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Neuronal Adaptation Reveals a Suboptimal Decoding of
Orientation Tuned Populations in the Mouse Visual Cortex
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Sensory information is encoded by populations of cortical neurons. Yet, it is unknown how this information is used for even simple
perceptual choices such as discriminating orientation. To determine the computation underlying this perceptual choice, we took advan-
tage of the robust visual adaptation in mouse primary visual cortex (V1). We first designed a stimulus paradigm in which we could vary
the degree of neuronal adaptation measured in V1 during an orientation discrimination task. We then determined how adaptation affects
task performance for mice of both sexes and tested which neuronal computations are most consistent with the behavioral results given the
adapted population responses in V1. Despite increasing the reliability of the population representation of orientation among neurons,
and improving the ability of a variety of optimal decoders to discriminate target from distractor orientations, adaptation increases
animals’ behavioral thresholds. Decoding the animals’ choice from neuronal activity revealed that this unexpected effect on behavior
could be explained by an overreliance of the perceptual choice circuit on target preferring neurons and a failure to appropriately discount
the activity of neurons that prefer the distractor. Consistent with this all-positive computation, we find that animals’ task performance is
susceptible to subtle perturbations of distractor orientation and optogenetic suppression of neuronal activity in V1. This suggests that to
solve this task the circuit has adopted a suboptimal and task-specific computation that discards important task-related information.
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Introduction
Sensory processing supports the transformation of signals from
the outside world into a neural code represented by the spiking
activity of cortical neurons (Hubel and Wiesel, 1959; Dubner and
Zeki, 1971; Desimone et al., 1984). Decades of causal and correl-
ative studies suggest that these representations are the basis for

perceptual choice (Salzman et al., 1990; Schiller, 1993; Britten et
al., 1996; Hung et al., 2005). Many theories have been put forth
for how these representations might be used by downstream cir-
cuits to make perceptual choices (Georgopoulos et al., 1986;
Pouget et al., 2003; Jazayeri and Movshon, 2006; Ma et al., 2006;
Graf et al., 2011; Zaidi et al., 2014). However, there is little evi-
dence demonstrating how sensory representations are actually
combined, and what information is used, to compute a percep-
tual choice.

One way to determine the transformation between represen-
tations and perceptual choice is to manipulate sensory encoding
and determine the effects on behavior. Thus, stimulus-specific
adaptation, with its strong and predictable effects on sensory en-
coding (Müller et al., 1999; Dragoi et al., 2000), can be a useful
tool for evaluating how sensory information is used to guide
perceptual choice. For instance, by preferentially decreasing the
contribution of neurons that prefer the adapter orientation, ad-
aptation will increase the discriminability of the neuronal repre-
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Significance Statement

A major goal in systems neuroscience is to understand how sensory signals are used to guide behavior. This requires determining
what information in sensory cortical areas is used, and how it is combined, by downstream perceptual choice circuits. Here we
demonstrate that when performing a go/no-go orientation discrimination task, mice suboptimally integrate signals from orien-
tation tuned visual cortical neurons. While they appropriately positively weight target-preferring neurons, they fail to negatively
weight distractor-preferring neurons. We propose that this all-positive computation may be adopted because of its simple learn-
ing rules and faster processing, and may be a common approach to perceptual decision-making when task conditions allow.
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sentations of the adapter stimulus and other nearby stimulus
values while decreasing the discriminability of more distant stim-
ulus values (Müller et al., 1999; Dragoi et al., 2000; Kohn and
Movshon, 2004; Stocker and Simoncelli, 2006). Indeed, common
perceptual illusions, such as the tilt after-effect and the waterfall
illusion, are consistent with the resulting repulsive effects of ad-
aptation on tuned populations (Levinson and Sekuler, 1976; Clif-
ford, 2002; Krekelberg et al., 2006; Zavitz et al., 2016). In
addition, by sparsifying and increasing the signal-to-noise of
neuronal population responses, stimulus-specific adaptation has
been shown to increase information about the stimulus and de-
crease discrimination thresholds (Ulanovsky et al., 2003; Krekel-
berg et al., 2006; Wark et al., 2007; Ollerenshaw et al., 2014).
However, because adaptation also decreases firing rates (Müller
et al., 1999; Dragoi et al., 2000), the impacts of adaptation on
behavior will depend on the specific computation used to read
out that sensory information. Indeed, despite the evidence that
adaptation increases stimulus information, there are examples of
adaptation impairing discrimination (Regan and Beverley, 1985;
Zhang et al., 2009; Ollerenshaw et al., 2014) or having no effect at
all (Barlow et al., 1976; Zhang et al., 2009).

Here we focus on understanding how decision-making cir-
cuits compute perceptual choices in a go/no-go orientation dis-
crimination task. This is a quintessential computation that relies
on the representations encoded in the primary visual cortex (V1;
Glickfeld et al., 2013; Poort et al., 2015; Resulaj et al., 2018). We
find that brief, oriented gratings drive robust adaptation in pop-
ulations of neurons in mouse V1 that increases the reliability of
decoding the presented orientation. However, adaptation in-
creases orientation discrimination thresholds in behaving mice,
suggesting that the perceptual choice circuit fails to make use of
all of the information present in the adapted population re-
sponse. Instead our data demonstrates that, in this task, the per-
ceptual choice circuit has adopted a suboptimal computation
that ignores rather than discounts the activity of distractor-
preferring neurons. The use of only the minimal necessary infor-
mation, despite costs to performance, may be the result of a
prioritization of rapid processing and simple learning rules.

Materials and Methods
Animals. All animal procedures conformed to standards set forth by the
NIH, and were approved by the IACUC at Duke University. Thirty-three
mice (both sexes; 3–24 months old; singly and group housed (1– 4 in a
cage) under a regular 12 h light/dark cycle; C57/B6J (Jackson Laborato-
ries, 000664) was the primary background with up to 50% CBA/CaJ
(Jackson Laboratories, 000654) were used in this study. Ai93 (tm93.1
(tetO-GCaMP6f)Hze; Jackson Laboratories, 024103; n � 4) and Ai94
(tm94.1(tetO-GCaMP6s)Hze; Jackson Laboratories, 024104; n � 8)
were crossed to EMX1-IRES-Cre (Jackson Laboratories, 005628) and
CaMK2a-tTA (Jackson Laboratories, 003010) to enable constitutive
GCaMP6 expression for in vivo imaging experiments. Pvalb-cre (tm1
(cre)Arbr; Jackson Laboratories, 008069; n � 13), VGAT-ChR2-EYFP
(Slc32a1-COP4*H134R/EYFP; Jackson Laboratories, 014548; n � 3); and
Emx1-IRES-Cre (tm1(cre)Krj; Jackson Laboratories, 005628; n � 2) were
crossed to C57/B6J mice for in vivo extracellular electrophysiology (n �
4) and behavior (n � 14) experiments. Gad2-IRES-cre (Gad2 tm2(cre)Zjh;
Jackson Laboratories, 010802; n � 2) and C57/B6J (n � 1) mice were
crossed to CBA/CaJ for eye-tracking experiments.

Cranial window implant. Dexamethasone (3.2 mg/kg, s.c.) and meloxi-
cam (2.5 mg/kg, s.c.) were administered at least 2 h before surgery. Ani-
mals were anesthetized with ketamine (200 mg/kg, i.p.), xylazine (30
mg/kg, i.p.), and isoflurane (1.2–2% in 100% O2). Using aseptic tech-
nique, a headpost was secured using cyanoacrylate glue and C&B Meta-
bond (Parkell), and a 5 mm craniotomy was made over the left
hemisphere (center: 2.8 mm lateral, 0.5 mm anterior to lambda) allowing

implantation of a glass window [an 8 mm coverslip bonded to two 5 mm
coverslips (Warner, no. 1) with refractive index-matched adhesive (Nor-
land, no. 71)] using Metabond.

The mice were allowed to recover for 1 week before habituation to
head restraint. Habituation to head restraint increased in duration from
15 min to �2 h over 1–2 weeks. During habituation, imaging, and elec-
trophysiology sessions, mice were head restrained while allowed to freely
run on a circular disc (InnoWheel, VWR). Wheel revolutions were mon-
itored with a digital encoder.

Visual stimulation. Visual stimuli were presented on a 144 Hz LCD
monitor (Asus) calibrated with an i1 Display Pro (X-Rite). The monitor
was positioned 21 cm from the contralateral eye. Circular 30° Gabor
patches containing static sine-wave gratings (0.1 cycles per degree) alter-
nated with periods of uniform mean luminance (60 cd/m 2). Visual stim-
uli for imaging, electrophysiology and behavior experiments were
controlled with MWorks (http://mworks-project.org).

