
Behavioral/Cognitive

More Is Less: Increased Processing of Unwanted Memories
Facilitates Forgetting
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The intention to forget can produce long-lasting effects. This ability has been linked to suppression of both rehearsal and retrieval of
unwanted memories, processes mediated by the prefrontal cortex and hippocampus. Here, we describe an alternative account in which
the intention to forget is associated with increased engagement with the unwanted information. We used pattern classifiers to decode
human functional magnetic resonance imaging data from a task in which male and female participants viewed a series of pictures and
were instructed to remember or forget each one. Pictures followed by a forget instruction elicited higher levels of processing in the ventral
temporal cortex compared with those followed by a remember instruction. This boost in processing led to more forgetting, particularly
for items that showed moderate (vs weak or strong) activation. This result is consistent with the nonmonotonic plasticity hypothesis,
which predicts weakening and forgetting of memories that are moderately activated.
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Introduction
We forget most of our experiences. This may seem bleak, but
memory loss is essential to the human experience; we are bom-
barded with too much information each moment to preserve
everything. Forgetting is an adaptive feature of memory in which
unwanted or irrelevant information is discarded to improve ac-
cess to other memories. Which information should be saved and

which discarded? While this challenge is often solved automati-
cally by the brain (Kim et al., 2017), people can also exert voli-
tional control over what they forget (Bjork et al., 1998; Macleod,
1999; Anderson and Green, 2001).

Successful intentional forgetting has been linked to a variety of
memory processes at encoding and decision processes at retrieval
(Johnson, 1994). Some recent neuroscience research has focused
on the active inhibition of unwanted memories during encoding.
This research has found that the ability to intentionally forget an
unwanted experience engages inhibitory processes in frontal con-
trol regions that act to suppress the undesired information
(Benoit and Anderson, 2012; Anderson and Hanslmayr, 2014;
Hulbert et al., 2016). Successful attempts to intentionally forget
new memories are associated with increased activity in the right
dorsolateral prefrontal cortex and decreased activity in hip-
pocampus, along with increased functional coupling between
these two regions. However, it is unclear how neural representa-
tions of memories in the sensory cortex are related to deliberate
forgetting. Recent work has shown that, during attempts to re-
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Significance Statement

The human brain cannot remember everything. Forgetting has a critical role in curating memories and discarding unwanted
information. Intentional forgetting has traditionally been linked to passive processes, such as the withdrawal of sustained atten-
tion or a stoppage of memory rehearsal. It has also been linked to active suppression of memory processes during encoding and
retrieval. Using functional magnetic resonance imaging and machine-learning methods, we show new evidence that intentional
forgetting involves an enhancement of memory processing in the sensory cortex to achieve desired forgetting of recent visual
experiences. This enhancement temporarily boosts the activation of the memory representation and renders it vulnerable to
disruption via homeostatic regulation. Contrary to intuition, deliberate forgetting may involve more rather than less attention to
unwanted information.

The Journal of Neuroscience, May 1, 2019 • 39(18):3551–3560 • 3551

mailto:tracy.wang@utexas.edu


trieve memories, distributed representations in the sensory cor-
tex of competing memories get suppressed, which contributes to
the incidental forgetting of those competing memories (Wimber
et al., 2015; Hulbert et al., 2016). It seems reasonable to expect,
therefore, that sensory representations of to-be-forgotten (TBF)
information might similarly be suppressed during deliberate at-
tempts at forgetting.

In our experiment, we hypothesized that deliberate forgetting
is facilitated by the weakening of moderately active memories
represented in the sensory cortex, specifically in the ventral tem-
poral cortex (VTC; Rissman and Wagner, 2012; D’Esposito and
Postle, 2015; Christophel et al., 2017). This idea follows from the
nonmonotonic plasticity hypothesis (NMPH; Norman et al.,
2006, 2007; Newman and Norman, 2010; Detre et al., 2013),
which proposes a U-shaped relationship between memory acti-
vation and learning such that moderate levels of memory activa-
tion lead to weakening of the memory, whereas higher levels of
activation lead to strengthening. In our prior work, we showed
how the NMPH can explain incidental forgetting of items in
working memory (Lewis-Peacock and Norman, 2014). When
participants did not decisively switch their attentional focus be-
tween two items in working memory, the previous item would
linger in a state of moderate activation [as measured by pattern
classifiers applied to functional magnetic resonance imaging
(fMRI) data]. According to the NMPH, these items were suscep-
tible to weakening, and indeed we found that they were associated
with worse subsequent memory, compared with trials with rela-
tively less or more activation. Here, we sought to test whether an
instruction to deliberately forget an item would leave it in a state
of moderate activation, thus making it susceptible to weakening
and subsequent forgetting. To test this prediction, we used an
item-method directed-forgetting paradigm (Bjork et al., 1998;
MacLeod, 1999) in which participants were presented with pic-

tures of faces and scenes with each picture followed by an instruc-
tion to remember or forget that picture (Fig. 1c). All pictures,
regardless of memory instruction, were later presented along
with novel pictures in a recognition memory test at the end of the
experiment. We hypothesized that participants would change the
amount of attention directed to a TBF item, and hence to alter its
state of memory activation relative to to-be-remembered (TBR)
items (Lewis-Peacock and Postle, 2012; Lewis-Peacock et al.,
2012; LaRocque et al., 2014). To quantify and track memory
activation, we applied pattern classifiers to human fMRI data in
the VTC to measure processing of face and scene items through-
out each trial. These neural measurements were contrasted be-
tween TBR and TBF trials to assess the impact of attempting to
deliberately forget. Finally, trial-by-trial neural measurements
were linked to subsequent memory outcomes to evaluate the
relationship between memory activation in the sensory cortex
and forgetting success.

