimen-
sions was removed by the regression from step 1. This produced a set of
semipartial correlations (one per imaging participant) between residual
neural pattern similarity (with dimension-related variance removed)
and transitional probability. These semipartial correlations reflect the
strength of the association between pattern similarity and transitional
probability when the role of the dimensions is fully accounted for.

In step 3, we completed the analysis by testing whether the association
between neural pattern similarity and transitional probability became
significantly smaller when the variance associated with the psychological
dimensions was removed from the neural pattern similarity. If so, then

this would indicate that part of the relationship between pattern similar-
ity and transitional probability could potentially be attributed to prox-
imity on these dimensions. That is, by encoding current states using these
dimensions, the brain might simultaneously encode likely future states
because future states are located nearby on those dimensions. To test this
hypothesis, we compared the zero-order correlation between pattern
similarity and transitional probability to the semipartial correlation. This
difference (�r) was calculated independently for each participant and the
significance of the overall difference was tested using one-sample t tests
on Fisher-transformed correlations. Here, a significant result indicates
that proximity in the dimensional space explains the shared variance
between pattern similarity and transitional probability.

Finally, in addition to testing whether the four psychological dimen-
sions statistically mediate the relation between pattern similarity and
transitional probabilities, we also tested whether this mediation was
complete or only partial. To do so, we calculated the significance of the
residual relationship from step 2 via one-sample t test on Fisher-
transformed semipartial correlation coefficients. If the residual relation-
ship was significant, then this would indicate that the mediation is partial
rather than complete. That is, a significant residual relationship would
indicate that the relationship between neural pattern similarity and tran-
sitional probability cannot be completely explained by proximity on the
psychological dimensions that we consider.

Results
Behavioral results
Behavioral data were analyzed to assess the quality of partici-
pants’ responses during the imaging experiment. The average
response rate in the imaging task was 95% (SD � 0.07), indicat-
ing high participant engagement. The average response was 4.26
(SD � 0.37) of 5, indicating that the scenarios succeeded in rep-
resenting their respective mental states. The average SD of re-
sponses with respect to states was only 0.27 (SD � 0.12),
indicating that the genetic algorithm was successful in choosing
scenarios that were equally appropriate for each state. Partici-
pants’ first and second ratings of the same scenario were consis-
tent (mean r � 0.39, d � 1.93, p � 9.5 � 10�11). The average
response time was 1.47 s (SD � 0.29 s) from when the scenario
appeared on each trial. Reported SDs were calculated at the par-
ticipant level. Together, the behavioral results demonstrate that
participants were consistently and sensibly engaging with the
fMRI task.

Representational similarity analysis
Representational similarity analysis was used to test whether ac-
tivity patterns for each current mental state resembled patterns
for likely future states more than patterns for unlikely future
states. Searchlight representational similarity analysis revealed a
single brain region in the dorsal medial prefrontal cortex that
manifested neural pattern similarity consistent with the transi-
tional probabilities between mental states (Fig. 1A). This region
had an extent of 666 voxels at a permutation TFCE-corrected
threshold of p � 0.05, with a peak voxel (pcorrected � 0.011) at x �
�6, y � 48, z � 14 in MNI coordinates.

The same representational similarity analysis then was re-
peated within an independently defined social brain network of
10,216 voxels (Fig. 2A; Thornton and Mitchell, 2018). The se-
lected regions closely resembled those typically implicated in so-
cial cognition (Van Overwalle and Baetens, 2009), including
medial prefrontal and parietal cortices, the anterior temporal
lobe, and the temporoparietal junction. As expected, neural pat-
terns within these regions reflected transitional probabilities,
such that states with higher transitional probabilities between
them elicited more similar patterns (Fig. 2B). This relationship
was robust when using transitional probability ratings from
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an independent sample of participants (mean r � 0.13, d � 0.95,
p � 0.00003) or when using transition ratings provided by par-
ticipants in the imaging experiment (mean r � 0.13, d � 1.07, p �
0.000006). Together, these findings demonstrate that, whenever a
person considers a given mental state, this evokes a neural pattern
that resembles the patterns of likely future states. That is, future
states are automatically encoded in representations of current
states.