Two visual stimulus protocols were used for imaging experiments: (1)
paired-pulse, same orientation (Fig. 1); and (2) paired pulse, different
orientation (Fig. 2). In Protocol 1 (n � 5 mice), two static, 100 ms
sine-wave gratings of the same orientation (0, 30, 60, 90, 120, or 150°)
were successively presented with a variable interstimulus interval (ISI;
0.25, 0.5, 1, 2, or 4 s) and an intertrial interval (ITI) of 4 s. Measurement
of adaptation was averaged across all orientations, except in Figure 1D. In
Protocol 2 (n � 12 mice), a static, 100 ms sine-wave vertical grating (0°;
“adapter”) was followed by a 100 ms grating (“test”) of varying orienta-
tion (0, 22.5, 45, 67.5, 90, 112.5, 135, or 157.5°) after a variable ISI (250 or
750 ms), with an ITI of 8 s. On 30% of trials, the first stimulus was
omitted to measure the non-adapted (control) tuning curve.

For electrophysiology experiments only Protocol 1 (n � 4 mice;
Fig. 1 F, G) was used. Stimuli were the same as in the imaging proto-
cols except only one orientation (0°) was used and the ITI was 10 s.
For all stimulus protocols, all orientations and interval conditions
were randomly interleaved.

Retinotopic mapping. Retinotopic maps generated from intrinsic auto-
fluorescence, cortical reflectance (for VGAT-ChR2-EYFP mice) or
GCaMP signals. For intrinsic autofluorescence imaging, the brain was
illuminated with blue light [473 nm LED (Thorlabs) or 462 � 15 nm
band filter (Edmund Optics)], and emitted light was measured through a
green and red filter (500 nm long-pass). Images were collected using a
CCD camera (Rolera EMC-2, QImaging) at 2 Hz through a 5� air-
immersion objective [0.14 numerical aperture (NA), Mitutoyo], using
Micromanager acquisition software (NIH). Stimuli were presented at
4 – 6 positions (drifting, sinusoidal gratings at 2 Hz) for 10 s, with 10 s of
mean luminance preceding each trial. Images were analyzed in ImageJ
(NIH) to measure changes in fluorescence (dF/F; with F being the aver-
age of all frames) to identify V1 and the higher visual areas. For cortical
reflectance, the brain was illuminated with orange light (530 nm LED;
Thorlabs), and all of the reflected light was collected; for GCaMP
imaging, light was collected with a bandpass filter (520 � 18 nm) and
total trial duration was reduced to 5 s. Vascular landmarks were used
to identify targeted sites for imaging, electrophysiology, and optoge-
netics experiments.

Viral injection. We targeted V1 in Pvalb-cre mice (n � 2) for expression
of channelrhodopsin2 (ChR2). Dexamethasone (3.2 mg/kg, s.c.) was ad-
ministered at least 2 h before surgery and animals were anesthetized with
isoflurane (1.2–2% in 100% O2). The coverslip was sterilized with 70%
ethanol and the cranial window removed. A glass micropipette was filled
with virus (AAV5.EF1.dFloxed.hChR2.YFP; UPenn CS0384), mounted
on a Hamilton syringe, and lowered into the brain. Fifty nanoliters of
virus were injected at 250 and 500 �m below the pia (30 nl/min); the
pipette was left in the brain for an additional 10 min to allow the virus to
infuse into the tissue. Following injection, a new coverslip was sealed in
place, and an optical cannula (400 �m diameter; Doric Lenses) was at-
tached to the cranial window above the injection site. Optogenetic be-
havioral experiments were conducted at least 2 weeks following injection
to allow for sufficient expression.

Two-photon calcium imaging. Images were collected with a two-
photon microscope controlled by Scanbox acquisition software (Neuro-
labware). Excitation light (920 nm) from a Mai Tai eHP DeepSee laser
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(Newport) was directed into a modulator
(Conoptics) and raster scanned onto the brain
with a resonant galvanometer (8 kHz; Cam-
bridge Technology) through a 16� (0.8 NA,
Nikon) or 25� (1.05 NA, Nikon) water-
immersion lens. Average power at the surface
of the brain was 30 –50 mW. Frames were col-
lected at 30 Hz (256 lines) for a field-of-view of
�700 � 400 �m on a side. Emitted photons
were directed through a green filter (510 � 42
nm band filter; Semrock) onto GaAsP photo-
multipliers (H10770B-40, Hamamatsu). Im-
ages were captured at a plane 207 � 4 �m
below the pia (range 180 –250 �m). Frame sig-
nals from the scan mirrors were used to trigger
visual stimulus presentation for reliable align-
ment with collection.

Eye tracking. Images were collected at 30 Hz
with a Genie Nano CMOS camera (Teledyne
Dalsa) using a 695 nm LP filter (Midopt) con-
trolled by Scanbox acquisition software. IR il-
lumination (920 nm) was provided from the
two-photon laser through the cranial window.

Extracellular electrophysiology. Electrophysi-
ological signals were acquired with a 32-site
polytrode acute probe [either A4x8-5mm-100-
400-177-A32 (4 shanks, 8 site/shank at 100 �m
spacing) or A1x32-Poly2-5mm-50s-177-A32
(1 shank, 32 sites, 25 �m spacing), Neu-
roNexus] through an A32-OM32 adaptor
connected to a Cereplex digital headstage
(Blackrock Microsystems). Unfiltered signals
were digitized at 30 kHz at the headstage and
recorded by a Cerebus multichannel data ac-
quisition system (Blackrock Microsystems).
Visual stimulation synchronization signals
were also acquired through the same system via
a photodiode directly monitoring LCD output.

On the day of recording, the cranial window
was removed, and a small durotomy per-
formed to allow insertion of the electrode into
V1. A ground wire was connected via a gold pin
cemented in a burr hole in the anterior portion
of the brain. The probe was slowly lowered into
the brain (over the course of 15 min with travel
length of �800 �m) until the most superficial
recording site was in the brain and allowed to
stabilize for 45– 60 min before beginning re-
cordings. A fluorescent dye (diI, Life Tech-
nologies) was painted on the back of the
probe before recording and the probe posi-
tion was thus confirmed post hoc in histolog-
ical sections.

Behavioral task. Animals were water sched-
uled and trained to discriminate orientation by
manipulating a lever. The behavior training
and testing occurred during the light cycle. We
first trained mice to detect full-field, 90° orien-
tation changes from a static grating. Most mice
(n � 12) were trained with a 0° distractor; how-
ever, two mice were trained with a 45° distrac-
tor. On the initial days of training, mice were
rewarded for holding the lever for at least 400
ms (required hold time) but not �20 s (maxi-
mum hold time). At the end of the required
hold time, the target grating appeared and re-
mained until the mouse released the lever (or
the maximum hold time expired). Typically,
within 2 weeks of training, the mice began re-
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Figure 1. Layer 2/3 neurons in mouse V1 undergo strong adaptation. A, Schematic of in vivo two-photon calcium imaging
(GCaMP6f or GCaMP6s) and visual stimulus protocol. Head-restrained mice passively view presentation of pairs of iso-oriented
stimuli. B, Average fluorescence traces (dF/F ) from an example neuron to pairs of iso-oriented gratings separated by increasing ISIs
(top to bottom). C, Summary of the average amplitude of the second stimulus normalized to the amplitude of the first stimulus for
each ISI for all cells (n � 245 cells, 5 mice). Data were fit with a single exponential decay with � � 592 ms, 95% CI: 499 – 698 ms.
D, Average normalized dF/F (250 ms ISI) and average dF/F in response to the first stimulus for preferred (black) and neighboring
(gray) orientations. E, Average normalized dF/F (250 ms ISI) for cells binned by their response to the first stimulus. F–H, Same as
A–C for in vivo extracellular recording (�� 939 ms, 95% CI: 425–2111 ms, n � 30 cells, 4 mice). FR, Firing rate. Error bars are SEM
across cells.
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leasing the lever as soon as the target appeared. Once the animals began
reliably responding to the target stimulus, we added a random delay
between lever press and the target presentation to discourage adoption of
a timing strategy. Over the course of the next few weeks, the task was
made harder by (in roughly chronological order): (1) increasing the ran-
dom delay, (2) decreasing the target stimulus duration and reaction time
window, (3) removing the stimulus during the ITI, (4) shrinking and
moving the stimuli to more eccentric positions, (5) adding a mean-
luminance ISI to mask the motion signal in the transition from distractor
to target, and finally (6) reducing the difference between the distractor
and the target. Delays after errors were also added to discourage lapses
and early releases.