Materials and Methods
Subjects
Twenty-four healthy subjects between the ages of 18 and 35 were re-
cruited from the University of Texas at Austin student body as well as
from the surrounding community in accordance with guidelines of the
University of Texas Institutional Review Board. Subjects were compen-
sated at a rate of US$20/h. Informed consent was obtained from all
subjects. All subjects were right-handed and had normal or corrected-to-
normal vision. Exclusionary criteria included psychiatric disorder,
substance abuse, and use of psychotropic medication. During the data-
collection phase, two subjects were excluded for sleeping in the scanner
and one additional subject was excluded for claustrophobia. Yet another
subject was excluded due to a data-storage malfunction. A total of 20
subjects (10 female; mean, 23.6 years old) are included in reported anal-
yses, unless otherwise indicated. An fMRI response box malfunction
affected behavioral data recorded for four subjects. As a consequence, in

Figure 1. Task procedures, classifier sensitivity, and subsequent memory performance. a, Participants performed a category localizer (1-back task) in the scanner with objects, faces, scenes, and
rest. b, Left, Classifier evidence scores (between 0 and 1) for each target category were obtained from cross-validation analysis of fMRI data from the localizer. Right, Visual depiction of VTC ROI used
for MVPA classification visualized over standard MNI space from the ventral to dorsal perspective. c, Next, participants performed item-method directed forgetting on faces and scenes in the scanner.
They made a subcategory judgment on each picture, and then a cue appeared telling them either to remember (black cross) or to forget (yellow cross) that picture. d, At the end of the experiment,
participants were given a recognition memory test for all studied items. The d� memory scores are based on high-confidence responses. Mean and SEM shown for each condition. *p � 0.003. Error
bars indicate the SEM, n � 20.
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the localizer task, two subjects were not included in the analysis of re-
sponse latency and accuracy while two others included only accuracy
information. For the encoding phase, two subjects were not included in
the analysis of encoding task accuracy and response latency, while a third
subject contributed only task accuracy information. Critically, these
three subjects completed the task, contributed recognition memory task
data, and were included in the main analyses.

Stimuli
Experimental materials comprised color pictures of scenes, faces, and
objects. A large collection of face stimuli was drawn from a previously
published experiment (Lewis-Peacock and Norman, 2014) and their
sources (including the NimStim face stimulus database, Tottenham et al.,
2009). Faces had neutral expressions, were cropped from the neck down,
and shown over a white background. A subset of these faces was chosen
based on moderate memorability (2.33– 4.10; mean: 3.17; Lewis-Peacock
and Norman, 2014). A subset of scenes from the Fine-Grained Image
Memorability Dataset was used in the present experiment (Bylinskii et
al., 2015). Scenes were chosen by taking images comprising moderate
memorability ratings (2.28 – 4.38; mean: 3.278; scaled from 1 to 5) for the
task. Objects were drawn from various on-line sources, including Google
Images, cropped to exclude any original background, and displayed over
a white background. All items were sized to 300 � 300 pixels and pre-
sented using Psychophysics Toolbox Version 3 in Matlab 2014a on an
Apple MacBook Air computer running OS X 10.5.

Experimental design and statistical analysis
Procedures
Each subject completed three phases in the experiment: localizer, encod-
ing, and recognition, in that order (Fig. 1a,c,d). The first two phases were
administered in the MRI scanner, while the recognition phase was ad-
ministered outside the scanner �10 –15 min after the encoding phase
was completed. In the localizer phase, subjects performed a perceptual
localizer task to train fMRI pattern classifiers on categories of scenes,
faces, objects, and rest. Subjects performed a one-back task with 18 s
miniblocks of items from the three stimulus categories. They also ob-
served 18 s miniblocks of a blank screen with a fixation cross, which
served as the baseline “rest” condition. A miniblock consisted of nine
items from the same category shown in succession with 8 s in between
miniblocks. For each miniblock, one or two items repeated, thus there
were 7– 8 unique items per miniblock. For each item, subjects were re-
quired to respond “not a repeat” with their right index finger button or
“repeat” with their right middle finger button. Within the miniblocks,
each trial began with the presentation of a single item for 1.5 s, followed
by three horizontally aligned fixation crosses for 50 ms. The localizer
phase consisted of three localizer runs. Each run included four blocks,
and each block included one miniblock of each category type. Across all
three runs, the localizer included 90 faces, 90 scenes, 90 objects, and 12
miniblocks of rest. For each participant, stimuli were randomly selected
for the localizer and then not presented again. The entire localizer phase
lasted �15 min.

The second phase, the encoding phase, comprised an item-method
directed-forgetting task with a random selection of new face and scene
images. In this task, subjects were shown either a face or a scene for 3 s.
During the presentation of each item, subjects were instructed to give a
subcategory judgment. If a face was presented, subjects were to indicate
whether the face was that of a male or female. If a scene was presented,
subjects were to indicate whether the scene was indoors or outdoors.
Following the presentation of the item, an instruction cue was given for
6 s in the form of a yellow fixation cross (“forget,” TBF) or black fixation
cross (“remember,” TBR) presented in the center of the screen. Unlike
the task diagram in Figure 1c, the actual size of this fixation cross in the
experiment was quite small— occupying an area of only 24 � 24 pts, or
0.07% of the total screen size from a projector configured at a resolution
of 1024 � 768 pts. Subjects were instructed to apply the instruction
represented by the cue to the preceding item. Subjects were not encour-
aged to use any particular strategy. Rather, they were instructed to simply
forget or remember the previously presented item. Importantly, critical

