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Viewpoints

The Cognitive Thalamus as a Gateway to Mental
Representations
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Historically, the thalamus has been viewed as little more than a relay, simply transferring information to key players of the cast, the cortex
and hippocampus, without providing any unique functional contribution. In recent years, evidence from multiple laboratories research-
ing different thalamic nuclei has contradicted this idea of the thalamus as a passive structure. Dated models of thalamic functions are
being pushed aside, revealing a greater and far more complex contribution of the thalamus for cognition. In this Viewpoints article, we
show how recent data support novel views of thalamic functions that emphasize integrative roles in cognition, ranging from learning and
memory to flexible adaption. We propose that these apparently separate cognitive functions may indeed be supported by a more general
role in shaping mental representations. Several features of thalamocortical circuits are consistent with this suggested role, and we
highlight how divergent and convergent thalamocortical and corticothalamic pathways may complement each other to support these
functions. Furthermore, the role of the thalamus for subcortical integration is highlighted as a key mechanism for maintaining and
updating representations. Finally, we discuss future areas of research and stress the importance of incorporating new experimental
findings into existing knowledge to continue developing thalamic models. The presence of thalamic pathology in a number of neurolog-

ical conditions reinforces the need to better understand the role of this region in cognition.

Introduction

For over half a century, learning and memory have been inti-
mately associated with the hippocampal formation, often leaving
the functional contribution of other brain regions overlooked.
However, the thalamus also has a long-standing link to memory.
Indeed, damage within this region invariably occurs in Korsakoff
syndrome, one of the key symptoms of which is a dense amnesia
(Kopelman et al., 2009). The co-occurring diencephalic damage
in this condition was noted as early as the end of the 19th century
(Gudden, 1896), with a more explicit link between diencephalic
damage and memory subsequently made by Gamper (1928).
However, it was not until later in the 20th century that these brain
regions began to gain further interest, by which time there was
already a widespread focus on the medial temporal lobe for mem-
ory function, following the reports of Patient H.M. (Delay and
Brion, 1969; Victor et al., 1971; Scoville and Milner, 2000). Thus,
although the severity of memory impairments is often largely
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comparable between temporal lobe and diencephalic amnesia
(e.g., Hunkin et al., 1994; Shaw and Aggleton, 1995; Caulo et al.,
2005), the role of the thalamus, and the diencephalon in general,
has largely been disregarded. In a similar vein, the neural bases of
reasoning, thought, and cognition are generally considered to be
supported by the cortex, the prefrontal cortex (PFC) in particular
(Donoso et al., 2014), with little, if any, role for subcortical areas.
Thus, in terms of cognition, the thalamus has typically been
viewed as a supporting member of the cast that acts simply as a
relay for the main players (i.e., the hippocampus and the neocor-
tex). Within these models, the thalamus has taken on a passive
role, simply transferring information without providing any
unique contribution to the system. In recent years, however, ev-
idence has emerged that contradicts this idea of a passive relay
and highlights a central role for the thalamus in cognition.
There are inherent difficulties in attempting to generate global
models of thalamic functions because the thalamus is not a uni-
tary structure. It comprises a large number of nuclei, each with
different anatomical connectivity and functional properties. The
idea of the thalamus as a heterogeneous structure with only a
small number of nuclei supporting the canonical sensory-motor
relay function was first established by the pioneering work of
Guillery and Sherman (Sherman and Guillery, 1996). These au-
thors further developed their model over the years, proposing a
dichotomy of thalamic functions based primarily on the main
type of afferents received by thalamic nuclei (for a comprehensive
perspective of this work and of the major contribution of Ray
Guillery, who sadly passed away last year, see Murray Sherman,
2018). Those nuclei receiving driver input (i.e., capable of directly
eliciting neuronal activity) from the cortex are called higher-
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order nuclei and are thought to actively participate in cortical
functioning (Sherman, 2016). In contrast, thalamic nuclei receiv-
ing driver input from subcortical regions are considered first-
order thalamic nuclei (i.e., textbook relay thalamic nuclei). Other
researchers characterized some thalamic nuclei as limbic on the
basis of their connectivity with the cingulate cortex and their
contribution to cognition rather than purely sensory-motor pro-
cesses (Vogt and Gabriel, 1993). Both higher-order and limbic
thalamic nuclei appear necessary for cognition (Vogt and Ga-
briel, 1993; Varela, 2014), but neither classification includes all
nuclei that support this role; therefore, from a behavioral per-
spective, the term “cognitive thalamus” more accurately captures
the essence of those thalamic nuclei that primarily support cog-
nitive functions.

