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Although spatial and feature attention have differing effects on neuronal responses in visual cortex, it remains unclear why. Response
normalization has been implicated in both types of attention (Carandini and Heeger, 2011), and single-unit studies have demonstrated
that the magnitude of spatial attention effects on neuronal responses covaries with the magnitude of normalization effects. However, the
relationship between feature attention and normalization remains largely unexplored. We recorded from individual neurons in the
middle temporal area of rhesus monkeys using a task that allowed us to isolate the effects of feature attention, spatial attention, and
normalization on the responses of each neuron. We found that the magnitudes of neuronal response modulations due to spatial attention
and feature attention are correlated; however, whereas modulations due to spatial attention are correlated with normalization strength,
those due to feature attention are not. Additionally, spatial attention modulations are stronger with multiple stimuli in the receptive field,
whereas feature attention modulations are not. These findings are captured by a model in which spatial and feature attention share
common top-down attention signals that nonetheless result in differing sensory neuron response modulations because of a spatially
tuned sensory normalization mechanism. This model explains previously reported commonalities and differences between these two
types of attention by clarifying the relationship between top-down attention signals and sensory normalization. We conclude that similar
top-down signals to visual cortex can have distinct effects on neuronal responses due to distinct interactions with sensory mechanisms.
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Introduction
Both spatial and feature attention improve visual perception
(Baluch and Itti, 2011). Spatial attention broadly improves per-
ception at a specific location (Posner, 1980), whereas feature at-
tention improves perception of a specific visual feature across all

locations in space (for review, see Carrasco, 2011). Many studies
have described the effects of spatial and feature attention on the
responses of neurons in visual cortex, but describe both similar-
ities and differences in their effects, leaving uncertain whether
they have common or distinct neuronal mechanisms (for review,
see Maunsell, 2015).

The feature similarity gain model suggests a unified mecha-
nism of attention in which space is treated as a visual feature
(Treue and Martínez-Trujillo, 1999). Neuronal response modu-
lations arising from spatial and feature attention combine addi-
tively suggesting that these forms of attention affect neurons in
similar ways (Treue and Martínez-Trujillo, 1999; Ibos and Freed-
man, 2016). Further, spatial and feature attention are both asso-
ciated with changes in the pairwise correlations between the
firing rates of sensory neurons (Cohen and Maunsell, 2009;
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Significance Statement

Subjects use attention to improve their visual perception in several ways, including by attending to a location in space or to a visual
feature. Prior studies have found both commonalities and differences between the effects of spatial and feature attention on
neuronal responses in visual cortex, although it is unclear what mechanisms could explain this range of effects. Normalization, a
computation by which neuronal responses are modified by stimulus context, has been implicated in many neuronal mechanisms
throughout the brain. Here we propose that normalization provides a simple explanation for how spatial and feature attention
could share common top-down attention signals that still affect sensory neuron responses differently.
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Mitchell et al., 2009; Verhoef and Maunsell, 2017), and the rela-
tionship between modulations of firing rate and of pairwise cor-
relations is quantitatively indistinguishable for spatial versus
feature attention (Cohen and Maunsell, 2011). Both forms of
attention increase gamma frequency synchronization (for re-
view, see Gregoriou et al., 2015) and, finally, spatial and feature
attention may share a common top-down source of attention
signals (Moore and Armstrong, 2003; Gregoriou et al., 2009;
Zhou and Desimone, 2011; but see Paneri and Gregoriou, 2017).

However, other observations point to distinctions between
the mechanisms that support spatial versus feature attention. In a
task involving both types of attention, trial-to-trial neuronal re-
sponse fluctuations due to spatial versus feature attention were
uncorrelated (Cohen and Maunsell, 2011). Further, the effects of
spatial and feature attention on neuronal firing rates have differ-
ent time courses (Hayden and Gallant, 2005). Finally, feature
attention effects spread globally to cortical responses across all
locations in visual space (Saenz et al., 2002; Serences and Boyn-
ton, 2007) whereas spatial attention effects are retinotopically
specific (Womelsdorf et al., 2006), matching the respective be-
havioral effects (Melcher et al., 2005; Maunsell and Treue, 2006).

How might these two forms of attention share a common
top-down source of attention signals that result in differing re-
sponse modulations at the level of sensory neurons? Models of
attention have suggested that the sensory mechanism of normal-
ization plays a role in both spatial and feature attention (Boynton,
2009; Lee and Maunsell, 2009; Reynolds and Heeger, 2009). Elec-
trophysiological recordings of single-neuron responses have
demonstrated that differences in normalization strength explain
much of the difference in the strength of neuronal response mod-
ulations associated with spatial attention (Ni et al., 2012).
Whether a normalization model can explain neuronal response
modulations due to feature attention has yet to be tested.

Here we recorded from individual neurons in MT of rhesus
monkeys while they performed a task that allowed us to indepen-
dently measure neuronal response changes associated with spatial
versus feature attention, as well as the amount of normalization
demonstrated by each neuron. We found a neuron-by-neuron cor-
relation between the effects of spatial and feature attention on neu-
ronal responses. However, this correlation was not due to a shared
link to normalization strength. Spatial attention modulations were
correlated with normalization strength across neurons, but feature
attention modulations were not. Additionally, although spatial at-
tention modulations were stronger with multiple visual stimuli in
the receptive field (Maunsell, 2015), a finding that has been attrib-
uted to normalization (Lee and Maunsell, 2010), this was not the
case for feature attention. These findings are explained by a model in
which spatial and feature attention share common top-down atten-
tion signals that nonetheless result in distinct sensory neuron effects
due to a spatially tuned sensory normalization mechanism. The
model clarifies why prior studies have found both similarities and
differences between the sensory neuron effects of spatial and feature
attention.

Materials and Methods
The Harvard Medical School Institutional Animal Care and Use Com-
mittee approved all animal procedures. Other findings based on portions
of the data described here have been described previously (Ni et al., 2012;
Ni and Maunsell, 2017). Specifically, the neuronal data that were col-
lected during the normalization and spatial attention task variants are a
subset of the data analyzed in a prior paper that explains why the equal-
maximum suppression (EMS) spatially tuned normalization model used
here is necessary to describe both across- and within-neuron differences

in normalization strength (Ni and Maunsell, 2017). The current study
analyzes neuronal data from a feature attention variant of the behavioral
task that have never been published, alongside the previously analyzed
neuronal data from the normalization and spatial attention variants of
the task (Ni and Maunsell, 2017). The purpose of the current study is to
test whether the EMS spatially-tuned normalization model can explain
the neuronal correlates of feature attention, and to explore the implica-
tion for the relationship between feature attention and normalization.