TBF trials were always preceded by a TBR trial of the opposing category
(e.g., if a face was presented on a TBF trial, a scene preceded it on a TBR
trial) so that our category-specific pattern classification analyses could
distinguish trial-specific memory processing (see Multivariate). To dis-
courage subjects from anticipating the forget instruction, we included 60
additional TBR trials distributed across the experiment to precede other
TBR trials. Therefore, there were instances in which a TBR trial was
followed by another TBR trial, but a forget trial was never followed by
another forget trial. None of the participants reported any explicit aware-
ness of any predictable sequence of stimulus category or memory instruc-
tion. Note that for our analyses comparing the trial conditions, we
excluded data from these additional TBR trials. This allowed equal sam-
pling of trials from both TBR and TBF conditions (96 trials each). Sup-
porting analysis found no differences in subsequent memory (t(19) �
1.01, p � 0.325) or classification of the neural data for the 60 TBR trials
versus the 96 TBR trials used in the main analysis (data not shown). Each
of six runs of the directed-forgetting phase included 42 trials (16 TBF, 26
TBR; 21 faces, 21 scenes) and lasted �6 min. Across all runs, there were
252 total trials (96 TBF, 156 TBR; 126 faces and 126 scenes), which lasted
�38 min.

The third phase of the experiment was a self-paced recognition test
conducted outside the scanner. Subjects performed a recognition mem-
ory task on a large set of 504 items, which included 252 items from the
study task (half faces, half scenes) and 252 new items. Subjects were asked
to give confidence judgments (“definitely old,” “probably old,” “proba-
bly new,” or “definitely new”) to each item presented at test. To encour-
age recognition responses that reflect actual memory of the items, and to
discourage responses that reflected the instruction cue given at study
(e.g., to discourage a “definitely old” response being given to an item for
which the subject remembers being told to forget), confidence responses
were assigned points. Subjects were informed of the point system, in-
structed to maximize their points, and the total point sum was reported
to the subject at the end of the test. The point system was as follows: for
each old item, a new response (“probably new” or “definitely new”) was
penalized with �1 point while an old response (“probably old” or “def-
initely old”) was awarded �1 point. For each new item, an old response
(“probably old” or “definitely old”) was penalized �1 point while a new
response (“probably new” or “definitely new”) was awarded �1 point.
Practice items for both localizer and study items were administered be-
fore the scan session. Test items were not practiced.

Subsequent memory analysis
We calculated subsequent memory sensitivity using d�, treating only
“high-confidence old” responses as hits. This metric accounts for both
hit rates and false-alarm rates.

fMRI data acquisition
Functional and anatomical MRI data were acquired on a 3 T MRI scanner
(Magnetom Skyra, Siemens AG) equipped with a 32-channel parallel
imaging head coil. Functional scans were acquired with a T2*-weighted
echo-planar image (EPI) sequence with the following parameters: TR �
1 s; TE � 30 ms; flip angle, 63°; 2.4 mm slices; no gap; matrix size, 110 �
110; field of view (FOV), 230 mm; 56 oblique axial slices; multiband
acceleration factor, 4. Slices were acquired in interleaved order. Auto-
matic high-order shim was used to orient acquisition parallel to the
anterior commissure–posterior commissure line for full coverage of the
brain with limited coverage of the cerebellum. Data were acquired for
both localizer and study phases, while the test phase was acquired outside
the scanner. High-resolution T1-weighted anatomical images were ac-
quired for all subjects using a three-dimensional magnetization-
prepared rapid acquisition gradient echo (MPRAGE) pulse sequence
(TR � 1.9 s; TE � 2.43 ms; flip angle, 9°; FOV, 256 mm; matrix size,
256 � 256; voxel size, 1 mm 3; 192 slices; sagittal acquisition).

fMRI data analysis
Univariate. Functional EPI images were preprocessed and analyzed using
SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) implemented under Matlab
R2014a. EPI images were spatially aligned to the mean volume and re-
oriented parallel to the anterior-to-posterior commissure plane before
normalization. All volumes were normalized to the Montreal Neurolog-
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ical Institute (MNI) template EPI* brain and further smoothed 6 mm
full-width at half-maximal. We implemented a mass univariate, general
linear model (GLM) analysis primarily to confirm the presence of
directed-forgetting effects found in previous experiments that used the
item-method directed-forgetting paradigm (Wylie et al., 2008; Rizio and
Dennis, 2013). We implemented a two-stage mixed-effects model by first
convolving the onset of each TBR and TBF instruction with a canonical
hemodynamic response function with its temporal and dispersion deriv-
atives. Stimulus onsets were not modeled due to their consistent tempo-
ral proximity with the instruction. An alternative model including these
regressors was created, and the results were not qualitatively different
from those reported here. In the first stage, we used the subsequent
memory procedure to sort trials from study into items subsequently
forgotten or subsequently remembered. Further, we segregated these
items into those previously presented with a TBF or a TBR instruction. In
the second stage, we carried these effects of interest forward into a
random-effects analysis. We were interested in two primary compari-
sons: (1) successful forgetting effects: regions demonstrating greater ac-
tivity for subsequently forgotten TBF items than for subsequently
remembered TBR items; (2) successful remembering effects: regions
demonstrating greater activity for subsequently remembered TBR items
than for subsequently forgotten TBF items. All effects are reported with
an uncorrected threshold of p � 0.001 (one-tailed) with a cluster extent
threshold of 237 voxels determined by Monte-Carlo simulations to con-
trol for type-1 errors using 3dClustSim (Cox, 1996) with the mixed-
model autocorrelation function option (Cox et al., 2017) to account for
the noise smoothness structure.

Multivariate. For multivoxel pattern analyses (MVPA; Lewis-Peacock
et al., 2014), functional EPI images were preprocessed and analyzed using
FSL [FMRIB (fMRI of the Brain) Software Library] 5.0 (https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/) subroutines implemented under Matlab R2014a.
Functional images were realigned to the middle volume of the middle
(fifth overall) run to correct for motion, and high-pass filtered (128 s) to
eliminate slow drift. All MVPA analyses were done in native space for
each participant [using the Princeton MVPA toolbox (https://github.
com/PrincetonUniversity/princeton-mvpa-toolbox) and subsequent
analysis in custom code in Matlab R2014a].