In this Viewpoints article, we will describe a revised model of
the thalamus wherein, instead of merely acting as relays, thalamic
nuclei contribute to cortical functioning and higher-order cog-
nition, ranging from learning and memory to flexible adaptation.
We will discuss the possibility that these apparently separate cog-
nitive functions may indeed be supported by a more general role
of the thalamus in maintaining and updating mental representa-
tions. The anterior thalamic nuclei (ATn) and the mediodorsal
thalamus (MD) will serve as the main examples to illustrate this
view. Given that extensive reviews of these thalamic nuclei are
available (Bradfield et al., 2013a; Jankowski et al., 2013; Aggleton
and Nelson, 2015; Dillingham et al., 2015a; Mitchell, 2015; Wolff
et al., 2015a; Ouhaz et al., 2018; Pergola et al., 2018), our aim is
not to give a detailed analysis of these areas but to highlight gen-
eral functional principles that may transcend specific nuclei and
so be relevant for the cognitive thalamus as a whole. We will also
consider the role of corticothalamic versus thalamocortical pro-
jections and the integration of thalamocortical loops with other
cortical and subcortical networks. In doing so, we hope to pro-
vide a general overview of the current state of knowledge and to
identify areas where future research is needed.

The cognitive thalamus

Learning and memory

Memory was probably the first cognitive function formally asso-
ciated with the thalamus. Both the ATn and MD have been im-
plicated in the memory impairments associated with the
Korsakoff syndrome (Victor etal., 1971; Harding et al., 2000), but
their individual contributions to learning and memory appear
quite different (Bradfield et al., 2013a; Mitchell, 2015; Wolff et al.,
2015a). Indeed, it had been proposed that a double dissociation
existed between ATn and MD functions, with ATn supporting
recollective memory and MD supporting familiarity-based mem-
ory (Aggleton and Brown, 1999). Although recent data suggest
that this model does not entirely capture the mnemonic contri-
bution of the MD (Danet et al., 2017), experimental manipula-
tions in rodents have established clear distinctions between the
types of memory processes supported by these different thalamic
regions (Bradfield et al., 2013a; Wolff et al., 2015a).

ATn lesions in rodents produce striking impairments across
spatial memory tasks, with the severity of deficit often compara-
ble with that seen following hippocampal lesions (Warburton
and Aggleton, 1999; Aggleton and Nelson, 2015). Impairments
are found on reference and working memory, as well as path
integration tasks (Warburton et al., 1997; Warburton and Aggle-
ton, 1999; Frohardt et al., 2006). Thus, ATn lesions appear to
disrupt the processing of environmental cues and the updating
and monitoring of the animal’s position within the environment.
These spatial impairments are consistent with the electrophysio-
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logical properties of the ATn, as this structure contains a number
of spatially responsive cells encoding information, such as orien-
tation, spatial location, and running speed (Taube, 1995; Tsanov
et al., 2011b; Jankowski et al., 2015; Laurens et al., 2016). In
contrast, the recognition of single items does not appear to re-
quire the ATn, although the ATn may be important for reducing
interference between multiple similar items (Law and Smith,
2012; Nelson and Vann, 2017). Furthermore, ATn lesion-
induced impairments are found when animals are required to
combine item memory with additional features, such as temporal
order and location (Parker and Gaffan, 1997; Wilton et al., 2001;
Wolff et al., 2006; Dumont and Aggleton, 2013; Nelson and
Vann, 2014). While a similar pattern of deficits can be found
following MD lesions (Cross et al., 2012) MD lesions also impair
the ability to discriminate the temporal order of two items,
whereas temporal order memory impairments following ATn
lesions only emerge when multiple items are used (Mitchell and
Dalrymple-Alford, 2005; Nelson and Vann, 2017).

Although MD lesions can disrupt performance on spatial
memory tasks, this does not appear to arise from impairments of
spatial memory per se, but rather from impairments of strategic
aspects of the task (Hunt and Aggleton, 1998a). There is an on-
going assumption that MD is particularly important for working
memory because of its connections with the PFC (Watanabe and
Funahashi, 2012; Funahashi, 2013; Halassa and Kastner, 2017;
Parnaudeau et al., 2018) and because delay-dependent cells are
found in the primate MD (Funahashi, 2013). Cells displaying
delay-dependent activity have also been found in the rodent MD,
but the findings are far more variable with some studies showing
activity at delays comparable with cells within the dorsomedial
PFC (dmPFC) (Bolkan et al., 2017) and others showing no delay
activity (Han et al., 2013; Miller et al., 2017). Although MD dam-
age in primates disrupts working memory, these deficits are most
often found in combination with other memory or executive
deficits, suggesting that working memory itself may not be spe-
cifically compromised (Watanabe and Funahashi, 2012; Baxter,
2013). Inrodents, data from delayed nonmatching-to-place tasks
(i.e., spatial alternation) bring little support for the idea that the
MD contributes to working memory. This task takes advantage of
rodents’ natural tendency to search in novel locations for food
and requires rats to alternate between arms of a T-shaped maze,
often for a reward. Although this behavioral task appears simple,
it indeed relies on multiple cognitive processes and can be solved
using several different strategies (Dudchenko, 2001). Deficits can
thus reflect poor spatial memory, but several other factors can
also affect performance, including impulsivity, motivation,
reward-response associations, and interference sensitivity. When
impaired performance is observed after MD damage, it has often
been reported as transient or nonspecific (Stokes and Best, 1990;
Hunt and Aggleton, 1991, 1998a; Alexinsky, 2001; Chauveau et
al., 2005). Importantly, several experiments performed in differ-
ent laboratories found delayed nonmatching-to-place perfor-
mance to be unaffected after thalamic damage, even when
damage was substantial and long delays were included (Neave et
al., 1993; Hunt and Aggleton, 1998b; Mitchell and Dalrymple-
Alford, 2005; Alcaraz et al., 2016b). Experimental data support-
ing the opposite view (i.e., a role for the MD in delayed
nonmatching-to-place), mostly come from recent chemogenetic
and optogenetic interventions conducted in mice in which im-
pairments were found at longer delays (Parnaudeau et al., 2013;
Bolkan et al., 2017), as well as during the acquisition of the
nonmatching-to-place task (Parnaudeau et al., 2013). The appar-
ent discrepancy between these findings and earlier studies may
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Figure 1.  Different degrees of complexity for thalamocortical architecture. Basically defined as the reciprocal projections be-