Behavioral task. Two male rhesus monkeys (Macaca mulatta) that
weighted 8 and 12 kg. Each received a headpost and a scleral search coil
implant under general anesthesia. After recovery, we trained each animal
to do a change-detection task that manipulated spatial attention and
feature attention.

During each trial of the task, the animal maintained fixation within 1°
of a small white dot presented at the center of a video monitor (44 � 34°,
1024 � 768 pixels, 75 Hz refresh rate, gamma-corrected) on a gray back-
ground (42 cd/m 2). After the animal fixated for 250 ms, an annulus-
shaped cue appeared for 250 ms, instructing the animal to attend to one
of three possible locations. Two of these locations were within the recep-
tive field (RF) of the neuron being recorded. The third was a symmetric
location on the opposite side of the fixation dot. All three locations were
the same eccentricity from fixation. The cue was extinguished, and then
up to three small drifting Gabors were flashed simultaneously for 200 ms
(one Gabor per location), with a blank interstimulus period (varied ran-
domly between each stimulus, from 158 to 293 ms) separating each flash
of Gabors (Fig. 1A). The Gabors were flashed on and off until the Gabor
at the cued location appeared with a direction that differed by �0° and
�90° (a target). The animal was rewarded with juice for making a saccade
directly to this target Gabor’s location within 100 – 600 ms of its onset.

The appearance of the target Gabor was timed to follow an exponential
distribution (a flat hazard function), encouraging the animal to maintain
a constant level of attention across trial time. Direction changes of �0°
and �90° also occurred at the two un-cued locations (distractors), with
the same probability as the changes at the cued location. If the animal
responded to a distractor, the trial was terminated without reward. In
�20% of the trials, the trial lasted 6 s without a target direction change
occurring at the cued location (catch trials), in which case the animal
received a reward for maintaining fixation for the 6 s.

We initially measured each recorded neuron for motion direction
tuning (for RF mapping methods, see Single-unit electrophysiology) and
assigned a preferred, a null (opposite), and an intermediate (orthogonal)
direction of motion to each neuron. The purpose of the directional stim-
uli was to evoke differential neuronal responses from the preferred versus
the null stimuli, which allowed measurements of normalization and at-
tention effects.

The two Gabors presented at the locations inside the RF fell at loca-
tions separated by at least 5 times the SD of the Gabors (Gabor mean SD
0.45°, range 0.42– 0.50°, mean separation of Gabor centers 4.2°, range
2.2– 6.9°). Because RFs in the middle temporal visual area (MT) are large
(Desimone and Ungerleider, 1986), the two stimuli fit easily within the
borders of a single MT RF.

For the stimuli presented in the RF, one of six possible stimulus com-
binations was pseudorandomly assigned on each stimulus presentation
flash of a trial (Fig. 1B; Ni and Maunsell, 2017). Three of the stimulus
combinations presented the stimuli in Configuration A (preferred stim-
ulus in Location 1, null stimulus in Location 2) and three of the combi-
nations presented the stimuli in Configuration B (null stimulus in
Location 1, preferred stimulus in Location 2). Finally, whereas the stim-
uli presented at the location outside of the RF were always presented at
100% (maximal) contrast, the stimuli presented in the RF were pseudo-
randomly assigned a contrast of 100, 50, or 0% (i.e., absent).

This task allowed us to measure the neuronal effects of normalization,
feature attention, and spatial attention independently. For each recorded
neuron, the animal performed three variants of the change-detection
task (Fig. 1C–E). The three variants were run in alternating blocks. At
least two complete blocks of each task variant were collected for each
recorded neuron. The target direction change amount was always �90°
and was adjusted independently for each task variant and each neuron
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using an adaptive staircase procedure (Watson and Pelli, 1983) that
maintained behavioral performance at �82% correct.

In the normalization task variant (Fig. 1C), the animal was cued to
attend to the location outside of the RF, to a stimulus that always drifted
in the intermediate motion direction for the neuron (except during the
target changes). By directing the monkey’s attention to a distant spatial
location in the opposite visual hemifield from the RF and to a constant,
intermediate direction of motion, we minimized the effects of spatial and
feature attention on our neuronal response measurements. For the mea-
surements of normalization, attention could not differentially modulate
the six different stimulus conditions (Fig. 1B), because we used random
stimulus sequences and short (200 ms) stimulus flashes so that the ani-
mal would not be able to adjust its attention in response to the random
content of each flashed set of stimuli (Williford and Maunsell, 2006).

The feature attention task variant (Fig. 1D)
was identical to the normalization variant ex-
cept that the attended stimuli outside of the RF
always drifted in the neuron’s preferred direc-
tion of motion. Comparing responses when
the animal attended to the preferred direction
of motion to those recorded while the animal
attended to an intermediate direction of mo-
tion (in the normalization task) allowed us to
measure neuronal modulations associated
with attention to particular directions.

In the spatial attention task variant (Fig. 1E),
the stimuli outside of the RF were presented in
the neuron’s intermediate direction of motion
while the animal was cued to one of the loca-
tions within the RF in some blocks of trials, and
to the other RF location in other blocks. Be-
cause one of six possible stimulus combina-
tions was pseudorandomly assigned to the RF
on each stimulus presentation flash (Fig. 1B),
the monkey had to ignore direction changes
between the preferred and null directions at the
cued location of the block (180° changes), and
respond only to direction changes �0° and
�90° at the cued location. Importantly, the
task was designed to prevent feature attention
from varying systematically across different
stimulus conditions during this spatial atten-
tion task variant. Because the animal could not
anticipate which stimulus direction would be
presented next at its attended location, and
because the stimulus flashes were very brief
(200 ms), the animal did not have time to
adjust its feature attention in response to
the stimulus condition pseudorandomly as-
signed per flash.

Monkey 1 was trained on the entire task at
once, including all three task variants (normal-
ization, feature attention, and spatial attention
variants). On each day of training, training al-
ternated between the three variants in blocks of
trials. Monkey 2 was initially trained on the
attend-out condition only (the feature atten-
tion and normalization variants). After mas-
tering these variants, Monkey 2 was then
trained on the spatial attention variant, but
without the pseudorandom presentation of ei-
ther the preferred or null stimulus at each stim-
ulus location within a single trial. Instead,
Monkey 2 was first trained with the preferred
stimulus always presented at one location and
the null stimulus always presented at the other.
After mastering this version of the task variant,
Monkey 2 was trained to ignore direction
changes between the preferred and null direc-
tions at the cued location of the block (180°

changes) and to respond only to direction changes �0° and �90° at the
cued location.