Asymmetric representational similarity analysis
Asymmetric representational similarity analysis revealed a signif-
icant relationship between asymmetries in transitional probabil-
ity ratings and asymmetries in neural pattern similarity within
the social brain network (mean r � 0.10, d � 0.78, p � 0.0003).
This effect was also observed when analyzing transitional proba-
bility ratings made by individual imaging participants instead of
independent raters (mean r � 0.07, d � 0.54, p � 0.008). These
results indicate that asymmetries in neural pattern similarity en-
code asymmetric mental state dynamics (i.e., cases in which one
state is more likely to follow another state than to precede it). The
sizes of these effects are similar to those observed in the symmet-
ric representational similarity analyses reported in the previous
section, suggesting that the symmetric and asymmetric compo-
nents of neural pattern similarity are approximately equally en-
gaged in representing others’ future states.

Controlling for perceived similarity
Symmetric and asymmetric representational similarity analyses
were repeated while statistically controlling for ratings of the per-
ceived similarity between mental states. We hypothesized that:
(a) the social brain automatically predicts others’ future states,
(b) transitional probabilities play a causal role in forming impres-
sion of perceived similarity between mental states, and (c) asym-
metries in transitional probability and perceived similarity results
from different sources (asymmetric mental state dynamics and
different numbers of features associated with each state, respec-
tively). If these three hypotheses are true, then we would expect
full statistical mediation of the transitional probabilities by per-
ceived similarity in the symmetric analysis (due to hypothesis b),
but no mediation of transitional probability by perceived simi-
larity in the asymmetric analysis (due to hypothesis c).

This is precisely the pattern of results that we observed: in the
symmetric analysis, transitional probabilities were no longer a sig-
nificant predictor of neural pattern similarity when controlling per-
ceived similarity (mean r��0.004, d��0.10, p�0.58). However,
in the asymmetric analysis, transitional probabilities remained a sig-
nificant predictor of neural pattern similarity (mean r � 0.10, d �
0.78, p � 0.0003). Again, we observed similar results when using
transition ratings from each imaging participant instead of indepen-
dent raters for both the symmetric analysis (mean r � 0.03, d � 0.35,

p � 0.07) and asymmetric analysis (mean
r � 0.07, d � 0.54, p � 0.008).

The magnitudes of the asymmetric ef-
fects were almost identical to those in the
reported in the previous section, indicat-
ing similarity ratings accounted for virtu-
ally none of the shared variance between
asymmetric neural pattern similarity and
asymmetric transitional probability rat-
ings. Ratings of the perceived similarity
between mental states were highly reliable
(� � 0.90), indicating that these results
reflect strong statistical control, rather

than measurement error in the covariate (Westfall and Yarkoni,
2016). Together, these results indicate that the present results
cannot be attributed to confounding transitional probability with
perceived similarity. In particular, the critical test case of asym-
metric neural pattern similarity demonstrates the incremental
validity of transitional probabilities over and above perceived
similarity.

State frequency representational similarity analysis
Consistent with the hypothesis that the social brain encodes in-
formation useful for predicting others’ states, we found that
(symmetric) neural pattern similarity was significantly associated
with similarity in the expected frequencies of mental states (mean
r � 0.10, d � 1.18, p � 0.000001). That is, states with similar
frequencies were encoded with similar neural patterns. Addition-
ally, this finding replicated when statistically controlling for tran-
sitional probabilities (mean r � 0.09, d � 1.10, p � 0.000003).
That is, even though the expected frequencies in this analysis were
derived from the stationary distribution of the rated transitional
probabilities, these frequency expectations independently pre-
dict neural pattern similarity. This result also indirectly supports
the interpretation of the present findings in terms of social pre-
diction rather than perceived similarity because applying the pro-
cedure to calculate a stationary distribution to an ordinary
similarity matrix would produce results with no clear meaning
and which one would not expect to correlate with neural pattern
similarity.