tween prefrontal and thalamicareas (A), the thalamocortical loop includes an additional layer constituted by the reticular thalamic
nucleus (TRN, B). This area is one of the main sources of thalamic inhibition. Both thalamocortical and corticothalamic pathways
send collaterals to the TRN. In addition, the TRN sends supplemental inhibitory projections to other thalamic nuclei (C), not
included in the actual loop, thus opening this loop, which may allow gating of specific thalamocortical inputs (see also Fig. 3).

arise for a number of reasons. The most pronounced impair-
ments in these mouse studies are found during longer delays in
well-trained animals and thus might reflect impairments in ad-
ditional factors, such as impulsivity. The specificity of viral spread
within the thalamus may also be an issue in mice, and potential
encroachment into adjacent thalamic nuclei, such as the ATn,
could contribute to the findings (Hunt and Aggleton, 1998b;
Mitchell and Chakraborty, 2013; Aggleton and Nelson, 2015;
Wolff et al., 2015a), given that damage to the ATn, but not MD,
severely impairs spatial working memory (Alcaraz et al., 2016b).
Together, the overall picture appears to be that MD is not neces-
sary for working memory but may contribute to additional as-
pects of task performance, such as delay monitoring or habit
formation when animals are overtrained.

Shaping mental representations

Decades ago, Tolman (1948) coined the term “cognitive map” to
refer to a highly organized knowledge database that allows flexi-
ble actions. Cognitive maps can be considered mental represen-
tations requiring the combination of external cues with internal
states to generate accurate depictions of general rules and/or as-
sociative laws. These representations are vital for animals to suc-
cessfully interact with the world (Ramos, 2014). Although it is
possible to dissociate thalamic nuclei on the basis of their distinct
cognitive functions (Mitchell and Dalrymple-Alford, 2005, 20065
Wolffet al., 2008b, 2015a, b; Bradfield et al., 2013a; Moreau et al.,
2013), this does not contradict the idea of an overall involvement
of the cognitive thalamus in shaping mental representations. For
instance, while the ATn and the MD belong to distinct functional
circuits, they are both considered important for directing atten-
tion to task-relevant behavioral features (Wolff et al., 2015b;
Wrightetal., 2015), which is required to build task-relevant men-
tal constructs. Moreover, thalamic damage often impairs mem-
ory acquisition, suggesting further that forming meaningful
representation requires thalamic integrity (Cermak et al., 1980;
Vann and Aggleton, 2003; Wolff et al., 2008b; Marchand et al,,
2014; Sweeney-Reed et al., 2014).

Even after initial learning is established, the thalamus contin-
ues to play an important role, possibly by monitoring and updat-
ing current information within a changing environment. For
example, ATn damage appears to be particularly detrimental
when elements of flexibility are required to solve ongoing chal-
lenges: the ability to reach a previously learned position from a
new start is disproportionally impaired by ATn lesions (Wolff et
al., 2008a), as is spatial alternation when the animal is released
from opposite arms for sample and test trials (Warburton et al.,
1997; Loukavenko et al., 2007, 2016). A common feature of these
experimental situations is that animals must track changes in task
demands and update their current frame of reference accordingly
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to maintain successful performance. The
MD also appears to be particularly impor-
tant when successful performance re-
quires the update of action-outcome or
stimulus-outcome associations, as shown
in rodents (Corbit et al., 2003; Ostlund
and Balleine, 2008; Bradfield et al., 2013a;
Parnaudeau et al., 2015; Alcaraz et al,,
2016b, 2018) and also in primates (Mitch-
ell et al., 2007; Izquierdo and Murray, 2010;
Browning et al., 2015; Chakraborty et al.,
2016; Wicker et al., 2018).

Together, these data highlight a role
for thalamic nuclei in monitoring, main-
taining, and updating mental constructs,
in contrast to previous views, which have emphasized the domi-
nant role of cortical areas (Wilson et al., 2010, 2014; Markov et al.,
2013). Increasing evidence indicates instead that close functional
interactions between cortical and thalamic areas are essential to
shape these representations to address ongoing challenges (Cross
etal.,2012; Parnaudeau et al., 2013; Browning et al., 2015; Bolkan
etal., 2017; Miller et al., 2017; Schmitt et al., 2017; Alcaraz et al.,
2018; Marton et al., 2018). To better understand the nature of
these interactions, it is necessary to consider specific features of
the organization of thalamocortical circuits.