Single-unit electrophysiology. After the animal was trained on the behav-
ioral task, a recording chamber was implanted to allow electrodes to reach
MT from a posterior approach (axis �22–40° from horizontal in a parasag-
ittal plane). We recorded the activity of isolated neurons with glass-insulated
platinum-iridium microelectrodes (�1 M� at 1 kHz), using a guide tube
and grid system (Crist et al., 1988) to penetrate the dura. Extracellular signals
were filtered between 250 Hz and 8 kHz, amplified, and digitized at 40 kHz.
We isolated action potentials from individual neurons using a window dis-
criminator and recorded spike times with 1 ms resolution.

For each isolated neuron, we estimated the RF location with a hand-
controlled visual stimulus. We then measured direction tuning (8 direc-
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Figure 1. Task design. A, During each trial, the monkey was presented with a cue that directed its attention to one of three
locations (2 within and 1 outside the RF of the MT neuron being recorded) while series of drifting Gabor stimuli (each having 0, 50
or 100% contrast) were presented on and off simultaneously at the three locations. B, On each stimulus presentation, the RF stimuli
were pseudorandomly presented in one of six possible stimulus conditions. Three conditions were in Configuration A (the preferred
stimulus in Location 1, the null stimulus in Location 2), and three conditions were in Configuration B (the null stimulus in Location
1, the preferred stimulus in Location 2). C, To measure normalization strength, attention was cued to stimuli outside of the RF,
moving in the intermediate direction of motion. D, To measure feature attention modulation, attention was cued to stimuli outside
of the RF, moving in the preferred direction of motion. E, To measure spatial attention modulation, attention was cued to a location
inside of the RF. The monkey received a reward for ignoring changes between the preferred and null directions at each RF location
and only detecting a direction change �90° at the cued location.
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tions) and temporal frequency tuning (5
frequencies) with computer-controlled pre-
sentations of Gabor stimuli while the animal
performed a fixation task. The direction that
produced the strongest response was taken as
the preferred direction, the direction 180° from
the preferred direction was taken as the null
direction, and one direction 90° from the pre-
ferred direction was used as the intermediate
direction. All of the Gabors were presented at
the same temporal frequency, the one that pro-
duced the strongest average response. The tem-
poral frequency was rounded to a value that
produced an integral number of cycles of drift
during each stimulus presentation. In this way,
the Gabors could start and end with odd spatial
symmetry, so that the spatiotemporal integral
of the luminance of each stimulus was the same
as the background. The spatial frequency of all
of the Gabors was fixed at 1 cycle per degree. A
Gabor moving in the preferred direction and at
the preferred temporal frequency was used to
quantitatively map the RF (3 eccentricities, 5
polar angles) while the animal performed a fix-
ation task. The RF eccentricities ranged from 5
to 14° for Monkey 1 and from 7 to 14° for Mon-
key 2. The two stimulus locations within the RF
were chosen to give approximately equal re-
sponses. Direction selectivity was indistin-
guishable between the stimulated RF locations
(Livingstone et al., 2001; Location 1 average
direction selectivity modulation index � 1.1;
Location 2 average � 1.1; paired t test: t(56) �
0.16, p � 0.87).

Experimental design and statistical analysis.
In total, we analyzed the responses of 57 indi-
vidual MT neurons (42 from Monkey 1, 15
from Monkey 2). For each neuron, responses
to the two stimulus configurations (Configura-
tion A and Configuration B; Fig. 1B) were
treated separately in all analyses, yielding two
observations per neuron. This was done be-
cause normalization strength varies with stim-
ulus configuration if stimuli presented at
different RF locations contribute different
weights to normalization (see Results; Ni and
Maunsell, 2017). Thus, two “unit-confi-
gurations” were collected per neuron.

We included recorded neurons in the analy-
ses if they had driven firing rates that were signif-
icantly greater than their spontaneous firing
rates, and if we collected data from at least two
blocks each of the normalization, feature atten-
tion, and spatial attention task variants. Addi-
tionally, we excluded three neurons from all
analyses based on the application of the Tukey
method if they had exceptional values for the
modulation indices for normalization (NMI), feature attention (FMI), or
spatial attention (SMI): we excluded one neuron with an NMI of �1.49, one
neuron with an FMI of 1.52, and one neuron with an SMI of 3.41. All ex-
cluded neurons were from Monkey 1. Only correct response trials were
included in the analyses (correct change-detection trials and catch trials). Of
the stimulus presentations on those trials, we excluded stimuli if they were
presented at the same time as a target or distractor stimulus, if they appeared
after the target presentation, or if they were presented within 400 ms of the
start of the stimulus series. Excluding the first one or two stimulus presenta-
tions of each trial reduced variance arising from stronger responses to the
initiation of the stimulus series. After stimulus exclusions, �13 repetitions of
the 6 stimulus conditions were collected per block.

We calculated neuronal firing rates using a 200 ms window starting 50
ms after stimulus presentation onset and ending 50 ms after stimulus
presentation offset. Other than the peristimulus time histograms
(PSTHs) plotted in Figure 2, which plot the neuronal firing rate, analyses
used driven rate. Driven rate was calculated per stimulus presentation by
subtracting the average baseline firing rate (the firing rate when both
stimuli in the RF were presented at 0% contrast; that is, when no stimuli
were presented in the RF) from the firing rate for that stimulus presen-
tation. We calculated the average response rate per stimulus condition as
the mean driven rate across all included stimulus repetitions.