In the final form of the task, each trial was initiated when the ITI had
elapsed and the mouse had pressed the lever. Trial start triggered the
presentation of a 100 ms static sinusoidal, Gabor patch (30° in diameter,
positioned at an eccentricity of 30 – 40° azimuth and 0 –10° elevation)
followed by an ISI randomly selected on a presentation-by-presentation
basis (250, 500, or 750 ms). For a subset of mice (n � 3), the ISI was fixed
for a given trial but randomly interleaved on trial-by-trial basis (250 or
500 ms). In this subset of experiments, the maximum number of distrac-
tors presented before the target depended on ISI (12 for 250 ms ISI trials;
7 for 500 ms ISI trials) to match the average trial length between these two
conditions. In all cases, on each trial the target appeared on a variable
presentation (flat distribution) after the first two distractor presentations

and the target orientation was randomly selected from a fixed set of
values around each animal’s threshold. Mice received water reward if
they released the lever within 100 – 650 ms (sometimes extended to 1000
ms) after a target occurred. However, for calculating hit and false alarm
(FA) rate (see Figs. 3, 4, 7, 8), we use a narrower reaction window (200 –
550 ms) to ensure that the majority of the releases in this window are
because of stimulus driven responses and have independent reaction
windows for adjacent stimuli with short ISIs. Mice were initially trained
with a constant distractor stimulus (see Figs. 3, 4) and were later tested
with randomly interleaved distractor orientations (the trained orienta-
tion and stimuli �15° and �15° from the trained orientation) selected on
a trial-by-trial basis (see Fig. 7).

Of the 11 mice presented in Figures 3 and 4, some (n � 5) were initially
trained with a single (250 ms) ISI, whereas others (n � 6) were immedi-
ately introduced to having the fully interleaved condition (presentation-
by-presentation selection of 1 of 3 ISIs). Training history had no
significant effect on the relationship between ISI and threshold (two-way
ANOVA; main effect of ISI: p 	 0.005, DF � 2; main effect of training:
p � 0.41, DF � 1). Notably, the incorporation of targets close to the
distractor occurs during the final stages of training; thus, the mice learn
relatively late in training that the targets lie within only one quadrant of
orientation space. Nonetheless, the FA rates from the variable distractor
task (see Fig. 7) reveal that the mice understand this contingency: if the
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Figure 2. Adaptation changes the orientation tuning and preference of layer 2/3 neurons in mouse V1. A, Schematic of in vivo two-photon calcium imaging (GCaMP6f or GCaMP6s) and visual
stimulus protocol. Head-restrained mice passively view presentation of pairs of stimuli with varying orientations and intervals. B, Average dF/F from an example cell to eight different orientations
(rows) without adaptation (left column: Control) or after 750 (middle column) or 250 ms (right column) recovery from adaptation to a vertical (0°) grating. C, Average orientation tuning curves for
the neuron in B measured in control (top, black) and after 750 (middle, dark gray) or 250 ms (bottom, light gray) recovery from adaptation. Average responses (error bars are SEM across trials) in each
condition were fit with a von Mises function. D, Summary of the average difference in dF/F (each cell normalized to its own peak response without adaptation) as a function of stimulus distance from
the adapter (n � 241 cells, 12 mice) after 750 (dark gray) or 250 ms (light gray) recovery from adaptation. Error bars are SEM across cells. E, Summary of the average normalized peak dF/F as a
function of the distance of the cells’ preferred orientation from the adapter. Cells are binned by their preferred orientation (determined from the peak of the fit in control conditions) into three groups:
	20°, between 20° and 70°, and �70° from the adapter (n � 58, 110 and 73 cells). F, Summary of the average change in preferred orientation as a function of the distance of the cells’ preferred
orientation from the adapter. Positive shift indicates repulsion and negative shift indicates attraction relative to the adapter. G, Summary of the average change in OSI as a function of the distance
of the cells’ preferred orientation from adapter. Positive change indicates increased selectivity and negative change indicates decreased selectivity relative to control.
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mice continued to use the strategy learned when there was only a 90°
target, then the 15° and �15° distractors should have similar FA rates.

For optogenetic stimulation (see Fig. 8), we delivered blue light to the
brain though the cannula from a 473 nm LED (Thorlabs) or a 450 nm
laser (Optoengine) and calibrated the total light intensity at the entrance
to the cannula (0.1– 0.3 mW). On randomly interleaved trials, the light
was turned on at the time of lever press and remained on until lever
release. Behavioral control was done with MWorks (http://mworks-
project.org), and custom software in MATLAB (MathWorks) and Py-
thon (http://enthought.com).

Data processing
Image processing and analysis. All image processing and analysis was per-
formed in MATLAB. The image stack was registered to a stable, average
field-of-view using subpixel registration methods to correct for motion
along the imaged plane (x–y motion). For segmentation of visually
driven neurons, we used semiautomated segmentation algorithms to
select regions-of-interest (cell masks) from the average change in fluo-
rescence [dF/F, where F is the average fluorescence in the 20 frames
(�660 ms) preceding the first stimulus in each trial] evoked in response
to each stimulus type. Fluorescence time courses were generated by av-
eraging all pixels in a cell mask. Neuropil signals were removed by first
selecting a shell around each neuron (excluding neighboring neurons),
estimating the neuropil scaling factor (by maximizing the skew of the
resulting subtraction), and removing this component from each cell’s
time course.

Visually-evoked responses were measured as the difference in the dF/F
before [baseline window: average of three frames (�100 ms) around
stimulus onset] and during the response (response window: average of
three frames around the peak response; window was selected separately
for each experiment to account for variability in response latencies and
indicator kinetics). “Responsive cells” were chosen as having statistically
significant visually-evoked responses to at least one of the stimulus types
(Bonferroni-corrected paired t test) or all stimuli (paired t test), and the
maximum derivative in the dF/F occurred before the end of the response
window (to eliminate cells strongly driven by the removal of the stimu-
lus). Using these criteria, 245/279 and 473/587 cells were included for
visual stimulation Protocols 1 and 2, respectively. All measurements are
the average of at least seven trials of the same type.

Cells imaged in Protocol 2 (paired-pulse, different orientation) were
further selected based on the reliability of their orientation tuning. Re-
sponses in the control (no adapter) condition were fit with a von Mises
function:

B � Rek(cos(2(���))�1),

where B is the baseline firing rate, R is the modulation rate, � is the
concentration, and � is the preferred orientation. To measure the reli-
ability of the fit, the fit was repeated 1000 times resampling trials with
replacement. Only cells for which 90% of the bootstrapped fits were
within 22.5° of the original fit were included in further analysis (241/473
cells).

Analysis of the effects of adaptation on tuning [e.g., the preferred
orientation and the orientation selectivity index (OSI); Fig. 2E–G] were
derived from the von Mises fit to the data. OSI was measured as follows:

OSI �
Rpref � Rorth

Rpref � Rorth
,

where Rpref is the cell’s response at the preferred orientation (pref: max-
imum of the fit) and Rorth is the response to the orthogonal orientation.
In the case that Rorth was negative, it was set to 0. Cells were grouped
according to the distance of their preferred orientation from the adapter
(cells that prefer 22.5° and 157.5° were in the same group; Fig. 2E–G).

For Protocol 1, each cell’s responses were normalized to the average
response to the first stimulus. For Protocol 2, each cell’s responses were
normalized to Rpref.

Electrophysiology processing and analysis. Individual single units were
isolated using the SpyKing CIRCUS package (http://spyking-circus.
readthedocs.io/en/latest/). Raw data were first high-pass filtered (�500

Hz) and spikes were detected when a filtered voltage trace crossed thresh-
old (9 –13 median absolute deviations computed on each channel). A
combination of density-based clustering and template matching algo-
rithms were used to automatically cluster the spikes. The resulting clus-
ters were then inspected and adjusted manually using a MATLAB GUI.
Clusters with refractory period violations (	2 ms, �1% violation) in the
autocorrelogram and that were not stable across the whole recording
session were discarded from the dataset. Clusters were combined if they
met each of three criteria by inspection: (1) similar waveforms, (2) coor-
dinated refractory periods in the cross-correlogram, and (3) similar in-
terspike interval distribution shape. Unit position with respect to the
recording sites was calculated as the average of all site positions weighted
by the waveform amplitude of each site. All the subsequent analysis was
performed in MATLAB.

Local field potential and current source density analysis. For local field
potential (LFP) recording, the extracellular raw signal was bandpass fil-
tered from 1 to 200 Hz and downsampled to 10 kHz. The current source
density (CSD) was computed from the average LFP by taking the discrete
second derivative across the electrode sites that were linearly spaced
across cortical depth, and interpolated to produce a smoothed visually
driven CSD profile. This analysis transformed the LFP signal into the
locations of current sources and sinks, revealing a patterned laminar
distribution of sinks in V1 after the visual onset: an initial sink in layer 4
(latency: �50 ms), followed by a sink in layer 2/3 and finally a weak and
sustained sink in layer 5. Therefore, guided by the visually-evoked CSD
map, retrospective histology, and relative depth of recordings relative to
the pia surface, layer 2/3 units were identified and chosen for comparison
with the two-photon imaging dataset.