The thalamocortical loop

One hallmark of thalamocortical circuits is the reciprocity of pro-
jections between cortical and thalamic areas. This has been
viewed as “reentry,” a process whereby two or more brain regions
concurrently stimulate, and are stimulated by, each other. This
reciprocal and parallel processing supports the synchronization
of neuronal firing required for rapid neural integration. The
binding of activity across a number of regions is thought to un-
derpin the conscious processing of stimuli, which is necessary to
form a unified mental construct (e.g., a scene or visual represen-
tation) (Tononi and Edelman, 1998; Tononi et al., 1998; Edelman
and Gally, 2013). As aresult of recent technical advances, it is now
possible to selectively target projection-defined neurons, which
has opened up new possibilities in assessing the functional role of
thalamocortical versus corticothalamic pathways. Two recent
studies have used this approach and have shown that reciprocal
pathways between MD and the dmPFC can be functionally dif-
ferentiated (Bolkan et al., 2017; Alcaraz et al.,, 2018). Thus,
thalamocortical and corticothalamic pathways may play comple-
mentary but dissociable roles in cognition. Unlike thalamocorti-
cal projections, which are mostly ipsilateral, corticothalamic
projections also provide substantial contralateral innervation at
the thalamic level (Preuss and Goldman-Rakic, 1987; Négyessy et
al., 1998; Bradfield et al., 2013a; Mathiasen et al., 2017). These
projections include collaterals to the reticular thalamic nucleus,
which in turn provides lateral inhibition for virtually any tha-
lamic nucleus (Pinault, 2004; Halassa and Acsady, 2016) (Fig. 1).
The functional relevance of this organization is discussed below.

Corticothalamic pathways: directing cognitive resources

A cardinal feature of higher-order thalamic nuclei is that they
receive both a modulatory input and a driver input from the
cortex (from layers 6 and 5, respectively) (Usrey and Sherman,
2018). This organization suggests important functional roles for
corticofugal pathways, possibly implementing additional and in-
direct corticocortical routes through the thalamus (Jones, 1998;
Sherman, 2005, 2012). This view is, however, largely speculative
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and mostly derived from neurophysiological studies of sensory-
motor functions (Sherman, 2016). But even sensory mechanisms
can contribute to cognition: they may be viewed as enabling ab-
straction of relevant information, thus helping to represent the
external world in a meaningful way (Cudeiro and Sillito, 2006).
Branching of thalamocortical pathways at the level of the reticu-
lar thalamic nucleus may enable the gating of salient thalamic
inputs by minimizing the importance of those that are currently
irrelevant (McCormick and von Krosigk, 1992; Zikopoulos and
Barbas, 2007; Stillova et al., 2015), thus providing a possible
mechanism of focused attention (Béhuret et al., 2015; Wimmer et
al., 2015). This view is rooted in the ideas initially developed by
Crick (1984) of the reticular thalamic nucleus acting as an
attentional searchlight. Interestingly, increased modulation of
corticothalamic pathways has been found to parallel increased
attentional demand in humans (Jagtap and Diwadkar, 2016). The
dynamic nature of the excitatory-inhibitory balance at the tha-
lamic level depends on current behavioral demand, with critical
dependence on corticothalamic pathways and their collaterals to
the reticular thalamic nucleus (Crandall et al., 2015; Li and Ebner,
2016). It is thus possible that cortical projections to the thalamus
directly adjust the gain and the tuning precision of thalamic cells
as required by ongoing behavioral demands (Mease et al., 2014;
Guo et al.,, 2017a).

Beyond their role in directing attentional resources, cortico-
cothalamic pathways have also been linked to processes under-
pinning learning. For example, direct evidence for a causal
involvement of corticothalamic pathways in learning has been
reported in an appetitive Pavlovian conditioning task. Optoge-
netic manipulation of the projections from PFC to the paraven-
tricular thalamic nucleus during task acquisition affected the
conditioned response, highlighting a role for this pathway in the
encoding of predictive environmental cues (Otis et al., 2017).
Furthermore, dmPFC-to-MD pathways have been demonstrated
to support upcoming choice either in a spatial working memory
task (Bolkan et al., 2017) or when the retrieval of current goal
value is required for successful responding (Alcaraz et al., 2018).
Importantly, these corticothalamic pathways also promote be-
havioral flexibility (Nakayama et al., 2018), especially when rule
switching is required (Marton et al., 2018). Collectively, these
data suggest a central role for corticothalamic pathways in cogni-
tion, and their functional relevance seems to range from directing
attention to solving cognitive challenges.