P values were computed for Pearson’s linear correlation coefficients using
a Student’s t distribution (“corr”; MATLAB R2015a, MathWorks). Confi-
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Figure 2. Spatial and feature attention effects were correlated across unit-configurations. A, For unit-configuration Example 1,
a PSTH illustrates the average response to the preferred and null stimuli together in the RF when attention was directed outside of
the RF to the intermediate direction of motion (thick black line). Spatial attention directed inside of the RF resulted in a strong
increase in neuronal response when the preferred stimulus was presented at the attended location (orange line; modulation index
of 0.21). Feature attention directed to the preferred direction of motion also resulted in a strong increase in neuronal response
when compared with attention to the intermediate direction of motion (green line; modulation index of 0.15). The orange shaded
area represents the increase in neuronal response due to the animal directing spatial attention into the RF (quantified as SMI). The
green shaded area represents the increase in neuronal response due to the animal directing its feature attention to the preferred
feature (quantified as FMI). Both modulations due to spatial attention and to feature attention are compared against the same
baseline response (thick black line). B, For unit-configuration Example 2, both spatial and feature attention had much smaller
effects (SMI: 0.04; FMI: 0.01). C, Example 3 illustrates a unit-configuration that is strongly modulated due to spatial attention (SMI:
0.25) but that does not demonstrate any modulation due to feature attention (FMI: 0.00). A–C, Thick bars along the x-axis indicate
the timing of the stimulus presentations. Thin gray lines indicate the spontaneous firing rate (both stimuli at 0% contrast during
the normalization task). Each PSTH was smoothed by a Gaussian filter (SD: 10 ms). D, Feature and spatial attention modulations
were correlated across all unit-configurations (n � 114) with two stimuli in the RF. E, Feature and spatial attention modulations
were correlated with one stimulus in the RF. D, E, Monkey 1 unit-configurations are illustrated by gray circles, whereas Monkey 2
unit-configurations are illustrated by black circles.
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dence intervals (95%) for partial correlation coefficients were determined
using a Fisher’s z transform, accounting for the reduction in degrees of free-
dom associated with the additional predictors. All t tests were two-sided.
Mean matching of modulation indices was performed using previously de-
scribed methods (Churchland et al., 2010). As outlined by Churchland et al.
(2010), we computed the distribution of each attention condition, deter-
mined the greatest common denominator present during both conditions
(with each bin of the common distribution having a height equal to the
smallest value for that bin across all distributions), and randomly excluded
unit-configurations from each bin until the height of that bin matched that
of the common distribution. We repeated this process 100 times with differ-
ent random seeds and calculated the mean across those 100 iterations. The
spatial attention modulation indices of the mean-matched spatial attention
subpopulation were corrected for the expected regression artifact from
regression to the mean (The Research Methods Knowledge Base,
http://www.socialresearchmethods.net/kb/).

We fit the model parameters for each of the proposed model equations
via constrained nonlinear optimizing that minimized the sum-of-
squares error (“fminsearch”; MATLAB R2015a, MathWorks). The
model parameters � and � were constrained in the fit for the absolute
values to be �10 (based on values previously described; Ni et al., 2012).
The other model parameters were unconstrained. For each unit-
configuration (see Experimental design and statistical analysis), we cal-
culated the goodness of fit of each model as the total explained variance,
which was determined by taking the square of the correlation coefficient
between the estimated response rates from the model and the response
rates of the unit-configuration across the stimulus conditions fit by the
model. To quantify differences in explained variance between two tested
models, we calculated an F statistic based on the residual sum of squares
(RSS) and degrees of freedom of Models 1 and 2. We used the following
equation to compare two models with the same number of parameters:

F � RSS1/RSS2. (1)

P values were computed per F statistic using the built-in function “fcdf”
(MATLAB R2015a, MathWorks).

Additionally, we calculated the variance explained by the model for
each modulation index. Per modulation index, we determined the cor-
relation between the modulation indices for each unit-configuration
based on the modeled neuronal responses and the modulation indices for
each unit-configuration based on the actual neuronal responses. To as-
sess the relative importance of each free parameter to the variance in the
modulation indices explained by the model, we tested the effects of lock-
ing the parameters one at a time to their average fit when fit as a free
parameter. We tested the significance of the reduction in variance ex-
plained due to locking a free parameter using Williams’ procedure for
comparing correlated correlation coefficients (Howell, 2007). We also
used Williams’ procedure to test the significance of the reduction in
variance explained due to using the EMS stimulus-tuned normalization
model instead of the EMS spatially-tuned normalization model.

Results
We analyzed the visual responses of 57 individual MT neurons
(42 from Monkey 1, 15 from Monkey 2). Each neuron’s re-
sponses were measured during a change-detection task (Fig. 1A)
with two different stimulus configurations, Configuration A and
Configuration B (Fig. 1B). Because normalization strength de-
pends on stimulus configuration (Ni and Maunsell, 2017), the
two stimulus configurations needed to be analyzed separately for
this study. Thus, two unit-configurations were collected per neu-
ron, resulting in an n of 114 unit-configurations.

Behavior
We used three variants of a direction change-detection task to
measure the effects of normalization, feature attention, and spa-
tial attention on neuronal response rates (see Materials and
Methods). The size of the direction change to be detected was
always �90° and was adjusted independently for each task vari-

ant using an adaptive staircase procedure to ensure that all the
tasks were comparably challenging. The resulting detection
thresholds for the normalization (Fig. 1C), feature attention (Fig.
1D), and spatial attention task variants (Fig. 1E) were 49, 50, and
55° for Monkey 1 and 42, 39, and 42° for Monkey 2.

Spatial and feature attention modulations were correlated
For each unit-configuration, we calculated a spatial attention
modulation index (SMI) and a feature attention modulation in-
dex (FMI) using driven rates, both with a preferred and a null
stimulus in the RF (Fig. 1B, Preferred	Null):

MI �
A � B

A � B
. (2)

For the SMI, A was the average neuronal driven rate (firing rate �
baseline rate) with spatial attention directed inside of the RF,
when the preferred stimulus was presented at the attended loca-
tion. For the FMI, A was the average driven rate with feature
attention directed to the preferred direction of motion outside of
the RF. The reference for both measures (B) was the average
driven rate with spatial attention directed outside of the RF to the
intermediate direction of motion.

With two stimuli in the RF, there was a relationship between
spatial and feature attention modulations across all unit-
configurations. Figure 2A shows the average PSTHs of a repre-
sentative unit-configuration that showed moderate modulations
associated with feature attention (FMI: 0.15; green shaded area)
and somewhat more modulation with spatial attention (SMI:
0.21; orange shaded area). Figure 2B illustrates a representative
unit-configuration with weak spatial (SMI: 0.04) and feature at-
tention (FMI: 0.01) modulations. Finally, Figure 2C illustrates a
representative unit-configuration that is strongly modulated due
to spatial attention (SMI: 0.25) but poorly modulated due to
feature attention (FMI: 0.00). SMIs and FMIs were correlated
across all 114 unit-configurations (Fig. 2D; Pearson’s correlation
coefficient: r � 0.41, p � 7.5 � 10�6; Monkey 1 only: r � 0.40,
p � 1.5 � 10�4; Monkey 2 only: r � 0.43, p � 0.018), with spatial
attention typically associated with stronger modulation.