Repetition suppression
Repetition suppression analysis was used to provide convergent
evidence for the hypothesis that the engages in reflexive mental
state prediction via a process similar to predictive coding. If the
brain automatically predicts others’ future states, then the brain
should require less processing when states are shown in predict-
able (vs unpredictable) sequences. That is, predicted states
should elicit less neural activity than unpredicted states. As hy-
pothesized, predictable sequences of states elicited less activity in
a region within the social brain network (Fig. 1B). This region in
the posterior precuneus had an extent of 298 voxels at a permu-
tation TFCE-corrected threshold of p � 0.05, with a peak voxel
(pcorrected � 0.008) at x � �10, y � �74, z � 40 in MNI coordi-
nates. This finding further reflects the centrality of prediction to
social cognition: the social brain automatically encodes predic-
tions of others’ future states.

Dimensional mediation
Thus far, our results demonstrate that the brain makes automatic
predictions about others’ future states. Next, we tested hypothe-
ses derived from our theoretical model of the predictive social
mind for how people make these predictions (Tamir and Thorn-

Figure 1. Whole-brain mapping of the neural representation of transitional probabilities between states. A, Transitional prob-
ability judgments correlated with neural pattern similarity in medial prefrontal cortex. B, The same transitional probability judg-
ments predict repetition suppression in the posterior precuneus. Results are corrected for multiple comparisons ( p � 0.05).

Thornton et al. • Social Predictive Coding J. Neurosci., January 2, 2019 • 39(1):140 –148 • 145



ton, 2018). Specifically, we tested whether three psychological
dimensions, rationality, social impact, and valence, might scaf-
fold social predictions. To do so, we first replicated earlier work
showing that the brain represents mental states using these three
psychological dimensions (Tamir et al., 2016). Distance on each
dimension correlated with neural pattern similarity between
mental states (rationality: mean � � 0.04, d � 0.67, p � 0.001;
social impact: mean � � 0.16, d � 1.14, p � 0.000002; and
valence: mean � � 0.07, d � 0.71, p � 0.0009). A fourth psycho-
logical dimension, the human mind, was again not associated
with pattern similarity (mean � � 0.02, d � 0.18, p � 0.34).

Next, we tested whether the brain uses these dimensions, not
only to represent static mental states, but also to make mental
state predictions. The correlation between transitional probabil-
ity and neural pattern similarity was significantly reduced after
regressing out the influence of these four dimensions (mean �r �
0.09, d � 1.06, p � 0.000007). This result suggests that the brain
makes predictions of others’ futures states by using the positions
of states on the dimensions of rationality, social impact, and va-
lence. We then tested whether this statistical mediation was full or
partial. The residual relationship remained significant (mean r �
0.03, d � 0.52, p � 0.01), suggesting that the dimensions do not
fully mediate the relation between neural pattern similarity and
transitional probability. These results replicated those using tran-
sitional probability ratings from individual participants in the
imaging experiment: the relationship between transitional prob-
ability and pattern similarity was mediated by the psychological
dimensions (mean �r � 0.07, d � 0.98, p � 0.00002) and the
residual relationship remained significant (mean r � 0.06, d �
0.77, p � 0.0004). Together, these findings support the theoreti-
cal model, suggesting that people represent others’ minds using a
low-dimensional representational space and that they could le-
verage this dimensional representation to predict others’ social
futures.

Discussion
The current findings provide convergent evidence for the hy-
pothesis that glimpses of the social future are directly incorpo-
rated into representations of the here and now. Whenever we
think about another person in a particular mental state, our
brains automatically generate a prediction of their social future.

These predictions are built into multivariate representations of
others’ current states, such that thinking about a given mental
state elicits a neural pattern that literally resembles the neural
pattern for states that typically follow it. Likewise, viewing mental
states in a predictable order results in univariate repetition sup-
pression. These findings underscore the centrality of prediction
to social cognition and mental state representation (Koster-Hale
and Saxe, 2013; Barrett, 2017) by demonstrating that the brain
reflexively predicts others’ future mental states.