Thalamocortical pathways: more than a relay

Central to almost all definitions of thalamic function is the con-
cept that this region is a “relay.” Even those nuclei that are con-
sidered to have a more cognitive role are still considered to be
principally involved in relaying information either between cor-
tical sites or between medial temporal lobe and neocortex. This
description of thalamic function attributes little or no additional
role for these nuclei other than acting as a waystation. However,
this clearly underestimates and oversimplifies the role of the thal-
amus. The idea of thalamic regions monitoring and updating
information and providing an active contribution rather than a
passive relay is not in fact new. The MD was previously suggested
to be involved in mediating cognitive aspects of odor-guided
tasks rather than transmitting sensory information (Eichenbaum
etal., 1980). The latter possibility was considered because the MD
links the piriform cortex (the primary olfactory cortex) with the
orbitofrontal associative cortex (Courtiol and Wilson, 2015). But
even when using an odor-guided behavioral assay, it appears that
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task-related features, rather than purely sensory information, are
represented by MD cells (Courtiol and Wilson, 2016).

More recently, other evidence has emerged that also supports
the idea of nonrelay contributions of the thalamus. For example,
Schmitt et al. (2017) recently showed that the MD is able to
sustain cortical representations rather than relaying information.
These data emphasize a role for the thalamus in controlling cor-
tical connectivity to maintain rule representation (Halassa and
Kastner, 2017; Nakajima and Halassa, 2017). A causal relation-
ship between MD-PFC activity and social dominance behavior
was also recently established, underscoring further the impor-
tance of thalamic inputs for cortical functions (Zhou et al., 2017).
It should be noted that the importance of sustained thalamocor-
tical activity during delay has been observed to instruct future
actions in other thalamocortical circuits (Guo et al., 2017b), sug-
gesting that sustaining cortical activity may constitute an essen-
tial role of thalamic inputs.

Like the MD, the ATn does not passively relay information.
Instead these nuclei show long-term, input-dependent modifica-
tion of their responses, which can amplify the convergent inputs
from different sources (Tsanov et al., 2011a). Behavioral data are
also consistent with a nonrelay function for the ATn: the behav-
ioral effects of ATn lesions can be more pronounced than lesions
disrupting any of their individual inputs (e.g., Aggleton et al.,
1995; Warburton and Aggleton, 1999; Sziklas and Petrides, 2000
Wright et al., 2015; Powell et al., 2017), suggesting that no single
pathway supports all cognitive aspects of ATn function. There-
fore, it is unlikely that the ATn is a simple relay in the traditional
sense, but instead integrates information from midbrain, dien-
cephalic, hippocampal, and cortical regions (Tsanov etal., 2011a;
Vann and Nelson, 2015; Mathiasen et al., 2017). This view is also
supported by numerous studies showing the importance of ATn
inputs for driving activity in their cortical target, the retrosplenial
cortex. In rodents, ATn lesions disrupt a number of markers of
activity in the retrosplenial cortex (Dupire et al, 2013; Mendez-
Lopez et al., 2013; Aggleton and Nelson, 2015). Furthermore, the
retrosplenial cortex is hypoactive in patients with thalamic damage
(Reed etal., 2003). Importantly, retrosplenial cortex activity changes
are not simply a result of deafferentation (Garden et al., 2009; Vann
and Albasser, 2009; Frizzati et al., 2016), but likely reflect the loss of
functional coupling between the ATn and retrosplenial cortex. In-
deed, the close functional correspondence between the ATn,
hippocampus, and retrosplenial cortex highlights the possible im-
portance of the thalamus in synchronizing activity across multiple
regions (Corcoran etal., 2016; Eichenbaum, 2017; Halassa and Kast-
ner, 2017). Indeed, this function may be paramount for its role in
updating existing representations.

Beyond the thalamocortical loop

At this point, it seems appropriate to expand more broadly our
views of thalamic functions, looking beyond the thalamocortical
loop. How exactly do these loops integrate with other cortical and
subcortical circuits?

Cortical integration

Thalamocortical projections are both divergent and convergent
(Rubio-Garrido et al., 2009). This feature of thalamocortical ar-
chitecture provides an ideal basis for integration both within and
across cortical regions (Fig. 2). Keeping with the example of the
MD, several parallel thalamocortical pathways originate in MD
and target distinct prefrontal areas (Groenewegen, 1988; Alcaraz
et al.,, 2016a). In rodents, there is a clear topography as lateral MD
neurons innervate the dorsal wall of the PFC while medial MD neu-
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Figure 2.  In addition to the reciprocity of projections, divergence (4) and convergence (B) are two prominent features of

thalamocortical organization. Whereas the former underscores the possibility that multiple thalamic microcircuits act in parallel to
achieve cognitive functions, the latter offers enhanced integrative properties. Regarding convergence, MD innervation of the
dmPFCand the OFC originates from essentially separate neuronal populations (light blue), even though some MD cells branch to

several prefrontal areas. Sub, Submedius thalamic nucleus.

rons predominantly contact its ventral wall. In contrast, MD cells
located in the central segment essentially innervate the orbito-
frontal cortex (OFC) (Alcaraz et al., 2016a; Murphy and Deutch,
2018). In addition to this distinct topography across MD, indi-
vidual MD neurons also innervate several PFC regions, with col-
laterals contacting multiple cortical layers (Kuramoto et al.,
2017b). Together, this illustrates the highly divergent nature of
these thalamocortical projections.