All MVPA analyses were conducted within an anatomical ventral tem-
poral mask for each participant. We focused our classifiers on activity in
the VTC, a region that serves as input to convergence zones (for example,
in the medial temporal lobes) responsible for storing long-term memo-
ries (Lavenex and Amaral, 2000); this enabled us to treat our scene and
face classifier evidence scores as reflecting the strength of the excitatory
inputs into memory regions. The ventral temporal mask (in MNI space)
was defined using boundaries delineated by Grill-Spector and Weiner
(2014) and created by merging the temporal fusiform cortex, parahip-
pocampal gyrus, occipital fusiform gyrus, and temporal occipital fusi-
form cortex regions from the Harvard–Oxford atlas (Frazier et al., 2005;
Desikan et al., 2006; Makris et al., 2006) found in FSL 5.0. To create
subject-specific masks, we coregistered EPI volumes to their own
MPRAGE structural volume using FSL FMRIB’s Linear Image Registra-
tion Tool (Jenkinson and Smith, 2001; Jenkinson et al., 2002). We then
used FSL FMRIB’s Nonlinear Image Registration Tool to register struc-
tural volumes to MNI space. Individual, native-space ventral temporal
masks were created by combining (with the registration parameters for
the MPRAGE) and applying a reversed transformation matrix from EPI
to MNI stereotaxic space on the ventral temporal mask described above.

We used MVPA to quantify the degree of face and scene category-
specific neural activity associated with items on TBF and TBR trials in the
VTC (as already defined). To ensure accurate decoding of face and scene
categories, we trained four binary L2-penalized logistic regression classi-
fiers (with a penalty of 50) on faces, scenes, objects, and rest-related
activity from the category localizer task. Each of these one-versus-other
classifiers produced a class evidence score for the class on which it was
trained. Therefore, the four evidence values did not need to sum to one.
For each miniblock, we trained and tested the classifier on the prepro-
cessed BOLD data from the 18 TRs after the onset of the first item. We
shifted regressors by 5 s to account for hemodynamic delay. Classifier
training consisted of using the leave-one-run-out method on the three

localizer runs, in which the classifier trains on one run, and tests on the
two others, rotating through until all runs were tested. Figure 1b, which
shows the mean classifier evidence for each category, demonstrates that
the classifiers have sufficient sensitivity to discriminate each category of
interest.

To decode the directed-forgetting task for each participant, we trained
classifiers on all localizer data (separately for each participant) and ap-
plied them to each TR of the TBR and TBF trials. Here, we produced
classification evidence output scores for each 1 s TR after the trial onset
(uncorrected for hemodynamic delay). From the decoded classifier
evidence at each time point in each trial, we calculated “target” and
“nontarget” evidence by appropriately relabeling the data (e.g., “face”
evidence became target evidence, and “scene” evidence became nontar-
get evidence on a face trial). Finally, we calculated the differences between
target and nontarget evidence to reflect the relative balance of trial-
relevant and trial-irrelevant processing at every time point.

Critically, each TBF item was followed by a TBR item of the opposite
category (e.g., a TBF face followed by a TBR scene). Meanwhile, TBR
items could be followed by either type of item, including a TBR item from
the same category. These trials (38.4% of all TBR trials) were not in-
cluded in any of the analyses to ensure that all items were preceded by an
item that was given an opposite instruction (TBF or TBR) and was drawn
from the opposite category (scene or face). This procedure enabled us to
cleanly differentiate face and scene categories in relation to their memory
instruction, thus serving as a proxy for neural activity associated with
each TBR and TBF item.

Representational similarity analysis. We performed representational
similarity analysis (RSA; Kriegeskorte et al., 2008) that compared each
item’s activation pattern before and after the memory instruction in the
encoding phase to a “category template pattern” for faces and scenes
from the localizer phase. For faces, a face-sensitive region (mean, 347
voxels; SEM, 77.6 voxels) was identified with the GLM contrast (face 	
all other categories) in the localizer data, masked by the anatomically
defined VTC region. A scene-sensitive region (mean, 210 voxels; SEM,
47.0 voxels) was identified by a similar GLM contrast (scenes 	 all other
categories) masked by the same VTC region. Contrasts were thresholded
at p � 0.005, corrected for familywise error rate, unless voxel counts were
�100 for an individual. For these subjects (N � 3 each for face and
scene), more liberal thresholding ( p � 0.05 to p � 0.001 uncorrected)
was used to identify �100 voxels for the contrast.

From these two category-selective regions of interest (ROIs), we com-
puted a category template pattern for faces and for scenes by averaging,
for each voxel, the data from the category-specific trials in the localizer
data (e.g., face trials for the face template). Then, using these same ROIs,
we extracted item-specific activity patterns for each trial in the encoding
phase. For each trial, we computed a “baseline” pattern from the first 3
TRs (3 s) of the trial, and an “encoding” pattern from 3 TRs after the
memory instruction (6 – 8 s after trial onset). Both of these trial-unique
patterns were compared with the appropriate category template using
Pearson correlation, and all correlations were Fisher’s z-transformed be-
fore statistical analysis.