As expected, in this dataset the two different stimulus config-
urations (Fig. 1B) resulted in two different SMIs per neuron
(paired t test: t(56) � 4.9, p � 8.3 � 10�6), although the stimulus
presentations for the two configurations were pseudorandomly
interleaved within each trial. SMIs and FMIs were also correlated
when only analyzing responses collected using Configuration A
(n � 57, r � 0.42, p � 1.3 � 10�3), or when only analyzing
responses collected using Configuration B (n � 57, r � 0.53, p �
2.5 � 10�5).

This SMI/FMI correlation could reflect a commonality be-
tween the mechanisms supporting spatial versus feature atten-
tion. Alternatively, because each neuron was typically collected
on a different day, the monkeys might have allocated more or less
attentional effort while data were collected from different neu-
rons. However, there are other, less interesting possibilities. The
correlation could arise simply from variance in the strength of
direction selectivity across unit-configurations, because those
with little direction selectivity would show little attention-related
modulation. A unit-configuration with little direction selectivity
would not be modulated by directing feature attention to the
preferred stimulus, and that unit-configuration would also not
be modulated by the addition of a null stimulus to a RF contain-
ing a preferred stimulus resulting in little normalization, and
little spatial attention modulation with attention directed to the

Ni and Maunsell • Normalization and Spatial Versus Feature Attention J. Neurosci., July 10, 2019 • 39(28):5493–5505 • 5497



location of the preferred stimulus (Ni et al., 2012). On the other
hand, a unit-configuration with strong direction selectivity
would show much stronger modulations due to feature attention,
normalization, and spatial attention. Thus, a range in direction
selectivity strength alone could masquerade as a correlated range
in attention modulation strengths. However, this scenario is un-
likely to be the cause of the SMI/FMI correlation, because almost
all MT neurons are highly direction selective with this selectivity
preserved across the entire RF (Maunsell and van Essen, 1983;
Albright, 1984; Tanaka et al., 1986; Richert et al., 2013; but see Cui
et al., 2013), and as within-neuron differences in SMI between
different stimulus configurations do not appear to depend on
within-neuron differences in direction selectivity (Ni and Maun-
sell, 2017). Nevertheless, to test this possibility, we calculated a
direction selectivity modulation index (DMI) for each unit-
configuration using Equation 2. The DMI was based on the
driven rates when attention was directed outside of the RF to the
intermediate motion direction, comparing the average rate with
the preferred stimulus alone in the RF (term A) to the average rate
with the null stimulus alone in the RF (term B). The partial cor-
relation between SMIs and FMIs was little affected when control-
ling for DMIs (r � 0.39, p � 2.0 � 10�5).

The correlation between SMIs and FMIs was similarly unaf-
fected when controlling for differences in mean spontaneous fir-
ing rates (measured during stimulus intervals when both stimuli
were assigned 0% contrast; r � 0.41, p � 5.0 � 10�6) or when
controlling for differences in overall responsiveness (measured as
the response of each unit-configuration to the preferred stimulus
alone in the RF; r � 0.40, p � 1.1 � 10�5).

We also calculated response modulations due to spatial and
feature attention with one stimulus in the RF (Fig. 1B, Preferred)
using Equation 2. Even with one RF stimulus, spatial (SMI-1s)
and feature attention modulation indices (FMI-1s) were corre-
lated (Fig. 2E; r � 0.53, p � 1.1 � 10�9; Monkey 1 only: r � 0.58,
p � 2.6 � 10�6; Monkey 2 only: r � 0.65, p � 1.1 � 10�4).
SMI-1s and FMI-1s were also correlated when only analyzing the
responses collected in Configuration A (r � 0.58, p � 2.6 �
10�6) or in Configuration B (r � 0.47, p � 2.5 � 10�4), or when
controlling for variance in DMI (r � 0.54, p � 8.8 � 10�10),
spontaneous firing rate (r � 0.53, p � 1.9 � 10�9), or neuronal
responsiveness (r � 0.51, p � 1.0 � 10�8).

Normalization does not explain the correlation between
spatial and feature attention effects
Prior electrophysiological studies have found that a large fraction
of the neuron-to-neuron variance in spatial attention modula-
tions depends on variance in the strength of normalization across
neurons (Lee and Maunsell, 2009; Ni et al., 2012; Verhoef and
Maunsell, 2016). Normalization is a mechanism that determines
how neurons sum responses to multiple stimuli and has been
observed throughout the brain (for review, see Carandini and
Heeger, 2011). In the visual system, normalization is seen as a
suppression of neuronal responses that increases with stimulus
contrast (Heeger, 1992; Heeger et al., 1996), in cross-orientation
inhibition (Morrone et al., 1982; Bonds, 1989; DeAngelis et al.,
1992; Carandini et al., 1997), and in neuronal responses to mul-
tiple stimuli within a neuron’s RF (Britten and Heuer, 1999;
Heuer and Britten, 2002).

Modeling studies have suggested that both spatial and feature
attention-related neuronal modulations may depend on the nor-
malization mechanism (Boynton, 2009; Lee and Maunsell, 2009;
Reynolds and Heeger, 2009). This suggests that the correlation
between SMI and FMI might arise from a common relationship

to the strength of normalization. Here, we used electrophysiology
to test whether the strength of normalization can account for the
correlation between spatial and feature attention-related re-
sponse modulations.

We measured the suppressive strength of normalization in
response to increasing contrast by comparing the response to a
single stimulus in the RF to the response to two stimuli in the RF
(Morrone et al., 1982; DeAngelis et al., 1992; Heeger et al., 1996;
Carandini et al., 1997). Typically, the response to a single, pre-
ferred stimulus in the RF is reduced when a weakly excitatory null
stimulus is added to the RF. Although a linear model that sums
inputs would predict a small increase in response from the addition
of the weakly excitatory null stimulus, the divisive normalization
model explains this response suppression with a divisive inhibition
of the response that increases with total contrast in the RF.

To quantify the strength of normalization for each unit-
configuration, we calculated an NMI using Equation 3:

NMI �

P � N� � PN


P � N� � PN
. (3)

Compared with the linear sum of the responses to the preferred
(P) and null (N) stimuli when they are presented separately in
the RF (P	N), normalization models predict a smaller neuronal
response when both stimuli are presented together in the RF
(PN), based on suppressive normalization factors associated with
each stimulus (Morrone et al., 1982; DeAngelis et al., 1992;
Heeger et al., 1996; Carandini et al., 1997). Unlike the NMI equa-
tion used in a prior study (Ni et al., 2012), first calculating the
linear sum of the individually recorded driven rates in Equation 3
accounts for any potential suppression on the baseline rate from
the null stimulus presented alone in the RF.