By targeting different cell types and different neuronal com-
partments (Delevich et al., 2015; Collins et al., 2018), the MD can
influence varying aspects of PFC functioning. For example, the
MD projections to the dmPFC and the OFC have been proposed
to support instrumental and Pavlovian associations, respectively
(Ostlund and Balleine, 2008; Alcaraz et al., 2016a). An intriguing
possibility is that such organization enables simultaneous in-
struction of distinct cortical areas through different pathways,
further highlighting the multiple thalamic microcircuits that may
act in parallel to support cognition (Rikhye et al., 2018).

Moving onto convergence, cortical regions are typically inner-
vated by more than one thalamic nucleus. The PFC receives af-
ferent projections from a large number of thalamic nuclei,
including the intralaminar, midline, and anterior nuclei (Barbas
et al., 1991). Taking the OFC as an example, the main thalamic
efferents to the OFC originate from the MD and the much-less-
known submedius thalamic nucleus (Yoshida et al., 1992; Alcaraz
et al., 2016a; Kuramoto et al., 2017a). At present, the functional
relevance of this type of organization is unclear, although both
thalamic nuclei appear to support successful updating of
stimulus-outcome associations, a cardinal function of the OFC
(Ostlund and Balleine, 2008; Alcaraz et al., 2015). At a cellular
level, however, it is not known whether the inputs from MD and
the submedius thalamic nucleus actually converge on single cor-
tical neurons. Convergence onto a single cortical cell could ac-
count for the synergistic amplification of signals, which may be
particularly important for accentuating behaviorally relevant
environmental features. The more general process of neuronal
convergence would encourage the integration of different in-
formation streams, enabling the development of more de-
tailed multisensory mental representations (Man et al., 2013).

Disentangling the functional contribution of diverging and
converging thalamic inputs will be an important objective for
future research, especially considering that these features of
thalamocortical organization appear to be largely conserved be-
tween species (Padberg et al., 2009).

Subcortical integration
While interactions between the thalamus and cortex are critical
for cognition, there is increasing evidence that thalamic nuclei
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may also have arole in integrating subcor-
tical information. The ATn receives in-
puts from the hippocampal formation
directly, mainly via the fornix (Dilling-
ham etal., 2015b), as well as indirectly, via
the mammillary bodies. However, this
does not result in redundancy or a repli-
cation of information because the inputs
are from distinct hippocampal popula-
tions (Amin et al., 2010; Christiansen et
al,, 2016), suggesting that the ATn may
have a role in combining these separate
hippocampal inputs. Projections from the
mammillary bodies predominantly act as
drivers to the ATn, whereas the cortical/
hippocampal inputs have a modulatory
role, specifically in the case of the anterodorsal nucleus (Somogyi
et al., 1978; Petrof and Sherman, 2009). Consistent with this dis-
tinction between inputs, direct hippocampal inputs to the ATn
elicit long-term depression, whereas the projections from the
mammillary bodies elicit long-term potentiation (Tsanov et al.,
2011a).

In addition to being a convergence point for separate hip-
pocampal inputs, the ATn receives direct and indirect inputs
from the midbrain tegmentum. The direct cholinergic input
arises from the laterodorsal tegmental nucleus, whereas the indi-
rect inputs come from the dorsal and ventral tegmental nuclei of
Gudden. These midbrain inputs appear crucial for learning and
memory (Mitchell et al., 2002; Taube, 2007; Vann, 2009; Clark et
al., 2013; Vann, 2013), and the indirect inputs are critical for the
head-direction and theta signals found in the ATn (Satoh and
Fibiger, 1986; Bassant and Poindessous-Jazat, 2001; Kocsis et al.,
2001; Bassett et al., 2007; Zakowski et al., 2017).

Other thalamic nuclei also exhibit a close partnership with
subcortical areas, especially the striatum. The dorsal striatum is
the recipient of a strong glutamatergic innervation originating
from both the centro-median/parafascicular complex and the in-
tralaminar group (Galvan and Smith, 2011). These thalamic
groups are crucial for the role of the basal ganglia (BG) role in
behavioral flexibility; they provide behaviorally relevant infor-
mation and have been linked to goal-directed action selection in
both rodents and humans (Brown et al., 2010; Kato et al., 2011;
Liebermann et al., 2013; Schepers et al., 2017; Kato et al., 2018).
For instance, removal of the parafascicular nucleus (Pf) in rats
disrupted goal-directed behaviors by preventing rats from updat-
ing action-outcome associations (Bradfield et al., 2013b). Impor-
tantly, this manipulation was also found to reduce intrinsic
activity of striatal cholinergic interneurons specifically, suggest-
ing the existence of a direct link between behavioral flexibility and
Pf inputs to these striatal cholinergic interneurons (Bradfield et
al., 2013b; Yamanaka et al., 2018). Using cross-unilateral lesions
of the Pf and striatum, Bradfield and Balleine (2017) showed that
the impairment in updating action-outcome associations was
due to an inability to use internal state to access the appropriate
associations; in contrast, the use of external context to control
accurate goal-directed action selection remained intact (Brad-
field and Balleine, 2017). Lack of flexibility after inhibition of this
thalamostriatal pathway is also evident in other paradigms, such
as the five-choice serial reaction time task (Saund et al., 2017).
These findings further highlight the importance of the thalamus
in monitoring and updating mental representations in response
to changing circumstances.
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This latter consideration certainly calls for a critical assess-
ment of how thalamocortical loops and the BG integrate. The
thalamostriatal projection described above has only been mini-
mally featured in classic models of BG functioning (Bostan and
Strick, 2018). Instead, the emphasis has been on thalamic nuclei
as a motor output, even though this does not address the contri-
bution of thalamus-to-BG pathways (Goldberg et al., 2013). Such
amodel is supported by the fact that the motor thalamus, that is,
the ventral anterior/ventral lateral thalamic areas, is one of the
main recipients of BG output. But even this admittedly motor
thalamic region has been shown to play a crucial role in perfor-
mance monitoring (Seifert et al., 2011; Ullsperger et al., 2014).