Relating classifier evidence to subsequent memory performance
We used the Probabilistic Curve Induction and Testing Toolbox (P-CIT;
Detre et al., 2013; Lewis-Peacock and Norman, 2014; https://code.
google.com/p/p-cit-toolbox) developed in Matlab which uses a Bayesian
curve-fitting algorithm to estimate the shape of a “plasticity curve” relat-
ing neural data (category-specific classifier evidence) and behavioral data
(recognition memory confidence scores). The P-CIT algorithm approx-
imates the posterior distribution over plasticity curves (that is, which
curves are most probable, given the neural and behavioral data). P-CIT
generates this approximation by randomly sampling curves ( piecewise-
linear curves with three segments) and then assigning each curve an
importance weight that quantifies how well the curve explains the ob-
served relationship between the neural and behavioral data. Finally, these
importance weights are used to compute the probability of each curve.
To assess evidence for the NMPH, P-CIT labels each sampled curve as
theory consistent (if it shows a U shape, dropping below its starting point
and then rising above its minimum value) or theory inconsistent, and
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then computes a log Bayes factor score that represents the log ratio of
evidence for versus against the NMPH; positive values of this score indi-
cate a balance of evidence in support of nonmonotonic plasticity. P-CIT
also computes a � 2 test that assesses how well the curve explains the data
overall, regardless of its shape; the P value for this � 2 test indicates the
probability of obtaining the observed level of predictive accuracy, under
a null model where classifier evidence is unrelated to memory behavior.

In this analysis, we used a “super-subject” procedure in which each
participant contributed 96 trials for a total of 1824 trials for each TBF and
TBR instruction condition. We used this fixed-effects analysis because
data from each individual subject were insufficient for random-effects
analysis (Lewis-Peacock and Norman, 2014) across subjects. Addition-
ally, for this application of P-CIT, we treated preinstruction (and posti-
tem onset, 1–3 s) and postinstruction (4 –9 s) time intervals as separate
events with distinctive processes (perceptual encoding vs mnemonic
processing). This approach to modeling each trial with two neural data
points uses the “net effects” procedure (Lewis-Peacock and Norman,
2014) to sum their individual contributions to the single behavioral out-
come of remembered or forgotten (see the P-CIT manual for further
details). To evaluate the reliability of these results, we also implemented
a bootstrap resampling procedure (Efron, 1979) with 1000 iterations.

Visualization of results
GLM surface results are visualized by the SPM12 canonical render. All
GLM subcortical findings are visualized over the FSL MNI T1 � 1 mm
anatomical standard.

Data and code availability
The data from this study will be made available upon reasonable request.
All code and stimuli used in this study can be found in a public GitHub
repository (LewisPeacockLab/imdif).

Results
Behavioral results
The perceptual localizer consisted of a one-back task on mini-
blocks of same-category items (i.e., face, scene, object, and rest)

for category-level decoding. We obtained
accuracy (successfully identifying a re-
peated image) and response latency be-
havioral performance measures. Outlier
trials for which response latencies were
	3 SDs from each subject’s mean were
removed from the analysis (2.2% of all tri-
als). Accuracy on the one-back task was at
ceiling for faces (97.7%; SEM, 0.5%),
scenes (98.2%; SEM, 0.4%), and objects
(98.5%; SEM, 0.4%). Rest trials did not
require a response. One-way ANOVA re-
vealed no accuracy differences (p �
0.530) between these three categories.
Further, a one-way ANOVA test of reac-
tion times across faces (593 ms; SEM, 25
ms), scenes (614 ms; SEM, 33 ms), and
objects (600 ms; SEM, 28 ms) revealed no
differences between these categories (p �
0.871).

Subcategory identification accuracy in
the directed-forgetting task was high for

both faces (97.7%, SEM 0.4%) and scenes (98.0%, SEM 0.4%),
with no significant differences between them (p � 0.570, two-
tailed paired t test). Participants responded well within the 3 s
response deadline, and were faster to identify faces (1061 ms;
SEM 42 ms) than scenes (1236 ms; SEM 45 ms; p � 0.001, two-
tailed paired t test).

Performance on the subsequent memory test of these items is
shown in Figure 1d and Table 1. For all subsequent memory
analyses of old items described below, we treated recognition
responses as a graded measure of memory strength (sure old, 1;
probably old, 0.667; probably new, 0.333; sure new, 0), in which
the “old” responses corresponded to remembered items and
“new” responses corresponded to forgotten items. The propor-
tion of old responses for TBR trials was 0.594 (SEM, 0.158; for
high-confidence only: 0.297; SEM, 0.163), and for TBF trials was
0.434 (SEM, 0.162; for high-confidence only: 0.110; SEM, 0.060).
The forgetting effect (based on d� scores) depicted in Figure 1d
was significant for both scenes (p � 0.001) and faces (p � 0.028)
with no difference between categories (p � 0.281).

Neural measures of directed forgetting
We conducted univariate fMRI analyses based on the GLM to
contrast brain regions engaged for TBF items that were forgotten
and TBR items that were remembered (see Materials and Meth-
ods). Consistent with prior work (Wylie et al., 2008; Rizio and
Dennis, 2013), we found increased activity for successful forget-
ting in the dorsolateral prefrontal cortex, posterior cingulate,
and precuneus (Fig. 2). For a detailed report of the univariate
results, please refer to Table 2. Together with the behavioral
results reported above, these data confirm that our experiment
is producing directed-forgetting univariate results consistent

Figure 2. Univariate results. GLM results for forgetting success (greater activity for successful intentional forgetting relative to
successful intentional remembering, p � 0.001, k � 237). See Table 2 for complete univariate results. DLPFC, Dorsolateral
prefrontal cortex.

Table 1. Subsequent memory for TBR and TBF items by stimuli category

Hits Misses False Alarms Correct Rejections

Confidence: proportion (SEM) High Low High Low High Low High Low

TBR faces 0.26 (0.03) 0.35 (0.03) 0.08 (0.02) 0.31 (0.03)
0.07 (0.01) 0.30 (0.03) 0.16 (0.03) 0.47 (0.04)TBF faces 0.21 (0.02) 0.40 (0.03) 0.07 (0.02) 0.32 (0.04)

TBR scenes 0.34 (0.05) 0.24 (0.02) 0.13 (0.02) 0.29 (0.04)
0.07 (0.01) 0.19 (0.03) 0.29 (0.04) 0.46 (0.03)TBF scenes 0.27 (0.04) 0.26 (0.02) 0.15 (0.02) 0.32 (0.04)
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with prior findings, allowing for interpretation of multivariate
analysis outcomes.