Visually-evoked responses of each unit in layer 2/3 of V1 were mea-
sured based on average peristimulus time histograms (PSTHs; bin size:
20 ms) over repeated presentations (�25 trials) of the same stimulus.
Response amplitudes were measured on a trial-by-trial basis: by subtract-
ing the firing rate at the time of the visual stimulus onset from the value
at the peak of the average PSTH within a window of 0 –100 ms after the
visual onset. Responsive cells were chosen as having statistically signifi-
cant visually-evoked responses (first baseline response, averaged over
0 –100 ms before the visual onset, vs visually-evoked responses, averaged
over 0 –100 ms after the visual onset; paired t test; this analysis window
excluded off-responsive units from analysis). For Protocol 1, we only
included the responsive units that had no significant difference in re-
sponse to the first stimulus (the adapter) across five ISIs (one-way
ANOVA). Using these criteria, 30/39 layer 2/3 cells were included.
Behavior processing and analysis. All behavioral processing and analysis
were performed in MATLAB. All trials were categorized as either an early
release (releases before target appears, a subset of which are FAs), hit, or
miss based on the time of release relative to target onset: responses oc-
curring earlier than 100 ms after the target were considered early releases;
responses occurring between 200 and 550 ms after a target were consid-
ered hits; failures to respond before 550 ms after the target were consid-
ered misses. Behavioral sessions were manually cropped to include only
stable periods of performance (removing consecutive trials at the begin-
ning or end of a session) and were further selected based on the following
criteria: (1) at least 50% of trials were hits, and (2) 	35% of trials were
early releases. Based on these criteria, the data in Figures 3 and 4 included
17 � 3 sessions (range: 5– 46) for each mouse with an average of 6348 �
815 trials per mouse (range: 2593–11857); the data in Figure 7 included
20 � 5 sessions (range: 6 – 40) for each mouse with an average of 4904 �
941 trials per mouse (range: 2284 – 8236); and the data in Figure 8 in-
cluded 24 � 5 (range: 11–35) sessions for each mouse with 7524 � 1582
trials (range: 5021–11710), respectively.

Hit rate was computed from the number of hits and misses for each
stimulus type:

Hit rate �
hit

hit � miss
.

Lapse rates were measured as (1-Hit rate) for 90° targets. Most mice
had low lapse rates (11/11 mice were 	10%) for the task in Figures 3 and
4. However, as mice age their reaction times become slower, thereby
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inflating the lapse rate; we think that this effect explains the increased
lapse rate during optogenetic suppression of V1 (only 1/4 mice were
	10% in Fig. 8).

Hit rates across stimulus types were fit with a Weibull function to
determine discrimination thresholds (50% of the upper asymptote to
account for lapse rate). No correction was made for FA rate. Threshold
confidence intervals (CIs) were estimated via nonparametric bootstrap
resampling trials with replacement.

All distractor stimulus presentations were categorized as either a cor-
rect rejection (CR) or a FA: responses occurring between 200 and 550 ms
after a distractor stimulus were considered FAs; presentations where the
mouse held the lever for at least 550 ms after the distractor stimulus were
considered CRs. FA rate was computed from the total number of FAs and
CRs in the session:

FA rate �
FA

FA � CR
.

Signal detection theory (Green and Swets, 1966) was applied to calculate
bias (c) given the measured hit and FA rate as follows:

c � �
Z(hit rate) � Z(FA rate)

2
,

where Z is the inverse of the cumulative distribution function of the
normal Gaussian distribution.

For matching the trial length across ISIs (Fig. 3G), trial length was first
binned every 0.5 s within the range of 1.2– 6.2 s (for hits and misses) and
1.2– 4.2 s (for FAs and CRs) respectively. Within each bin, the same
number of trials was chosen for all ISIs to ensure that the average trial
length was not significantly different. The selected trial number for each
bin was determined by the minimum number of trials across ISIs in that
bin for each mouse.

For calculating fraction of rewarded trials (Prew) given the 22.5°-Hit
and FA rates of each ISI (250 and 750 ms), we first simulated 1000 trials
where the 22.5° target is presented after six distractor 0° presentations.
For a known FA rate, we calculated the fraction of early trials (Pearly) that
were unrewarded assuming every 1/FA number of distractor presenta-
tions would generate an early release. Then the Prew was calculated as
follows:

Prew � 
1 � Pearly� Hit.

Eye-tracking processing and analysis. All eye-tracking data were ana-
lyzed in MATLAB. The size of the pupil on each frame was extracted
using the built-in function imfindcircles. Pupil size was normalized to
the maximum radius measured during the session and quantified as the
average measured in a 250 ms window preceding the target stimulus.

Modeling. For all modeled decoders, neurons imaged in different mice
were analyzed separately and only datasets with at least 10 well-fit neu-
rons (using the criteria above) were included in these analyses (10/12
experiments). As a result, error bars in Figures 5 and 6 represent SEM
across datasets.

To determine the properties of a neural decoder capable of fitting
animals’ behavioral choice, we summarized the behavioral data in the
two adapted conditions for the 11 animals used in Figure 3. Because
different orientations were sampled for each of the mice, we performed a
spline fit of each psychometric function and averaged across all animals
(see Fig. 5A). For each neuronal dataset we assumed that behavior was
generated by sampling from a posterior distribution that had the form of
a logistic regression, i.e.:

log p(detect�ni) � �
i�0

N

aini � logZ,

where n0 is once again assumed to be 1 and Z is the normalizer. The ai’s
were then determined by minimizing the symmetrized Kullback–Leibler
divergence between the average of this neurally predicted detection prob-
ability raised to some power and the behaviorally observed detection
probability across stimulus and adaptation conditions. Once again, we

used gradient descent to perform this optimization. The resulting mean
squared error between the neurally generated psychometric curves and
the behaviorally observed ones was 2e�4. These behaviorally generated
weights strongly correlated (correlation coefficient � 0.54) with the
weights discovered by using the neuronal data to decode whether the
stimulus was a target or distractor (using MATLAB’s glmfit routine; see
Fig. 5D).

Log likelihood functions were generated using two methods: the first
followed the equation (Jazayeri and Movshon, 2006):

logL(�) � �
i�1

N

nilogfi(�) � �
i�1

N

fi(�),

where N is the number of neurons in the population, fi(�) is each neu-
ron’s normalized tuning function and ni is each neuron’s response to a
given stimulus. The tuning functions were obtained from well-fit respon-
sive neurons, in the non-adapted condition (under the assumption that
the decoder is unaware of the effects of adaptation; Seriès et al., 2009),
and were used to decode the presented stimulus given single-trial re-
sponses (ni) that varied with adaptation.

Because our neuronal data does not adhere to the assumptions that
spiking is Poisson and independent, we also used a second more empirical
method based upon the assumption that our population of neurons repre-
sented von Mises over orientation using a linear PPC (Ma et al., 2006). This
approach assumes that the likelihood function takes the form:

logL(�) � �
i�0

N

ainicos(�) � binisin(�),

where n0 is assumed to be 1 and the ai’s and bi’s are discovered by max-
imizing the likelihood of the empirically observed joint distribution of
the presented stimulus and the neural response. This results in a convex
optimization problem which we solved using gradient ascent. Because
this method is prone to overfitting resulting in poor cross-validation
performance when the number of units greatly exceeds the number of
trials per condition, in datasets with �15 well-fit neurons, we used only
the 15 best-fit neurons (as measured by their 90% CI). As a control, we
also preprocessed our neural data using principle component analysis
and eliminated all but the 15 dominant modes of variability and refit the
empirically generated log likelihood. This had no effect on our results.
The number 15 was chosen to optimize performance on the cross-
validated dataset, however, we note that choosing values between 12 and
16 did not substantially change our results.

The single-trial log likelihood functions were then used to determine
either the MAP estimate (Method 1: Fig. 6E; Method 2: Fig. 6A–C) or the
posterior probability distribution (“optimal decoder”: Fig. 6D). We also
used a standard population vector decoder to estimate the orientation
(see Fig. 6F ). For this decoder a preferred stimulus value, �i, was ex-
tracted from a parameterized fit to the tuning curve of each well-fit unit.
Estimated orientation for each trial was then obtained from the equation:

� � angle ��
i

ni�cos(�i)

sin(�i)
��.

Estimate biases were computed by taking the mean estimate as a func-
tion of stimulus and adaptation condition. Because there was no clear
trend in estimate SD as a function of presented orientation, we computed
estimate variance in each adaptation condition by removing the bias
associated with each stimulus value and concatenated the resulting esti-
mate residuals into a single vector. To account for differences in the
information content of each dataset, estimate variances (and SD) were
normalized by the variance of the control condition of each dataset (35 �
14°). We then concatenated the resulting normalized residuals from each
dataset into a single dataset to measure the mean and associated SE of the
residual variances.

To compute the area under the receiver operating characteristic (au-
ROC) we treated our estimates of orientation (or in the case of the de-
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coders in Figs. 5E, 6D: the probability that the orientation was not the
distractor orientation) as decision variables and computed false-
positives and correct detections for 400 uniformly sampled values of the
decision criterion chosen to span all observed values of the decision
variable. For the sum decoder (see Fig. 5C) we simply treated the total
population activity on each trial as the decision variable. The auROC was
then computed numerically using the trapezoid rule.