The current findings support the theory that the mind lever-
ages a 3D structure of mental state representation to predict oth-
ers’ mental states (Tamir and Thornton, 2018). The current
findings replicate earlier work demonstrating that people repre-
sent others’ minds using a low-dimensional space such that prox-
imity between states on three psychological dimensions,
rationality, social impact, and valence, correlates with neural pat-
tern similarity (Tamir et al., 2016). Other research demonstrates
that proximity on these same dimensions predicts actual and
perceived transitional probabilities between states (Thornton
and Tamir, 2017). Here, we connect these findings by demon-
strating that proximity between mental states mediates the asso-
ciation between transitional probabilities and neural pattern
similarity. That is, when people’s brains encode states using these
dimensions, they thereby reflexively and efficiently predict oth-
ers’ future mental states. These results suggest that, when we
perceive other people, we represent not only the static features of
their current state, but also automatically predict their social fu-
tures, all using the same parsimonious dimensional space. How-
ever, statistical mediation by the psychological dimensions is
ultimately correlational. Therefore, although the observed statis-
tical mediation is consistent with our model of predictive social
cognition, this aspect of the model still awaits definitive support
from future experiments.

The current study design allows for a strong inference that the
brain automatically predicts others’ mental states. Participants
were never instructed to make social predictions during the neu-
roimaging task. Participants were shown states one at a time, in a
seemingly arbitrary order; they rated the likelihood of state tran-
sitions only after completing the imaging task. This task neither
required nor rewarded knowledge of transitional probabilities, so

Figure 2. Transitional probabilities were associated with neural pattern similarity in the social brain network. A, Social brain network analyses were conducted within these independently
defined regions. B, Neural patterns for each state resembled the pattern of states to which it was likely to transition. Transitional probabilities between mental states correlated with neural pattern
similarity between those states. Each participant was analyzed as an independent unit (light gray lines) and then averaged (black line). The shaded region around the mean slope represents the
bootstrapped 95% confidence interval.
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participants had no extrinsic reason to attend to these probabil-
ities. Therefore, the observation that neural representations of
current mental states resemble those of future states supports the
claim that people generate these predictions spontaneously. That
said, the current transition rating task and fMRI paradigm are
highly controlled and not necessarily representative of naturalis-
tic social prediction. Although this task offers strong proof-of-
concept that our brain reflexively predicts others’ future states, it
will be important to replicate these findings using more realistic
paradigms. Future research that situates state-to-state prediction
within the broader context of everyday social cognition will offer
more generalizable conclusions about social prediction (Saxe,
2018).

Both whole-brain representational similarity and repetition
suppression analyses implicated portions of the social brain net-
work in representing state transitions; however, the specific re-
gions implicated differ: dorsal medial prefrontal cortex and the
posterior precuneus, respectively. Both of these regions are part
of the putative social brain network, a set of regions that is reliably
engaged when people engage in social thought (Van Overwalle
and Baetens, 2009). Recent research has implicated this network
as a whole in encoding social prediction errors when reasoning
about others’ minds (Theriault et al., 2017). However, in that
study, predictive coding effects did not vary significantly across
different portions of the network. In contrast, the present results
suggest a degree of spatial specify to the predictive coding func-
tions. That said, whereas the present findings bear many hall-
marks of predictive coding, it is important to note that fMRI lacks
the spatial specificity to test whether predictive coding per se, or
merely something like it, is implemented at level of individual
neurons (Barrett and Simmons, 2015).

This returns us to the question of why representational simi-
larity analysis and repetition suppression implicate different re-
gions in social cognition. Research on visual working memory
suggests that pattern analysis may track explicit representations,
whereas repetition suppression reflects implicit representations
(Ward et al., 2013). If this finding generalizes to social cognition,
it would suggest that the precuneus might respond more robustly
to implicit measures of perceived transitional probabilities,
which might lack some of the response biases that can contami-
nate explicit measures. A more substantive explanation might
involve differential functioning. For instance, it is possible that
medial prefrontal cortex is responsible for maintaining mental
models of others’ minds, but that the precuneus is responsible for
comparing the predictions made by this model with observed
sequences of real-world events. This putative function of medial
prefrontal cortex would be broadly consistent with other work
implicating this region in representing other predictive mental
models, such as schema for events (Baldassano et al., 2018) and
prospective memory for future tasks (Momennejad and Haynes,
2013). Notably absent from the current findings are regions ha-
bitually implicated in nonsocial prediction error, such as the
basal ganglia, anterior cingulate, and ventromedial prefrontal
cortex (Garrison et al., 2013). This discrepancy might be ex-
plained by differences in content (social vs nonsocial), the ab-
sence of explicit reward in the present study, or analytic
differences (pattern analysis/repetition suppression vs univariate
analyses).