Measuring memory processing with multivariate
fMRI analyses
To assess the degree of memory processing on each trial, we ap-
plied pattern classifiers to the fMRI data (Rissman and Wagner,
2012; Lewis-Peacock et al., 2014; D’Esposito and Postle, 2015) in
the VTC. Group-averaged results for the classifiers, trained sep-
arately for each participant’s localizer data, are shown in Figure
1b. The classifier confusion matrix shows the mean classifier ev-
idence for all categories (columns) on localizer blocks featuring
stimuli from one target category (rows). The cross-validation
procedure used to evaluate classifier performance entailed train-
ing a classifier on two runs of data and then applying that classi-
fier to independent data from the held-out third run; the runs
were then rotated and this procedure was repeated until all three
runs had been tested. Decoding accuracy for all categories was
well above chance (25%). Face evidence was reliably higher than
scene evidence for face blocks, and vice versa (both P’s � 0.001),
but face and scene scores were not dissociable during rest periods
(p � 0.650). These analyses were repeated in the bilateral hip-
pocampus and cuneus (two regions found in the univariate anal-
yses to be differentially active for TBF and TBR conditions), but
the classifiers were not sufficiently sensitive to category differ-
ences in these regions. To analyze data from the memory task, we
applied classifiers retrained on all localizer data, again separately
for each participant. For each trial, we computed a “target–non-
target” classifier evidence score, which reflects the relative bal-
ance between trial-relevant processing and trial-irrelevant
processing (e.g., face evidence minus scene evidence on a face
trial). These neural measures served as a proxy for processing of
category information for the observed item.

Averaged across trials, the classification results show that evi-
dence for the memory item was higher after a TBF instruction
compared with after a TBR instruction (between 6 and 8 s after
stimulus onset, two-tailed t test, p � 6.789e-8; Fig. 3a). This
result, found for both face trials (p � 2.293e-8) and scene trials
(p � 2.680e-5), suggests that there was stronger processing of
TBF items. To evaluate representational changes as a function of
memory instruction (Fawcett et al., 2016), we conducted an RSA
(see Materials and Methods), in which we computed the pattern
similarity between the multivoxel representation of the memory
item on each trial to the average category-specific pattern of voxel
activity (the category template) from the localizer data. Before the
memory instruction, there was no difference in pattern similarity
for TBF items versus TBR items (paired t test, p � 0.365). How-
ever, after the memory instruction, the TBF items were less sim-
ilar to (i.e., more distinct from) the category template than were
TBR items (paired t test, p � 2.96 � 10�11; Fig. 3b). Together, the
across-category pattern classification analysis and the within-

category pattern similarity analysis provide complementary in-
sights into the neural consequences of item-method directed
forgetting: the intention to forget leads to increased processing of
the item (characterized by higher classifier evidence for the item’s
category), which in turn is associated with a more distinct repre-
sentation of the item (characterized by lower representational
similarity to the item’s category template).

This result is inconsistent with a prominent view that item-
method directed forgetting of TBF items results from stronger
encoding (e.g., selective rehearsal) of TBR items (Gelfand and
Bjork, 1985; Basden et al., 1993; Basden and Basden, 1998). In-
stead, it agrees with more recent reports that deliberate forgetting
is associated with effortful processing following an instruction to
forget (Pastötter and Bäuml, 2007; Fawcett and Taylor, 2008;
Fawcett et al., 2013). Forgetting effects have been linked to a
decrease in memory sensitivity for TBF items, as we found here,
rather than outright forgetting of those items. For example,
Zwissler and colleagues (2015) found that forget instructions re-
sult in active processing that reduces the false-alarm rate but does
not impair memory beyond an uncued baseline where only inci-
dental encoding occurs. Here, our central hypothesis is that the
degree of memory processing after a forget instruction will pre-
dict the degree of forgetting success for that item (Norman et al.,
2006; Newman and Norman, 2010; Detre et al., 2013; Lewis-
Peacock and Norman, 2014). We now address this hypothesis by
linking the neural measures of memory processing during di-
rected forgetting with the behavior measures of memory sensitiv-
ity from the recognition test at the end of the experiment.

Relating classifier evidence to subsequent memory
We hypothesized that across items, there would be a nonmono-
tonic (U-shaped) relationship (Newman and Norman, 2010; De-
tre et al., 2013) between target–nontarget classifier evidence for
TBF items and subsequent recognition memory for those items at
the end of the experiment. To formally test for the nonmonotonic
pattern in these data, we used the P-CIT (Detre et al., 2013; Lewis-
Peacock and Norman, 2014) Bayesian curve-fitting algorithm to
estimate the shape of the plasticity curve relating post-instruction
memory processing in the directed-forgetting task (indexed by
classifier evidence) and subsequent memory performance (in-
dexed by recognition confidence).