Note that in all cases we report only cross-validated results (using leave
one out cross-validation in the control condition). This is because pa-
rameters of our neural decoders were all fit using only the control con-
dition and not our two adaptation conditions. The only exception to this
is for the calculation of neuronal weights using the logistic regression to
optimize discriminating between target and distractor stimuli; in this
case, to make it comparable to the estimation of neuronal weights from
the fit to animals’ behavioral choice, we trained the decoder on the 750
and 250 ms conditions. The results for all decoders were largely un-
changed if we obtained parameters from either the 750 ms condition or
all conditions simultaneously and cross-validate using a leave one out
procedure. However, we note that logistic regression weights are not
sensitive to this choice of training datasets.

To assess the degradation in performance that results from use of a
suboptimal decoder we computed percentage correct in the following
way. First the weights obtained from the fit to decode the animals’ be-
havioral choice and the fit to decode stimulus identity were used to
generate a set of decision variables for each dataset and stimulus condi-
tion. A task relevant measure of percentage correct was computed from
these values by mimicking the statistics of the behavioral task (i.e., dis-
tractors are 8 times more common than targets and target stimulus values
are uniformly distributed) for a range of potential decision criteria. The
optimal decision criterion was selected by determining which provided
the maximum value of percentage correct. This resulted in two values for
optimal percentage correct, one for the behavioral weights and one for
stimulus weights for each dataset. Average and SD for these percentage
correct values were then computed across datasets.

Experimental design and statistical analysis
Data were tested for normality using a Lilliefors test. Whereas all behav-
ioral measures and auROC estimates were normally distributed, distri-
butions of neuronal responses were not. Thus, in the case that two
distributions were compared we used a t test in behavioral measures and
auROCs, and a Wilcoxon rank sum test for neuronal responses; however,
because ANOVA and post hoc Tukey HSD tests have been shown to be
robust to non-normality (Driscoll, 1996), these tests were used for all
data. Sample sizes were not predetermined by statistical methods, but our
sample sizes of the neurons and behavior animals are similar to other
studies. The numbers of cells, animals, or experiments were provided in
the corresponding text, figures, and figure legends. All error values in the
text are SEM unless otherwise specified. Data collection and analysis were
not performed blind to experimental conditions, but all visual presenta-
tion conditions in either calcium imaging, extracellular recording, or
behavior testing are randomized. Moreover, the strength and time course
of adaptation on neuronal responses was measured using two methods
(Fig. 1) with data collected by two experimenters.

Data and code availability
All relevant data and code will be made available upon reasonable
request.

Results
Adaptation has prolonged effects on the amplitude and
selectivity of visual responses
To understand how adaptation impacts sensory encoding, we
first sought to characterize the time course of adaptation in the
mouse V1. Using video-rate two-photon imaging, we measured
visually-evoked responses in layer 2/3 of V1 in alert mice trans-
genically expressing the calcium indicator GCaMP6 (GCaMP6f:
n � 4; GCaMP6s: n � 8). Mice passively viewed pairs of brief,
identical static gratings (an adapter followed by a test; each 100

ms duration) presented at a range of ISIs (0.25– 4 s; Fig. 1A). At
short intervals, neurons in V1 had significantly reduced re-
sponses to the test stimulus relative to the adapter and gradually
recovered (tau � 592 ms, 95% CIs: 499 – 698 ms) with increasing
ISI [n � 245 cells, 5 mice; one-way ANOVA (p 	 10�17; DF � 4)
with post hoc Tukey HSD compared with non-adapted responses
(250 ms: p 	 10�7; 500 ms: p 	 10�7; 1 s: p 	 0.0001; 2 s: p � 1.0;
4 s: p � 0.96); Fig. 1B,C]. We do not think that this strong
adaptation is an artifact of either indicator or spike rate satura-
tion because there was no relationship between response ampli-
tude and degree of adaptation either within (normalized dF/F
after 250 ms ISI for preferred vs neighboring orientation: p �
0.37; Wilcoxon rank sum test; Fig. 1D) or across cells (linear
regression: r 2 � 0.003, p � 0.42; Fig. 1E). Further, the degree of
adaptation measured with extracellular single-unit recording was
similar to, though significantly stronger than, data collected with
calcium imaging (two-way ANOVA: main effect of recording
method: p 	 0.001; DF � 1; Fig. 1F–H). Thus, the effects of
adaptation were strong and relatively long-lasting compared with
the duration of the stimulus.

A large component of cortical adaptation is stimulus-specific,
and the effects of adaptation can thus depend on the difference
between a neuron’s preferred orientation and the orientation of
the adapter stimulus (Müller et al., 1999; Dragoi et al., 2000;
Stroud et al., 2012; Patterson et al., 2013). To determine how
adaptation alters orientation tuning in mouse V1, we measured
the orientation tuning of a population of layer 2/3 neurons with
and without a vertical adapter grating (Fig. 2A–C). Adaptation
significantly reduced responses to stimuli near the adapter orien-
tation (difference in normalized dF/F: two-way ANOVA, main
effect of orientation: p 	 10�6, DF � 4; n � 241 cells, 12 mice;
Fig. 2D), and this effect was larger when the ISI was short (two-
way ANOVA, main effect of interval: p 	 0.0001; DF � 1; Fig.
2D). Moreover, the peak responses of neurons with preferred
orientations near the adapter orientation were significantly re-
duced (normalized peak amplitude: two-way ANOVA, main ef-
fect of orientation: p 	 10�5, DF � 2; main effect of interval: p 	
0.05, DF � 1; Fig. 2E) and their tuning curves repelled away from
the adapter (change in preferred orientation: two-way ANOVA,
main effect of orientation: p 	 10�24; main effect of interval: p 	
0.01; Fig. 2F). In addition, neurons with preferred orientations
orthogonal to the adapter had a significant increase in OSI (dif-
ference from control OSI: two-way ANOVA, main effect of ori-
entation: p 	 0.01; main effect of interval: p 	 0.01; Fig. 2G),
likely because of selective adaptation of responses on the flanks of
their tuning curves (Dragoi et al., 2002). Thus, adaptation altered
the amplitude, preference and selectivity of neuronal responses in
V1 in a manner very similar to what has been previously observed
in carnivores and primates (Müller et al., 1999; Dragoi et al.,
2000; Patterson et al., 2013).

Adaptation increases orientation discrimination thresholds
To determine how adaptation affects orientation discrimination,
we designed a multi-interval, go/no-go task in which the mouse
needs to use information about the orientation of visual stimuli
to earn reward. In this task, head-restrained mice were trained to
press a lever to initiate a trial and release it to report any change in
the stimulus orientation (Fig. 3A; Movie 1). On each trial, the
lever press triggered the serial presentation of multiple gratings
(2–9 presentations per trial) of the same orientation [“distrac-
tors”; 100 ms duration; mice were trained with either a 0° (n � 9)
or 45° (n � 2) distractor] followed by a grating that is different
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from the distractor orientation (“targets”; drawn randomly from
a 9° to 90° range on trial-by-trial basis) to probe the animal’s
discrimination threshold. The number of distractor stimuli on
each trial was variable to prevent the mouse from anticipating the
target presentation. If the mouse released the lever within a win-
dow 200 –550 ms following the onset of a target stimulus, it was
considered a hit; if the mouse released the lever within the same
window following a distractor stimulus, it was considered a FA.

To test how adaptation affects orientation discrimination,
each stimulus presentation was separated by a randomly selected
ISI (250, 500, or 750 ms; the randomization prevents the mouse
from anticipating the upcoming interval). These ISIs were se-
lected because they are on the steep portion of the recovery from
adaptation (Fig. 1). Thus, by conditioning hit and FA rates on the
interval that preceded each target or distractor stimulus, this task
allowed us to compare the discrimination threshold and FA rate
in different adaptation states.

We found that the animals’ discrimination thresholds were
significantly increased when the ISI was short (one-way ANOVA
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Figure 3. Increase in threshold and decrease in FA rate following shorter ISIs in an orientation discrimination task. A, Schematic of behavioral setup and trial progression. Head
restrained mice press a lever to initiate a trial, triggering the repeated presentation of a vertically oriented grating (100 ms) with a randomly interleaved ISI [250 (light gray), 500 (gray),
or 750 (dark gray) ms]; the mouse must release the lever within a short window following the presentation of a non-vertical grating to receive a reward. B, Hit rate for an example mouse
in which target orientations were sorted according to the preceding ISI. Data are fit with a Weibull function; vertical lines denote threshold, error bars are 95% CIs. C, Summary of the
threshold across ISIs. Open circles are the average of all mice (n � 11 mice), connected gray lines are individual mice; error bars are SEM across mice. D, Summary of the average FA rate
across mice. Inset, Schematic illustrating the window for a FA. E, Summary of average pupil radius (normalized to the maximum radius measured during the experiment) for each mouse
(gray circles) and across mice (black circles) by ISI. F, Discrimination threshold (black; right y-axis) and FA rate (green; left y-axis) as a function of trial length (bin size: 0.5 s). For threshold,
values are normalized by the value at the first bin (center; 0.95 s). Shaded area is the SEM across 11 mice. G, Summary of the change in threshold (normalized to 250 ms ISI; gray shades,
right y-axis) and FA rate (non-normalized; green shades, left y-axis) as a function of average trial length, only including trials with matched length across ISIs. H, Summary of the change
in threshold (each normalized to own 250 ms condition; gray shades, right y-axis) and FA rate (green shades, left y-axis) as a function of ISI, for short (2– 4 distractor presentations; dark)
or long (6 – 8 distractor presentations; light) trials.