Studies in both V4 and MT have shown that the responses of
some neurons are greatly reduced when a null stimulus is also in
the RF, whereas the responses of other neurons are little reduced
by this increase in contrast (Lee and Maunsell, 2009; Ni et al.,
2012; Verhoef and Maunsell, 2016). This normalization variance
has also been found between unit-configurations (Ni and Maun-
sell, 2017).

We found that normalization strength could not explain the
correlation between spatial and feature attention modulation
strengths across unit-configurations, both with two stimuli and
one stimulus in the RF. With two stimuli, the correlation between
SMIs and FMIs was unaffected when controlling for NMIs (par-
tial correlation coefficient controlling for the variance in NMIs:
r � 0.41, p � 7.8 � 10�6; Monkey 1 only: r � 0.44, p � 3.7 �
10�5; though the partial correlation coefficient was not signifi-
cant for Monkey 2 only: r � 0.27, p � 0.15). Similarly, with one
stimulus in the RF, the correlation between SMI-1s and FMI-1s
was unaffected when controlling for NMIs (partial correlation
coefficient controlling for the variance in NMIs: r � 0.56, p �
1.8 � 10�10; Monkey 1 only: r � 0.56, p � 3.9 � 10�8; Monkey
2 only: r � 0.64, p � 1.7 � 10�4). As expected (Ni and Maunsell,
2017), NMIs differed based on stimulus configuration within
neurons (paired t test: t(56) � 5.7, p � 4.1 � 10�7) although the
monkeys did not have time to adjust their attention in response to
the randomly selected configuration of each quickly flashed set of
stimuli within each trial. The correlation between SMIs and FMIs
for the responses collected in Configuration A alone was little
affected when controlling for NMIs collected in that configura-
tion (r � 0.42, p � 1.4 � 10�3), as was the correlation for re-
sponses collected in Configuration B alone (r � 0.44, p � 6.0 �
10�4). The same was true for the correlations between SMI-1s
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and FMI-1s collected in Configurations A (r � 0.59, p � 1.4 �
10�6) and B (r � 0.47, p � 2.8 � 10�4).

Spatial and feature attention differ in their relationship
to normalization
As shown previously (Lee and Maunsell, 2009; Ni et al., 2012;
Verhoef and Maunsell, 2016; Ni and Maunsell, 2017), spatial
attention modulation strength was correlated with normalization
strength (Fig. 3A; r � 0.52, p � 2.7 � 10�9; Monkey 1 only: r �
0.51, p � 6.5 � 10�7; Monkey 2 only: r � 0.54, p � 2.1 � 10�3;
Configuration A only: r � 0.37, p � 4.2 � 10�3; Configuration B
only: r � 0.61, p � 5.5 � 10�7). Here we add that this correlation
persists when controlling for FMIs (r � 0.52, p � 3.0 � 10�9;
Monkey 1 only: r � 0.54, p � 1.8 � 10�7; Monkey 2 only: r �
0.44, p � 0.016; Configuration A only: r � 0.38, p � 4.2 � 10�3;
Configuration B only: r � 0.55, p � 1.3 � 10�5).

On the other hand, feature attention modulation strength was
not significantly correlated with normalization strength (Fig. 3B;
r � 0.12, p � 0.21). When calculated per monkey, there was a
modest correlation between FMI and NMI for Monkey 2 only
(Monkey 2 only: r � 0.40, p � 0.027; Monkey 1 only: r � 0.054,
p � 0.63); however, this relationship went away in partial corre-
lations that controlled for SMI (Monkey 2 only: r � 0.23, p �
0.24; Monkey 1 only: r � �0.19, p � 0.08; all unit-configura-
tions: r � �0.12, p � 0.20). Within configurations, there was a
modest correlation between FMI and NMI in Configuration B
only (Configuration B only: r � 0.32, p � 0.016; Configuration A
only: r � 0.077, p � 0.57); however, this relationship went away
in partial correlations that controlled for SMI (Configuration B
only: r � �5.1 � 10�3, p � 0.97; Configuration A only: r �
�0.092, p � 0.50).

Although feature attention modulations were significant at
the population level (t test: t(113) � 4.6, p � 1.2 � 10�5), they
were weaker than SMIs (average 0.05 vs 0.20; paired t test: t(113) �
8.0, p � 9.5 � 10�13), and might have failed to show dependence
on NMIs only because of a low signal-to-noise. This would be
surprising, because FMIs were correlated with SMIs and SMIs did
not differ from NMIs in magnitude (paired t test: t(113) � 1.7, p �
0.094). However, to address this possible explanation, we mean-
matched SMIs to FMIs (Churchland et al., 2010). This analysis
retained 43% of the unit-configurations. Averaging across 100
iterations of random unit-configuration exclusion from each bin
of the SMI distribution until bin values were matched to that of
the intersection of the SMI and FMI distributions, the SMIs of the
mean-matched population were still correlated with NMIs (r �
0.46, p � 1.0 � 10�3). The SMIs of the mean-matched popula-
tion were still correlated with NMIs when controlling for FMIs
(r � 0.42, p � 3.5 � 10�3). The fact that the SMIs of weakly
modulated unit-configurations were correlated with NMI sug-
gests that the weak modulations caused by feature attention do
not explain why FMIs were uncorrelated with NMIs.

The partial correlation between spatial attention modulation
strength and normalization strength (controlling for feature at-
tention modulation strength) was significantly different from
the partial correlation between feature attention modulation
strength and normalization strength (controlling for spatial at-
tention modulation strength), and the same was true for the
mean-matched population. Figure 3C shows that the 95% confi-
dence interval for the partial correlation between SMIs and NMIs
(either for the full population or for the mean-matched popula-
tion), determined using a Fisher’s z transform, did not overlap
the 95% confidence interval for the partial correlation between
FMIs and NMIs. In summary, spatial and feature attention-

related neuronal modulations, although correlated with each
other, have differing relationships with tuned normalization.

Additionally, spatial and feature attention modulation indices
were calculated by comparing the effects of both types of atten-
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tion on the same stimulus condition: two stimuli in the RF with
attention directed outside of the RF to stimuli moving in the
intermediated direction between the preferred and null direc-
tions. By using the same baseline neuronal response for both
types of attention, we were able to directly compare the effects of
adding just spatial attention to the neuronal response to the ef-
fects of adding just feature attention to the same baseline. Adding
spatial attention just required switching attention from outside to
inside of the RF. This isolated the effects of spatial attention,
because feature attention was not modulated with attention in-
side of the RF because the stimuli were flashed too quickly for the
monkey to adjust its attention based on which stimulus was pseu-
dorandomly presented at the attended RF location. Adding fea-
ture attention just required switching attention to the preferred
stimulus, without moving the spatial location of attention. We
could not use the condition when the monkey attended outside of
the RF to the null stimulus as the baseline, because this would
introduce feature attention into the SMIs.