For our P-CIT analyses, the pre-instruction interval and the
post-instruction interval (for each item) were treated as separate
learning events whose effects were summed to model recognition
of that item. The fitted curves shown in Figure 3c explained a
significant amount of variance in subsequent recognition out-
comes on both TBF trials (� 2 � 21.34, p � 3.840e-6) and TBR
trials (� 2 � 56.6, p � 5.274e-14). We found a U-shaped mapping
between classifier evidence scores and subsequent memory out-
comes such that moderate levels of target–nontarget evidence
were associated with worse subsequent memory than higher and
lower levels of target–nontarget evidence in TBR trials. This out-
come is consistent with the findings of Lewis-Peacock and Nor-
man (2014), who showed incidental forgetting of moderately
active items in working memory following encoding. The curves
recovered by P-CIT on TBF trials also revealed a U-shaped map-
ping between classifier evidence scores and subsequent memory
outcomes. That is, deliberate forgetting was most successful when
the TBF item’s memory activation was sufficiently enhanced (but
not too high) so as to produce moderate levels of activity during
the forgetting attempt. This result also held when using raw clas-
sifier evidence scores for the target category were used to quantify
memory processing on each trial (e.g., “face” evidence instead of

Table 2. GLM regions identified during item-method intentional forgetting by
study memory instruction and subsequent memory outcomea

Successful forgetting

MNI coordinates Cluster size z-value
Brodmann’s
area number

49 �38 50 567 5.14 39/40
25 8 55 1324 5.02 6/9
42 13 �3 554 4.59 13/44

�4 �66 50 877 4.63 7
aRegions with greater activity for subsequently forgotten items after forget-cue than for subsequently remembered
items after remember-cue with a threshold of p � 0.001 and cluster size of 237.
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“face–scene” evidence on a face trial). This suggests that deliber-
ate forgetting does not require competition per se between two or
more items in memory, but rather depends on moderate activity
of the targeted memory alone. This result is predicted by the
NMPH, which links moderate activation with memory weaken-
ing (Newman and Norman, 2010). Note that competition be-
tween memories is one way to achieve moderate activation, but it
is not required (Newman and Norman, 2010; Detre et al., 2013;
Poppenk and Norman, 2014).

To assess the population-level reliability of the U-shaped
curve (that is, to determine whether the results were driven by a
small subset of participants), we also ran a bootstrap resampling
test in which we resampled data from participants with replace-
ment and recomputed the log Bayes factor for the resampled data
(Efron, 1979). For TBF trials, 98% of these bootstrap samples
(out of 1000 total) showed evidence in support of the NMPH
(that is, a positive log Bayes factor), thereby indicating a high
degree of population-level reliability in the shape of the curve
(Fig. 3d). There was less population-level reliability in the shape
of the curve for TBR trials (only 81% of 1000 bootstrap samples
showed evidence in support of a U-shaped curve). A final P-CIT
analysis that combined all trials, regardless of memory instruc-
tion, found a reliable U-shaped memory plasticity curve (� 2 �
49.6, p � 1.875e-12) that held across 94% of bootstrap samples.

In summary, this analysis linking neural data with behavior
found a U-shaped relationship between memory activation
strength (as measured by fMRI pattern classifiers) and subse-
quent recognition memory for images of faces and scenes in an
item-method directed-forgetting paradigm, with greater pro-
cessing and more forgetting associated with motivated forgetting
trials.

Discussion
Here, we applied machine-learning methods to human fMRI data to
reveal a novel mechanism involved in intentional forgetting: the
weakening of moderately active representations of TBF items in the
VTC. Compared with the intention to remember, intention to forget
is associated with higher MVPA classifier evidence and worse subse-
quent memory. While an instruction to remember an item may not
demand much additional processing after a sufficiently long encod-
ing period (3 s), the instruction to forget an item does. This boost in
activation can render the memory vulnerable to disruption and
more susceptible to subsequent forgetting.

Trial-by-trial analysis revealed a U-shaped relationship be-
tween the neural activation of a memory item and its subsequent
memory strength (Fig. 3c) such that moderately activated items
(vs weakly or strongly activated items) were most likely to be
intentionally forgotten. The present result for intentionally for-
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gotten items is also true of incidentally forgotten TBR items and is
consistent with our prior work (Lewis-Peacock and Norman,
2014). While prior research has linked forgetting to suppression
of sensory representations during the repeated retrievals (Wim-
ber et al., 2015; Hulbert et al., 2016) or simulations (Benoit et al.,
2016) of episodic events, the present study demonstrates that
activation-dependent forgetting effects can be seen during en-
coding after a single exposure of an item. We believe these results
provide a first step to understanding how memory representa-
tions in the sensory cortex are modified to facilitate their delib-
erate forgetting.

These findings are predicted by the NMPH (Newman and
Norman, 2010; Detre et al., 2013), and they converge with work
that describes intentional forgetting as an active and effortful
cognitive process (Zacks et al., 1996; Pastötter and Bäuml, 2007;
Fawcett et al., 2013). Many learning theories describe a strictly
linear and positive relationship between memory activation and
learning, but this hypothesis posits a U-shaped relationship such
that moderate levels of memory activation lead to weakening of
the memory, whereas higher levels of activation lead to strength-
ening. The NMPH receives support from neurophysiological
data showing that moderate postsynaptic depolarization leads to
long-term depression (that is, synaptic weakening) and stronger
depolarization leads to long-term potentiation (Artola et al.,
1990; Hansel et al., 1996; Bear, 2003; that is, synaptic strengthen-
ing). It also has received support from human neuroimaging
studies showing a U-shaped relationship between how strongly a
representation comes to mind and the subsequent accessibility of
that representation (Newman and Norman, 2010; Detre et al.,
2013; Lewis-Peacock and Norman, 2014; Poppenk and Norman,
2014; Kim et al., 2017).