Movie 1. Movie of a mouse performing the orientation discrimina-
tion task. Two consecutive trials are shown in the orientation discrimi-
nation task. The outcome of the first trial is a hit and the outcome of the
second trial is a FA.
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with post hoc Tukey HSD compared with 250 ms: 500 ms: p �
0.21; 750 ms: p � 0.002; DF � 2; n � 11 mice; Fig. 3B,C).
Although we propose that this change in threshold is because of
the effects of adaptation on sensory processing, there are a num-
ber of possible cognitive confounds that could contribute to this
effect. For instance, effect of ISI on threshold could also be be-
cause of effects on task engagement or arousal. However, our data
suggest that these parameters were stable across ISIs because
there is (1) no significant difference in lapse rate (measured as
1-Hit rate for 90° targets) across ISIs (250 ms: 0.05 � 0.01; 500
ms: 0.05 � 0.01; 750 ms: 0.05 � 0.01; p � 0.97; one-way ANOVA;
n � 11 mice), and (2) no difference in pupil size preceding targets
of each ISI (p � 0.96, one-way ANOVA; n � 3 mice; Fig. 3E). We
also considered the possibility that the uncertainty in the timing of
stimulus appearance might be influencing the animals’ behavior, for
instance by generating surprise at the appearance of a stimulus ear-
lier or later than expected. However, we found animals also had a
lower threshold for longer intervals when ISIs were interleaved on a
trial-by-trial rather than presentation-by-presentation basis (500 vs
250 ms: p � 0.01, paired t test; n � 3 mice).

The effect of ISI on threshold may also be because of the
temporal properties of the task. Trials with a short pre-target ISI
are, by definition, shorter than those with long ISIs (p 	 10�13,
DF � 2, one-way ANOVA) and the animals’ discrimination
thresholds decreased with trial length (p 	 10�3, DF � 10; one-
way ANOVA; Fig. 3F). However, when trials were selected such
that all ISIs were matched for length, the ISI-dependent changes

in threshold remained intact (two-way
ANOVA, main effect of method: all versus
matched trials: p � 0.18, DF � 1; Fig. 3G).
Similarly, the effect of ISI on discrimina-
tion threshold was also not significantly
different for targets that appear after 2– 4
distractor presentations compared with
those that follow 6 – 8 (two-way ANOVA:
main effect of distractor number: p �
0.36, DF � 1; Fig. 3H). Together, these
data suggest that the effects of ISI on dis-
crimination threshold were not because of
differences in trial length or number of
stimuli.

We also found a decrease in FA rate
with shorter ISIs (one-way ANOVA with
post hoc Tukey HSD compared with 250
ms: 500 ms: p � 0.22; 750 ms: p 	 10�8;
DF � 2; Fig. 3D,F,G). One interpretation
of the observed increase in FA rate follow-
ing longer ISIs is that there is an increase
in impatient responses during the ex-
tended interval between stimuli. If true,
this would lead to an increase in release
probability shortly after stimuli following
a long ISI. However, inspection of the dis-
tribution of reaction times revealed the
opposite effect: the distribution of releases
to distractor stimuli following short ISIs
had shorter latencies than those following
longer ISIs [one-way ANOVA (p 	 10�8,
DF � 2] with post hoc Tukey HSD com-
pared with 250 ms: mean reaction time:
500 ms: p 	 10�5; 750 ms: p 	 10�8; n �
11 mice; example mouse in Fig. 4A). The
distributions of reaction times were con-

sistent with there being two classes of FAs: (1) releases following
distractor stimuli in which the mouse guessed that it was a target,
and (2) “spontaneous” releases because of non-sensory factors
(i.e., impatience). The relatively flat distribution of reaction times
in the 250 ms ISI condition is a hallmark of this latter, nonsensory
behavior (Tiefenau et al., 2006; though note the initial increase in
release rate immediately after the stimulus presentation, likely be-
cause of intentional releases from the previous presentation). In con-
trast, the comparatively skewed distribution following the longer
intervals suggests that the majority of these were stimulus-driven
releases [one-way ANOVA (p 	 10�5, DF � 3) with post hoc Tukey
HSD compared with 250 ms: 500 ms: p � 0.76; 750 ms: p � 0.002; all
targets: p 	 10�5; Fig. 4B]. In fact, the distribution of responses
following the 750 ms ISI closely resembled the reaction time distri-
bution when a target stimulus was presented (one-way ANOVA of
750 ms ISI distractor compared with all targets: p�0.3). Notably, ISI
had no detectable effect on the distribution of responses to targets
(one-way ANOVA; p � 0.1, DF � 2; Fig. 4C,D), suggesting that the
majority of these responses were stimulus driven in all conditions.
Thus, short ISIs reduced the FA rate by decreasing the likelihood of a
stimulus-driven response to a distractor.

The effects of adaptation on behavior are consistent with a
perceptual choice circuit that ignores distractor preferring
neurons
To determine how the perceptual choice circuit might be com-
bining the adapted cortical population activity in such a way that
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increases the animals’ discrimination
threshold, we used a linear combination
of neuronal activity (data from Fig. 2) to
decode the animals’ average behavioral
choices (data from Fig. 3; n � 11 mice; Fig.
5A; see Materials and Methods). This fit
involved assigning a weight to each neu-
ron that defined its contribution to the
behavior: positive weights reveal a posi-
tive relationship between the spiking of a
neuron and the mouse releasing the lever
(i.e., hits and FAs); negative weights reveal
a positive relationship between the spik-
ing of a neuron and the mouse not releas-
ing the lever (i.e., misses and CRs); and no
weight reveals no relationship between
spiking and behavior. As expected, neu-
rons preferring target orientations tended
to have positive weights [orientation pref-
erence �11.25° from the distractor (n �
123 cells): p 	 0.001; Student’s t test; Fig.
5B]. However, although the weights as-
signed to neurons preferring stimuli
closer to the distractor orientation (orien-
tation preference within 11.25° of the dis-
tractor; n � 22 cells) were significantly
different from target preferring neurons
(p 	 0.01; unpaired t test), they were not
significantly different from zero (p � 0.3,
Student’s t test). This was surprising be-
cause an optimal classifier should both
positively weight the target orientations
(to increase the probability of identifying
a target stimulus) and negatively weight
the distractor orientation (to decrease the
probability of mistaking it for a target).

This suggests that the animals’ behav-
ior may be generated by positively weight-
ing the target neurons while largely
ignoring the neurons that are tuned to
the distractor. To test whether this all-
positive weighting of the neuronal popu-
lation activity is sufficient to explain the
direction of the effects of adaptation on
behavior, we tested the effect of different
linear combinations of neuronal activity
on the discriminability of targets and dis-
tractors. To simplify the potential set of
neuron weights, we defined the weights of
each neuron as 1, 0, or �1 according to its
orientation preference. We then scaled
each neuron’s response on each trial by its
weight, and summed the activity of the
simultaneously recorded population, to
generate a population response for each
trial. We quantified how well an ideal ob-
server is able to differentiate targets and
distractors from the single trial popula-
tion responses by measuring the auROC. This is a criterion-free
approach for comparing the degree of overlap in the distributions
of neuronal responses, and thus is a good proxy for how well the
stimuli can be discriminated. Indeed, across a range of different
neuronal weights, the auROC was significantly larger, and there-

fore the distributions were more discriminable, for targets farther
from the distractor (main effect of target orientation: p 	 10�9,
DF � 3; two-way ANOVA; n � 10 mice; Fig. 5C).