However, our calculation of modulation indices did not max-
imize the strength of FMIs. Here, we tested whether maximized
FMIs were correlated with NMIs. We calculated Pref/Null FMIs
by comparing neuronal responses when the monkey attended out
to the preferred stimulus to neuronal responses when the mon-
key attended out to the null stimulus (instead of to the interme-
diate stimulus). The modulation size increased significantly
(from an average of 0.05 to an average of 0.13; paired t test: t(113)

� 2.6, p � 0.011). However, Pref/Null FMIs were still not corre-
lated with NMIs: r � �0.048, p � 0.61 (Configuration A only:
r � �0.16, p � 0.23; Configuration B only: r � 0.025, p � 0.85).
Pref/Null FMIs were also not correlated with NMIs when con-
trolling for the variance in SMIs: r � �0.18, p � 0.053 (Config-
uration A only: r � �0.25, p � 0.065; Configuration B only: r �
�0.080, p � 0.56).

Pref/Null FMIs did include an outlier with a value of 3.1. This
outlier had a corresponding NMI of only �0.10, and may have
affected the relationship between Pref/Null FMIs and NMIs. We
removed the outlier and again tested whether there was any rela-
tionship between Pref/Null FMIs and NMIs. However, there was
no detectable relationship, even with the outlier removed (Fig.
3D; r � 0.14, p � 0.15; Configuration A only: r � 0.11, p � 0.40;
Configuration B only: r � 0.025, p � 0.85).

Spatial but not feature attention effects increase with
multiple stimuli
An earlier study (Lee and Maunsell, 2010) hypothesized that spa-
tial attention modulations are stronger with both a preferred and
a non-preferred stimulus present in the RF because that config-
uration allows normalization to amplify modest changes in input
associated with spatial attention (Morrone et al., 1982; DeAngelis
et al., 1992; Heeger et al., 1996; Carandini et al., 1997). Although
studies have indeed reported stronger spatial attention modula-
tions with multiple stimuli in the RF (for review, see Bisley, 2011;
Maunsell, 2015), this comparison has not been made for feature
attention while maintaining task difficulty across different stimulus
conditions. To keep task difficulty stable across different stimulus
conditions, including conditions with one stimulus and with two
stimuli in the RF (Fig. 1B), we used random stimulus sequences and
short (200 ms) stimulus flashes (Williford and Maunsell, 2006).

Across all unit-configurations, spatial attention modulations
with two stimuli in the RF were much larger than with one stim-
ulus (average SMI 0.20, average SMI-1 0.10; paired t test: t(113) �
5.7, p � 1.2 � 10�7; Fig. 4A; Monkey 1 only: t(83) � 5.9, p � 8.8 �
10�8; though the difference was not significant for Monkey 2

only: t(29) � 1.5, p � 0.14). Whereas SMIs were correlated with
NMIs, SMI-1s were not correlated with NMIs (r � 0.067, p �
0.48; Monkey 1 only: r � 0.087, p � 0.43; Monkey 2 only: r �
�0.089, p � 0.64).

On the other hand, feature attention modulations were not
stronger with two stimuli in the RF than with one stimulus (av-
erage FMI 0.05, average FMI-1 0.04; paired t test: t(113) � 1.2, p �
0.25; Fig. 4B; Monkey 1 only: t(83) � 1.1, p � 0.28; Monkey 2 only:
t(29) � 0.47, p � 0.64). Correspondingly, FMI-1s were not corre-
lated with NMIs (r � �0.18, p � 0.051; Monkey 1 only: r �
�0.21, p � 0.055; Monkey 2 only: r � �0.15, p � 0.43).

Spatial attention modulations may be stronger, whereas fea-
ture attention modulations are not because SMI-1s were larger
than FMI-1s to begin with. To address this possibility, we mean-
matched SMI-1s to FMI-1s (Churchland et al., 2010), retaining
52% of the unit-configurations. Even with the subpopulation in
which the mean SMI-1 matched the mean FMI-1 of the whole pop-
ulation, spatial attention modulations were stronger with two stim-
uli in the RF (paired t test: t(58) � 2.9, p � 9.2 � 10�3, after
correction for expected regression to the mean).

Normalization model explains commonalities and differences
between attention types
Here we demonstrate that the EMS spatially-tuned normalization
model (Ni and Maunsell, 2017) that accounts for both across- and
within-neuron differences in normalization strength also accounts
for both the correlation between spatial and feature attention mod-
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ulations and the difference in their relationship to normalization.
We first briefly describe how the model adequately explains the ef-
fects of normalization, without attention (but see Ni and Maunsell,
2017 for a full explanation of this model). The normalization data
analyzed here are a subset of the data analyzed by Ni and Maunsell
(2017), and are only analyzed again here for explanatory purposes.
We fit each unit-configuration’s responses to eight stimulus condi-
tions (the 3 stimulus conditions for each stimulus configuration il-
lustrated in Fig. 1B; P, N, and PN, with all possible combinations of
each stimulus appearing at either 50 or 100% contrast) presented
during the normalization task variant (Fig. 1C), using Equation 4:

RP,N �
cPLP

cP � cN�2 � �
�

cNLN

cP�1 � cN � �
. (4)

The model has five free parameters: LP, LN, �1, �2, and �. In the
numerators, cP and cN are the contrasts of the preferred and null
stimuli, and LP and LN set the excitatory drive associated with the
preferred and null stimuli. In the denominators, cP and cN repre-
sent the contrast-dependent suppressive drive associated with
each stimulus, and � corresponds to the semi-saturation contrast
when a single stimulus is presented. The suppression associated
with each stimulus differs in magnitude between that stimulus
and the distant stimulus (thus it is spatially tuned), as determined
by �1 and �2. This model is named the EMS spatially-tuned
model because each stimulus generates equally strong suppres-
sion of its own excitatory drive but less suppression of stimuli in
other locations.