The other main thalamic recipient of BG projections is the
MD. This BG-MD pathway has also shown to be necessary for
higher-order cognition (Leung and Balleine, 2015). As a result, a
more integrative picture of the thalamus is now emerging, espe-
cially when considering the existence of multiple and interacting
cortico-BG-thalamo-cortical loops (Haber and Calzavara, 2009;
Bell and Shine, 2016). Interestingly, both corticostriatal and cor-
ticothalamic pathways were recently demonstrated to support
behavioral flexibility, whereas corticocortical pyramidal prefron-
tal neurons were not (Nakayama et al., 2018), further demon-
strating the key contribution of subcortical areas for high-order
cognition. Together, these data suggest a critical role for the thal-
amus in integrating subcortical as well as cortical inputs to sup-
port cognitive functions.

The thalamus: a bridge between the medial temporal lobe and
frontal cortex

To account for the myriad cognitive symptoms and memory im-
pairments elicited by thalamic damage, an interesting early pro-
posal was that the thalamus acts as a link between the medial
temporal lobe and the frontal lobe (Warrington and Weiskrantz,
1982). Accordingly, disconnecting the hippocampal inputs to the
ATn impairs performance on spatial memory tasks (Warburton
et al., 2000). Furthermore, ATn damage in rodents and medial
diencephalic damage in patients reduce activity in the frontal
cortex (Kapur, 1994; Jenkins et al., 2002; Reed et al., 2003; Caulo
etal., 2005; Vann and Albasser, 2009; Ozyurt et al., 2014). How-
ever, ATn lesion effects are unlikely to be due to the disruption of
a one-way flow of information from the hippocampal formation
to the frontal cortex as originally suggested. Indeed, the impor-
tance of the return projections from the ATn to the hippocampus
has been recently highlighted (Vann and Nelson, 2015). For ex-
ample, memory elicited event-related potentials in the ATn have
been found to precede those in the hippocampus, suggesting a
flow of information from ATn to the hippocampus, rather than
the reverse (Stillova et al., 2015). The activity changes found in
the frontal cortex following thalamic damage may therefore re-
flect a role for ATn in coordinating and synchronizing activity
across hippocampal and cortical regions (Sweeney-Reed et al.,
2014).

The MD could also be seen as link between the medial tempo-
ral lobe, as a recipient of projections originating from the BLA
(technically a medial temporal lobe structure), and the OFC
(Timbie and Barbas, 2015; Wolff et al., 2015a). It is therefore
interesting to note that lesions to either MD or the BLA produce
qualitatively different impairments when the contingency be-
tween predictive cues and their outcome is modified (Ostlund
and Balleine, 2008). In that study, rats were trained to respond to
two stimuli that reliably predicted a reward. Subsequently, one of
the stimuli became noncontingently paired with reward, whereas
the other remained a reliable predictor. After this manipulation,
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rats with BLA lesions did not adapt their behavior and continued
to exhibit a positive conditioned response to both contingent and
noncontingent stimuli. In contrast, rats with MD lesions exhib-
ited a nonspecific effect with reduced responding to both the
noncontingent and contingent stimuli (i.e., they ceased to re-
spond to cues that still reliably predicted their outcome) (Ost-
lund and Balleine, 2008). This suggests that adaptive cognition
requires the functional contribution of multiple complementary
pathways. Further work is thus warranted to examine the func-
tional contribution of the connections between these areas and
their cortical target, the OFC.