When we generated a suboptimal weighting of inputs, where
those neurons with preferences 	30° were set to zero, whereas

A B

C

D E

Figure 5. Predicted weights are biased and positive. A, Fit (red) of the neuronal data optimized to decode the hit rate from the
average behavioral data (gray) from the experiments in Figure 3; hit rates are responses to targets (orientations � 0°) and
distractors (0°) after 750 (dark gray) or 250 (light gray) ms recovery from adaptation (n � 10 mice). B, Summary of weights found
by the fit to decode the behavioral choice in A as a function of neuron orientation preference. C, Summary of the average auROC as
a function of stimulus distance from the adapter after 750 (dark gray) or 250 (light gray) ms recovery from adaptation, found by a
weighted sum of neuronal activity (n �10 mice). Rows: positive weight for neurons with orientation preference�30° (top) or 60°
(bottom); Columns: negative weight for neurons with orientation preferences 	15° (middle) or 30° (right), or no negative
weights (left). Insets, The weighting scheme for each panel. Error bars are SEM across experiments. D, Same as B for weights found
using the neuronal data to decode the presented stimulus (target or distractor). E, Summary of the average auROC, found when
optimizing the neuronal weights to decode the stimulus, as a function of stimulus distance from the adapter.
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those �30° were set to one, the decoder reliably predicted that
shorter ISIs would decrease discriminability for targets near the
distractor orientation (auROC for 250 vs 750 ms: 22.5°: p 	 0.01;
n � 10 mice; paired t test; Fig. 5C) and distractors (auROC for
250 vs 750 ms: 0°: p 	 0.05). Thus, this weighting predicted an
increase in discrimination threshold and a decrease in FA rate
with adaptation. The effect was not significant, though trends in
the same direction, if the threshold for positive weights was set at
60° (22.5°: p � 0.15; 0°: p � 0.25; paired t test). However, any
addition of negative weights to distractor preferring neurons in-
verted the relationship between adaptation states such that
shorter ISIs predicted a decrease in threshold and no change in

false alarm rate (	15°: auROC-22.5°: p 	
0.01; 0°: p � 0.25; 	30°: auROC-22.5°:
p 	 0.05; 0°: p � 0.19; paired t test). Thus,
the observed effects of adaptation on ori-
entation discrimination are consistent
with a suboptimal computation in which
the downstream perceptual choice circuit
performs an all-positive integration of the
population activity.

To confirm that an optimal classifier
would negatively weight distractor prefer-
ring neurons, we trained a logistic regres-
sion to correctly discriminate distractor
and target stimuli. Indeed, neurons pre-
ferring target orientations tended to have
positive weights (p 	 10�5; Student’s t
test; Fig. 5D), and neurons preferring
stimuli closer to the distractor orientation
tended to have negative weights (p 	
0.05). Moreover, these optimal weights
did not generate the behaviorally ob-
served effects of adaptation on hit and FA
rate (auROC for 250 vs 750 ms: 22.5°: p �
0.06; 0°: p � 0.23; Fig. 5E).

Behavioral evidence for a task-specific
circuit that preferentially weights
target-preferring neurons
Notably, these computations for identify-
ing target stimuli are highly task-specific,
and do not take advantage of population-
level computations of the presented ori-
entation. However, optimal approaches
for estimating the presented orientation
from the neuronal population response
(Fig. 6A,B; Ma et al., 2006) predicted that
adaptation would decrease thresholds on
a discrimination task (250 vs 750 ms:
22.5°: p 	 0.001; 0°: p � 0.14; Fig. 6C).
This improvement in the performance of
the neuronal population at discriminating
orientation after adaptation was likely be-
cause of an adaptation-dependent de-
crease the variability of the orientation
estimate (SD: 250 ms: 6.9°�0.6°; 750 ms:
8.7°�1.0°; p 	 10�5; F test; Fig. 6B) as we
did not observe a significant effect of
adaptation on the accuracy of the estimate
(bias: 250 ms: 4.1°�2.5°; 750 ms:
6.8°�2.5°; p � 0.14; paired t test; Fig. 6B).
Similar results were found when using the

area under the posterior probability distribution as the decision
variable (auROC-22.5°: p 	 0.0001; 0°: p � 0.08 paired t test; Fig.
6D), or orientation estimates that assume independent Poisson sta-
tistics (auROC-22.5°: p 	 0.05; 0°: p � 0.19; paired t test; Fig. 6E;
Jazayeri and Movshon, 2006), or that were found using a population
vector (auROC-22.5°: p 	 0.01; 0°: p � 0.71; paired t test; Fig. 6F).
This suggests that adaptation actually increases the stimulus infor-
mation available in the mouse visual cortex. Moreover, of the many
computations tested, the only neuronal computation consistent
with the observed effects of adaptation on behavior relies on the
summed output of target-preferring neurons.

A B

C D

E F

Figure 6. Feature identification models predict that adaptation improves discrimination. A, Schematic of an optimal estimator
of orientation. The likelihood function is determined by scaling each neuron’s basis function (see Materials and Methods) to the
amplitude of its response, ni, to a given test stimulus and then summing across the population. The peak of this likelihood function
is the estimated orientation. B, Average estimate of orientation as a function of the presented orientation after 750 (dark gray) or
250 (light gray) ms recovery from adaptation (n � 10 mice). Error bars are SEM across experiments. Inset, Average SD in estimate
of orientation as a function of adaptation state. C, Summary of the average auROC for discriminating target and distractor orien-
tations, when estimating the presented orientation using an optimal estimator of orientation, as a function of stimulus distance
from the adapter after 750 or 250 ms recovery from adaptation. D–F, Same as C using the average posterior probability as the
decision variable (D), or when estimating the presented orientation using estimator that assumes Poisson statistics (E), or a
population vector (F ).
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To test whether the perceptual choice
is performed by a task-specific computa-
tion that relies on the activity of target-
preferring neurons, we perturbed the task
parameters. We tested animals on a vari-
ant of the task where the distractor orien-
tation could either be the trained
orientation (0°) or rotated 15 or �15°
from the trained orientation (randomly
interleaved on a trial-by-trial basis), with
the set of target orientations rotated 9 –90°
counter-clockwise relative to the distrac-
tor orientation (Fig. 7A). If the mouse
uses a more general strategy (for instance
comparing the orientation of the distrac-
tor to the target), the psychometric curves
for the three distractor conditions should
be the same. This is because task difficulty
depends only on the difference between
the target and distractor orientations, not
on the absolute target orientation (Fig.
7B). However, we found that all six mice
had lower discrimination thresholds in
the 15° condition (rotated toward learned
targets) compared with the 0° condition,
which in turn had lower discrimination
thresholds than in the �15° condition
(rotated away from learned targets; one-
way ANOVA, p 	 10�4, DF � 2, n � 6
mice; Fig. 7D,E). The effects on FA rates
were not symmetric: all six mice had
higher FA rates in the 15° condition com-
pared with the 0° condition (one-way
ANOVA with post hoc Tukey HSD com-
pared with 0°, p 	 0.05, n � 6 mice; Fig.
7E), but no difference in FA rate between
the 0 and �15° conditions (one-way
ANOVA with post hoc Tukey HSD �15°
compared with 0°, p � 0.97). This indi-
cates that the circuit has adopted a task-
specific computation that treats all stimuli
with positive orientation as targets. This
can be accomplished by a perceptual
choice circuit that more strongly weights
neurons with preferred orientation close
to 90°.

Behavioral evidence for a perceptual choice circuit that relies
on the summed output of visual cortical neurons
The effects of adaptation on behavior suggest that the perceptual
choice circuit performs a weighted sum of visual cortical activity
and is detecting increases above a learned threshold. To test
whether the decision is indeed sensitive to the summed output of
the visual cortex, we optogenetically activated inhibitory neurons
to transiently suppress activity in V1 on randomly interleaved
trials (Fig. 8A,B). The light power was titrated to decrease hit
rates for small orientation differences (22.5°, p 	 0.05, paired t
test, n � 4 mice) without affecting performance on easy trials (90°,
p � 0.54, paired t test). Similar to decreasing the ISI, suppression of
V1 increased the discrimination threshold (p 	 0.005; paired t test;
Fig. 8B,C) and reduced the FA rate (p 	 0.01). This effect of sup-
pressing V1 activity is consistent with a perceptual choice circuit that

sums and thresholds the output of visual cortical circuits. Moreover,
the observed decrease in FA rate with suppression of V1 is also con-
sistent the hypothesis that the perceptual choice circuit ignores dis-
tractor preferring neurons: if distractor preferring neurons were to
be negatively weighted, then we would expect to see an increase in FA
rate when they are suppressed.

Suppression of V1 also significantly reduced the dependence
of threshold (two-way ANOVA, main effect of V1 inhibition: p 	
0.01, DF � 1; Fig. 8D,E) and FA rate (two-way ANOVA, main
effect of V1 inhibition: p 	 0.01; Fig. 8F,G) on ISI. This decrease
in the effect of ISI on behavior is consistent with a role for adap-
tation in the visual cortex in the effects that ISI has on task per-
formance. Together, these data provide evidence for a perceptual
choice circuit that detects increases in the activity of target pre-
ferring visual cortical neurons.

A

B C

D E

Figure 7. Behavior is inconsistent with a general change detection strategy, but can be explained by a task-specific circuit with
biased weights. A, Schematic of the trial progression. For each trial, the distractor (Dist) orientation could be 15° (orange), 0°
(black), or �15° (green). The target orientations are 9 –90° counter-clockwise change from the distractor orientation. B, If the
mouse adopts a general change detection strategy, the discrimination threshold should be similar across different distractor
orientations. C, If the mouse adopts a task-specific strategy that discriminates a learned quadrant of target orientation space
(positive orientations), the discrimination threshold would be lower for 15° distractor and higher for �15° distractor compared
with 0° distractor. Inset, Schematic of biased weights across neurons tuned for positive orientations. D, Hit rate for an example
mouse in which target orientations were sorted according to the distractor orientations. E, Summary of the average change in the
threshold (left) and FA rate (right) for each distractor orientation relative to the 0° condition across mice. Open circles are the
average of all mice (n � 6 mice), small filed circles are individual mice; error bars are SEM across mice.