Our findings are compatible with and extend existing expla-
nations for intentional forgetting. In one prominent view on the
neural mechanics that support intentional forgetting, Anderson
and colleagues (for review, see Anderson and Hanslmayr, 2014)
have described distinct neural mechanisms associated with two
common behavioral strategies described as “direct suppression”
and “thought substitution.” Behaviorally, direct suppression is
thought to be a termination of the rehearsal of items, such as that
elicited by a forget cue (Basden et al., 1993; Basden and Basden,
1998). Direct suppression is thought to occur when inhibitory
signals from the dorsolateral prefrontal cortex downregulate hip-
pocampal engagement related to memory encoding. Thought
substitution, on the other hand, occurs when subjects replace a
TBF item with some alternative item, such as an item that was
studied previously or any other random thought. During thought
substitution, the left ventral prefrontal cortex engages in cogni-
tive control processes that result in demonstrative increases in
hippocampal engagement (Benoit and Anderson, 2012). In the
current experiment, we did not constrain behavioral strategy to
avoid any mitigation of directed-forgetting effects due to self-
evaluation of instructed strategies (Sahakyan et al., 2004). There-
fore, participants may have attempted either or both strategies,
and perhaps other idiosyncratic strategies, too. Despite poten-
tially varied strategy choices, our results show a consistent in-
crease in memory processing following a forget instruction
relative to a remember instruction. The degree of this boost in
processing, specifically when it resulted in moderate activation of
the item, was predictive of successful forgetting. This suggests a
new route to successful forgetting: to forget a memory, its mental
representation should be enhanced to trigger memory weakening
(Newman and Norman, 2010; Detre et al., 2013; described by

nonmonotonic plasticity) via local inhibitory processes govern-
ing homeostatic regulation of neural activity.

A possible limitation to this interpretation of our data comes
from the categorical nature of fMRI pattern classifiers used to
measure memory processing (Zeithamova et al., 2017). An
increase in category-specific memory processing observed for
TBF items could result, not from an increase in processing of the
TBF item, but from the selective retrieval and rehearsal of another
item from the same category (e.g., rehearsing a previously studied
TBR face when instructed to forget a different face on the current
trial). This would be an example of a thought-substitution strat-
egy (described above). We argue, however, that if people were to
engage in selective rehearsal of previous items, it is unlikely that
they would be able to limit this process to only same-category
items rather than rehearsing a mixture of previous TBR items
from both categories. There are relatively few recent same-
category items to choose from: the proportion of same-category
items in the span of preceding TBR trials was 0, 11.2, and 25.5%
across the most recent one, three, and five TBR trials before a
given TBF trial. Therefore, we believe the task procedures made it
unlikely that the increased target processing on forget trials was
due to thought substitution of another same-category TBR item.
Empirically, if the increase in target-related processing of TBF
items reflected rehearsal of same-category alternatives, this would
predict a linear and negative relationship with subsequent memory
such that higher processing (indicating more same-category substi-
tution) would lead to more forgetting. Our analyses, however, re-
vealed a U-shaped relationship with memory processing and
forgetting success such that a moderate level of processing (vs low or
high levels) was associated with more forgetting.

Another possible explanation for weaker neural measures of
target-specific processing on TBR trials (vs TBF trials) is that
participants retrieved and rehearsed other recent TBR items after
a memory instruction. Turning to our data, we found that TBF
items were associated with higher classifier evidence for the target
category (e.g., “face” on a face trial), and also lower classifier
evidence for the nontarget category (“scene”) relative to TBR
items. Following an instruction to forget, activation of the TBF
item was selectively enhanced. On the other hand, there was
greater evidence for task-irrelevant processing (associated with
the nontarget category) after a TBR instruction. This could be
consistent with the idea that, following an instruction to remem-
ber, a “covert rehearsal” strategy was used in which a mixture of
previously studied TBR items (some faces, some scenes) were
rehearsed. However, this strategy should be expected to also in-
crease the amount of processing for the target category. In fact,
for a given TBR trial, most of the recent prior TBR items belonged
to the same category as the current item (83% of the most recent
item, and 69% of the three most recent items). Therefore, a
recency-weighted rehearsal of prior TBR items should on balance
show more classifier evidence for the target category (relative to
TBF trials), but the data do not support this. In relevant work,
Fawcett and Taylor (2008) explicitly instructed participants to
rehearse only the current item, and not to engage in any cumu-
lative rehearsal of prior TBR items. Memory outcomes were un-
affected, indicating that multiple-item rehearsal is not essential
for task performance on TBR trials. Therefore, we believe it is
unlikely that a covert-rehearsal strategy can account for the lower
measures of target-category processing on TBR trials.

To address more directly the potential ambiguity of the
category-level classification results, we performed an item-
specific RSA in which we compared the activity patterns associ-
ated with processing each TBF and TBR item in the encoding
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phase to the average category-specific activity pattern from the
localizer phase. Figure 3b shows that, despite higher category
classifier evidence for TBF items, the activity patterns on these
trials were less typical of the category compared with the activity
patterns for TBR items, suggesting that TBF items elicited greater
processing of item-specific details. This result disambiguates two
possible interpretations: if the increase in category classifier in-
formation for TBF items reflected a neural process that weakened
the idiosyncratic, item-specific features of the item, we should
expect higher category typicality for these items (due to the ero-
sion of their item-specific features). If, on the other hand, the
increase in category information on TBF trials was a result of
increased attentional focus on the specific features of the item to
modulate its degree of neural activation, we should expect lower
category typicality for these items. These RSA results are more
consistent with the latter. Altogether, our results support the idea
that an increase in attentional focus on TBF items during a delib-
erate forgetting attempt increases their memory activation,
which in turn, facilitates their forgetting.

The strength of the current study is the identification of a
relationship between lingering activation of TBF memories in the
VTC and their subsequent memory strength. We found a perhaps
counterintuitive result that the intention to forget a memory is
associated with increased activation of that memory compared
with the intention to remember a memory. However, in accor-
dance with the NMPH (Norman et al., 2006; Newman and Nor-
man, 2010; Detre et al., 2013), we found that forgetting occurs
more often when a memory has a moderate degree of activation
(vs too high or too low) following the instruction to forget. This
highlights the contribution of an automatic memory-weakening
mechanism to deliberate forgetting, and it suggests an alter-
native strategy for successful forgetting: to weaken an un-
wanted memory, raise (rather than suppress) its level of
activation.
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