The novel asymmetric extension of representational similarity
analysis further supports the automatic social prediction hypoth-
esis. This analysis demonstrated that neural patterns encode
asymmetries in the transitional probabilities between mental
states. Moreover, this relationship remained significant and

nearly unchanged in magnitude when statistically controlling for
the perceived similarity between mental states. This incremental
validity of transitional probabilities over and above perceived
similarity helps to rule out the possibility that the latter could
explain away the present results. We have previously explored the
extent to which state transitions can be predicted by state simi-
larity (Thornton and Tamir, 2017): transitional probability and
similarity judgments are closely related, but the latter cannot fully
explain the former. If there is a direct causal relationship between
transitional probability and holistic similarity, then we propose
that the former may well cause the latter rather than the reverse.
That is, people may judge the similarity between two states based
on the likelihood that one co-occurs with or follows another. We
hope that future work will test the extent to which perceptions of
transition likelihood drive perceptions of similarity rather than
vice versa.

The present results also suggest that the social brain encodes
the expected frequencies of mental states: states with similar fre-
quencies were found to elicit similar neural activity patterns. Like
transitional probabilities, the expected frequencies or base rates
of mental states could be highly useful for making accurate social
predictions. These frequencies can themselves be thought of as a
consequence of the transitional probability matrix: if a person is
highly likely to transition into state A and unlikely to transition
into state B, then we would expect them to experience state A
more frequently than state B. This is in fact how we derived
expectations of state frequencies: by computing the stationary
distribution of the Markov chain comprised by transitional prob-
ability ratings. These frequencies expectations remain a signifi-
cant predictor of neural similarity even when controlling for
transitional probability, indicating that they are independently
encoded by patterns of neural activity in the social brain network.
Moreover, because the process that we used to derive expected
frequencies is only well defined if the underlying matrix repre-
sents transitional probabilities rather than similarity more gener-
ally, this finding indirectly supports the interpreting the present
results in terms of social prediction rather than perceived
similarity.

The present investigation considers only one-step transitions
and the long-run frequencies derived from them. However, fu-
ture work might productively investigation Markov chains with
“memory”; that is, transitional probability matrices in which the
two preceding states influence the likelihood of the next state.
Likewise, the neural representation of mental state co-occurrence
remains unexplored. Like one-step and “memory” Markov
chains, co-occurrences can be viewed as a special case of transi-
tional probability: zero temporal lag. Previously, we found a large
association between one-step transitional probabilities and co-
occurrences, suggesting that the present results may represent a
combination of these different lags (Thornton and Tamir, 2017).
However, because co-occurrences are necessarily symmetric,
they cannot explain the asymmetric representational similarity
results. In addition to considering different types of transitional
probabilities, future work might also investigate how these tran-
sitional probabilities are processed and cached for efficient social
prediction, for instance, via successor representations (Momen-
nejad et al., 2017).

The current findings inform both neural and psychological
perspectives on social cognition. From a neural point of view, this
outcome suggests that a shared principle, the goal of prediction,
describes not only sensory cortices, but also those brain regions
implementing the most abstract functions such as understanding
other people’s mental states. From a psychological point of view,
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the finding that psychological dimensions scaffold social predic-
tion provides an additional raison d’être for many data-driven
theories of social content. Theories of this sort, such as the cir-
cumplex model of affect (Russell, 1980; Posner et al., 2005), have
long proven useful for making sense of their respective domains.
The current findings suggest that the dimensions supporting
static theories might also facilitate dynamic prediction. Focusing
on prediction may thus motivate and unify existing social psy-
chological theories. In sum, social predictive coding offers an
integrative and generative framework for understanding the or-
ganization of social knowledge and how people draw upon it to
glimpse the social future (Tamir and Thornton, 2018).
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