The reuniens nucleus (Re) is another thalamic nucleus that
has recently received much attention due to its role in connecting
prefrontal and temporal lobe areas: it projects to multiple frontal
areas and is the main source of thalamic afferents to the hip-
pocampus. Because all of these projections are reciprocal, the Re
is thought to be a major hub, orchestrating functional exchanges
between frontal areas and the hippocampus, especially in the
absence of direct inputs from the PFC to the hippocampus (McK-
enna and Vertes, 2004; Vertes et al., 2006; Hoover and Vertes,
2012; Varela et al., 2014). Because of these unique properties, an
unusually large number of studies have been conducted recently
to assess the possible functions of these Re projections. There are
anumber of excellent review papers available on the subject (Cas-
sel et al., 2013; Cassel and Pereira de Vasconcelos, 2015; Pereira
de Vasconcelos and Cassel, 2015; Vertes, 2015). Briefly, Re dys-
function affects contextual fear memory (Xu and Sudhof, 2013;
Vetere et al., 2017), impairs spatial memory consolidation (Lou-
reiro et al., 2012), either increases or decreases behavioral flexi-
bility (Cholvin et al., 2013; Linley et al., 2016; Prasad et al., 2017;
Viena et al., 2018), impedes goal-directed spatial navigation (Ito
et al., 2015), or delayed nonmatching-to-place (Hallock et al.,
2013, 2016; Viena et al., 2018), and even affects visual threat
responses (Salay et al., 2018). Given these diverse findings, con-
tinued research is needed before it is possible to generate global
functional models of this region. Nevertheless, an interesting
proposal, and a recurring theme across thalamic nuclei is that the
Re may be particularly important for synchronizing PFC and
hippocampal activity, facilitating functional exchanges between
these areas (Eichenbaum, 2017). The wide array of functions that
appear to be Re-dependent may therefore reflect the diverse na-
ture of the tasks that require functional cooperation between PFC
and hippocampal areas.

Future directions
At this point, it should be evident that cognitive functions are
supported by distributed neural circuits among which thalamic
nuclei play highly integrative roles. In this Viewpoints article, we
examined recent evidence implicating thalamic nuclei in high-
order cognitive functions and have attempted to highlight how
many of these new findings support aspects of early cognitive
views of thalamic functions (e.g., Warrington and Weiskrantz,
1982; Sherman and Guillery, 1996; Aggleton and Brown, 1999).
We therefore propose that a central role for the cognitive thala-
mus is to shape mental representations, either by maintaining
relevant mental constructs online or by updating those no longer
relevant for ongoing challenges (Fig. 3). This proposition builds
on many diverse experimental findings and focuses on general
thalamic functions rather than specific contributions of individ-
ual nuclei.

The thalamus has been increasingly implicated in neurologi-
cal disorders that present with cognitive dysfunction, including
schizophrenia (Pinault, 2011; Uhlhaas et al., 2013; Anticevic et
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A, Divergence, convergence, and gating are essential functional principles of thalamocortical circuits. Divergent and convergent thalamocortical pathways may promote parallel

functioning and integrative processing at the cortical level, respectively. In addition, returning corticothalamic pathways are able to gate relevant thalamocortical inputs through lateral inhibition
at the level of the TRN. This architecture may contribute to the maintenance (B) or updating (C) of cortical representations. In the latter case, some mental constructs may no longer be relevant

(outlined in gray dashed line), whereas others become more prominent (blue solid arrows).

al., 2014), drug addiction (Balleine et al., 2015), Korsakoff syn-
drome (Victor et al., 1971; Harding et al., 2000), Alzheimer’s
disease (Braak and Braak, 1991), and Down syndrome (Karlsen et
al., 2014; Perry et al., 2018). Therefore, new models of thalamic
function may better explain the pattern of deficits associated with
these conditions.

While we share the belief that thalamus research has entered a
new era and that virtually any brain region has a thalamic story to
tell (Acsady, 2017), we also anticipate the danger of being over-
whelmed by data that may be difficult to replicate or to extend.
Relying on standardized behavioral assays may be key, as is in-
depth analysis of the literature. Technical developments progress
at a much higher rate than conceptual advances. The latter can
only be supported by a better analysis of how new data integrate
with the preexisting knowledge. In doing so, conceptual views
may be enriched, revised, or even drastically changed if novel
technical approaches are used to test some of their predictions.

As discussed at several points throughout this article, there are
areas of thalamic research where our current knowledge is woe-
fully lacking. Filling these missing gaps could prove invaluable in
testing and advancing current models of thalamic function. First,
the functional relevance of divergent and convergent thalamo-
cortical or corticothalamic pathways needs to be addressed more
systematically. Until recently, this has been technically impossi-
ble due to methodological limitations. But by using a combina-
tion of chemogenetic and/or optogenetic approaches, it is now
possible to test the relative contributions of these separate path-
ways. There is no single, definitive experiment to address this
issue; instead, we believe the combined effort across multiple
laboratories will be essential to advancements in this area. Sec-
ond, although a large part of this Viewpoints article has empha-
sized functional interactions between the cortex and the
thalamus, we also highlighted the importance of the thalamus for
subcortical integration. There is a clear need for additional data
to better appreciate how the thalamus interacts with the BG and
other subcortical areas. Furthermore, the advances in multisite in
vivo recordings will help address the contribution of the thalamus
for coordinating and synchronizing brainwide activity. Finally,
work on the thalamus has been performed either by researchers
primarily interested in sensory-motor nuclei or by those inter-
ested in cognition. Surprisingly, these two worlds have been quite
separate and relatively unaware of the progress made in the other
field. We believe in the potential of uniting efforts in promoting a
cognitive view of the thalamus, from sensory salience to adaptive
cognition.
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