3878 • J. Neurosci., May 15, 2019 • 39(20):3867–3881 Jin et al. • Suboptimal Decoding of Orientation



Discussion
To determine how decision-making circuits use information
from orientation tuned neuronal populations, we trained the
mice to perform a multi-interval, go/no-go orientation discrim-
ination task. We find that adaptation impairs the animals’ ability
to discriminate targets near the distractor orientation both in
terms of threshold and fraction of rewarded trials (22.5° target,
accounting for difference in false alarm rate: 250 ms, 24% trials
rewarded; 750 ms: 34.7% trials rewarded). These behavioral data
are consistent with a suboptimal computation in which the per-
ceptual choice circuit relies on neurons that prefer target stimuli
but fails to appropriately negatively weight neurons that prefer
the distractor (Fig. 9). This suggests that sensory information
may sometimes be integrated suboptimally when solving percep-
tual tasks.

In this study we use the term optimal to describe the compu-
tation purely from the perspective of the best possible use of the
information present in the neuronal population activity that can
be extracted linearly. Indeed, the optimal computation (using the
neuronal weights from the fit optimized to decode the stimulus
presented) does significantly better on our discrimination task
than the suboptimal computation (using the neuronal weights fit
optimized to decode the animals’ behavioral choices) that dis-
cards the activity of distractor-preferring neurons (percentage
correct, optimal: 97%; suboptimal: 90%; p 	 10�6). Thus, the
finding that the brain favors a suboptimal computation to dis-
criminate orientation may tell us something about the con-
straints of the circuit. All of the optimal computations that we
considered require the negative weighting of specific popula-
tions. Such a negative weighting may require a disynaptic circuit
to recruit stimulus-specific inhibition and so may be more diffi-
cult to learn. Such a computation might also come at a cost. For
instance, the optimal circuit imposes at least one synaptic delay
and requires additional integration time in the recurrent net-
work, which may slow decision-making. Indeed, there is evidence
that the human cortex uses suboptimal computations that ignore
distractors or weakly informative features, especially under time
constraints (Ho et al., 2012; Oh et al., 2016).

In contrast, the suboptimal computation suggested by our
neuronal fit to animals’ behavioral choice relies only on an excit-
atory, feedforward circuit. Our behavioral experiments, includ-
ing the distractor orientation perturbations and V1 population
inhibition, support this proposed circuit. However, direct evi-
dence for the absence of negative weights can only be provided by
applying new tools that allow for the specific activation of func-
tional subsets of neurons in behaving animals (Mardinly et al.,
2018). This excitatory computation may have been learned
though experience, where the downstream circuit comes to rely
on the activity of neurons that increase their activity in response
to targets. This computation is amenable to a simple associative
learning rule through the repeated pairing of targets and reward
(Law and Gold, 2009; Znamenskiy and Zador, 2013; Xiong et al.,
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Figure 8. Suppression of V1 increases threshold, decreases FA rate and decreases the dependence of behavior on ISI. A, Schematic of behavioral setup and trial progression. V1 inhibition was
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Figure 9. Model for perceptual choice circuit for our orientation discrimination task. Sche-
matic of perceptual choice circuits for suboptimal (left) and optimal (right) computations. Ori-
entation tuned excitatory neurons (shades of gray) converge onto the decoder with weights
biased toward target-preferring neurons. We proposed that mice adopt a suboptimal compu-
tation implemented in a feedforward excitatory circuit that lacks lateral inhibition (red) from
distractor-preferring neurons.
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2015). For instance, the positive weighting of target neurons
might be achieved through Hebbian long-term synaptic potenti-
ation, whereas decreasing the weight of distractor-preferring
neurons might be achieved through long-term depression.

It is possible that the strategy used to train the mice to perform
this task, or the specific task parameters used, supported the de-
velopment of this suboptimal computation. In particular, the
strong adaptation of the distractor preferring neurons may de-
crease the need for a negative weighting of their activity. There
may also be something specific to the structure or incentives of
go/no-go tasks that bias toward this computation: mice are more
robust to increases in stimulus contrast (which increase firing
rates) when performing a two-alternative forced choice orienta-
tion discrimination compared with a go/no-go version of the task
(Long et al., 2015). Importantly, the suboptimal computation is
only viable when the distractor orientations are the same across
trials. Thus, it is possible that mice initially trained on a task that
varies the distractor orientation on a trial-by-trial basis would
adopt an optimal perceptual choice circuit.

Although the task-specific, suboptimal perceptual choice cir-
cuit is viable, it leaves the animal vulnerable to systematic error.
By relying on the absolute firing rate of a subset of neurons,
anything that increases firing rates can be mistaken for a target.
We think that this is why the mice have a high FA rate following
long intervals: the recovery from adaptation with long intervals
results in larger than expected firing rates, making the animal
respond as if a target had been presented (Fig. 4). Conversely,
short ISIs reduce the firing rates of target preferring neurons,
reducing the likelihood of a stimulus-evoked release. Indeed, re-
ducing the firing rates in V1 by optogenetic activation of inhibi-
tory neurons also results in a decrease in hit and FA rates,
consistent with the hypothesis that the perceptual choice circuit is
summing the total activity in this area.

Suppression of V1 and decreasing ISI both reduced hit and FA
rate. Such concomitant changes in hit and FA rate are associated
with changes in bias (c) as measured using signal detection theory
(Green and Swets, 1966). Indeed, decreasing ISI did significantly
increase c (22.5° target, 250 ms: 1.28 � 0.06; 500 ms: 1.08 � 0.05;
750 ms: 0.75 � 0.06; p 	 10�5; one-way ANOVA; n � 11 mice).
However, this is most likely because of an adaptation-dependent
reduction in firing rates in response to both targets and distrac-
tors (i.e., signal and noise), which will decrease the optimal cri-
terion (and increase bias because bias is measured relative to
optimal). Thus, changes in sensory processing in V1, in the ab-
sence of cognitive mechanisms whereby the mouse increases its
criterion, are sufficient to explain this change in bias (Witt et al.,
2015; Jin and Glickfeld, 2018). The lack of effect of ISI on lapse
rate also argues against a cognitive mechanism for the effects of
ISI on behavior. Finally, the disproportional increase in threshold
(and decrease in FA rates) with suppression of V1 is consistent
with effects of ISI on behavior acting through effects on sensory
coding, and not through more cognitive mechanisms like for-
ward masking and attentional blink (Raymond et al., 1992;
Macknik and Livingstone, 1998; Alwis et al., 2016). Notably,
these phenomena also tend to act on much shorter time-scales
(tens of milliseconds) than intervals used in this study, making
them unlikely candidates to explain the effects of ISI on behavior.
Together, these observations support the argument that varying
ISI affects discrimination thresholds through altering adaptation
state in the visual cortex.

The neuronal data that we used to generate the model predic-
tions was collected from naive mice that were passively viewing
the visual stimuli. This was done to generate full orientation tun-

ing curves in the adapted and unadapted conditions, as well as to
avoid contamination of non-sensory signals. However, this
means that the effects of training or active behavioral engagement
are not included in our model predictions. Because the tuning of
visual cortical neurons can be affected by visual experience
(Schoups et al., 2001; Kreile et al., 2011; Goltstein et al., 2013), it
is possible that our task training paradigm (abundance of 0° dis-
tractors and 90° targets, 6 d/week, �3 months) induced a change
in the representation of orientation in V1 neurons. However, the
orientation identification models are designed to account for
skewed distributions, and thus we do not expect that experience-
dependent changes in the representation of orientation would
substantially affect orientation identification models’ predic-
tions. On the other hand, the degree of adaptation is dependent
on both the number of distractors preceding the target as well as
task engagement (Keller et al., 2017), and therefore the mapping
of the neural data onto the behavioral data may not be straight-
forward. Nonetheless, we were able to reliably fit the neural data
to the behavioral data, suggesting that there may in fact be a linear
transform of firing rates across behavioral state.

Our behavioral, physiological, and computational approaches
reveal that the circuit adopts an all-excitatory computation to
solve an orientation discrimination task. Future work will deter-
mine the conditions that support the use of this specific compu-
tation, and in which tasks and species it arises. Nonetheless, these
results reveal that the perceptual choice circuit likely does not
always take advantage of all available sensory information, per-
haps in the interest of expediency. Specifically, ignoring impor-
tant information leaves the mouse vulnerable to the effects of
adaptation, but may enable both robust associative learning and
fast decision making via a simple feedforward circuit.
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