The EMS spatially-tuned model accounted for an average of
97% of the data variance in the observed neuronal responses to
the eight stimulus conditions, across all unit-configurations (Ni
and Maunsell, 2017). We will use this explained variance calcu-
lation to compare the explanatory power of each equation. Addi-
tionally, we will calculate how well the model explains the
variance in a particular modulation index to determine the rela-
tive importance of each free parameter to that modulation index.
For Equation 4, we found that the model accounted for 89% of
the variance in NMIs across all unit-configurations, based on the
correlation between NMIs calculated using the modeled re-
sponses for each unit-configuration and NMIs calculated using
the observed neuronal responses (r � 0.94, p � 6.6 � 10�56). To
assess the relative importance of each of the five free parameters
to the variance in NMIs explained by the model, we tested the
effects of locking the parameters one at a time to their average
value when fit as a free parameter. Locking the �2 parameter had
the most detrimental effect on how well the model explained the
recorded variance in NMIs across the population. Locking this
parameter reduced the variance explained from 89 to 17% (Wil-
liams’ procedure for comparing correlated correlation coeffi-
cients: t � 13.8, p � 2.2 � 10�43). Locking the �1 parameter also
greatly reduced how well the model explained the recorded vari-
ance in NMIs, reducing the variance explained from 89 to 34%
(t � 12.0, p � 5.8 � 10�33). Locking the other parameters also
reduced the variance explained, though to a lesser extent (LN:
66%, t � 8.8, p � 9.5 � 10�19; LP: 74%, t � 5.9, p � 4.1 � 10�9;
�: 81%, t � 3.2, p � 1.4 � 10�3).

The model can describe spatial attention effects with the ad-
dition of a � parameter to represent spatially selective attention-
related modulation (also previously described by Ni and
Maunsell, 2017):

RPSpat,N �
�cPLP

�cP � cN�2 � �
�

cNLN

�cP�1 � cN � �
. (5)

Equation 5 has six free parameters: the five free parameters fit
with Equation 4 (LP, LN, �1, �2, and �) and the additional �
parameter. It describes neuronal responses with spatial attention
directed to the preferred stimulus, with the � parameter captur-
ing the multiplicative effect of spatial attention (Ghose, 2009) on
both the excitatory and the suppressive drives of the preferred
stimulus. When attention is instead directed to the null stimulus,
� modulates the excitatory and suppressive drives of the null
stimulus.

To describe spatial attention effects in addition to normaliza-
tion effects, we fit each unit-configuration’s responses to 12 stim-
ulus conditions: the eight stimulus conditions from the
normalization task variant, plus four stimulus conditions col-
lected during the spatial attention task variant (P Spat, N Spat,
P SpatN, PN Spat). The model described by Equation 5 used the
same six free parameter estimates for all 12 stimulus conditions
per unit-configuration, with the exception of � set to equal 1 for
the eight stimulus conditions collected during the normalization
task variant (such that the normalization responses were essen-
tially fit to Equation 4).

The model accounted for an average of 96% of the data vari-
ance in the observed neuronal responses to the 12 stimulus con-
ditions, across all unit-configurations (Ni and Maunsell, 2017).
Additionally, the model accounted for 85% of the variance in
SMIs across all unit-configurations (and 85% of the variance in
NMIs), based on the correlation between SMIs calculated using
the modeled responses for each unit-configuration and SMIs cal-
culated using the observed neuronal responses (r � 0.92, p �
3.2 � 10�47). Locking the �2 and �1 parameters had the most
detrimental effects on how well the model explained the recorded
variance in SMIs across the population, reducing the variance
explained from 85 to 27% and 35%, respectively (�2: t � 10.8, p �
2.8 � 10�27; �1: t � 9.0, p � 1.8 � 10�19). Locking the � param-
eter also greatly reduced the variance explained, to 49% (t � 7.4,
p � 1.3 � 10�13). Locking the other parameters also reduced the
variance explained, to a lesser extent (LP: 61%, t � 5.4, p � 5.9 �
10�8; LN: 73%, t � 3.2, p � 1.1 � 10�3; �: 81%, t � 1.6, p �
0.11).

An outstanding question from our prior paper (Ni and Maun-
sell, 2017) is whether the EMS-spatially tuned normalization
model applies to the effects of feature attention. Feature attention
has global effects, rather than the spatially specific effects of spa-
tial attention (Saenz et al., 2002; Serences and Boynton, 2007).
Whereas spatial attention effects are localized and thus modulate
the spatially localized suppressive drive associated with tuned
normalization (Ruff et al., 2016; Verhoef and Maunsell, 2016; Ni
and Maunsell, 2017), feature attention to a particular direction
should modulate localized suppressive drives across the whole
visual field, eliminating differential normalization tuning be-
tween or within neurons. That is, the suppression arising from
each stimulus will not vary with the attended feature. Thus, the
suppressive terms associated with the preferred and null stimuli
do not have a preferred direction (no L term), so attending to one
direction or the other should not modulate the amount of sup-
pression associated with either stimulus. We represent this hy-
pothesis by allowing attention, �, to differentially affect only the
excitation associated with the attended feature, modeled with
Equation 6:

RPFeat,N �
�cPLP

cP � cN�2 � �
�

cNLN

cP�1 � cN � �
. (6)
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Equation 6 has six free parameters (the same free parameters as
Eq. 5, but with the � parameter only allowed to modulate the
excitatory drive associated with the attended feature, and not the
suppressive drive associated with that feature).

To test the hypothesis that spatial and feature attention differ
only in how top-down attention signals interact with normaliza-
tion, we fit each unit-configuration’s responses to 16 stimulus
conditions: the eight stimulus conditions from the normalization
task variant, the four stimulus conditions collected during the
spatial attention task variant (P Spat, N Spat, P SpatN, PN Spat), plus
four stimulus conditions collected during the feature attention
task variant (P Feat, N Feat, P FeatN, PN Feat). The model described by
Equation 5 used the same six free parameter estimates for all 16
stimulus conditions per unit-configuration, with the exception of
the � input in the numerator and the � inputs in the denominator
set to equal 1 for the eight stimulus conditions collected during
the normalization task variant (such that the normalization re-
sponses were essentially fit to Equation 4), and the � inputs in the
denominator set to equal 1 for the four stimulus conditions col-
lected during the feature attention task variant (such that the
feature attention responses were essentially fit to Equation 6).

The model accounted for an average of 90% of the data vari-
ance in the observed neuronal responses to the 16 stimulus con-
ditions, across all unit-configurations. The model also accounted
for 45% of the variance in FMIs across all unit-configurations
(and 77 and 85% of the variance in NMIs and SMIs, respectively),
based on the correlation between FMIs calculated using the mod-
eled responses for each unit-configuration and FMIs calculated
using the observed neuronal responses (r � 0.67, p � 2.0 �
10�16). Figure 5A illustrates the model fits for the responses of a
representative unit-configuration to each of the 16 stimulus con-
ditions, based on this single model explanation of normalization,
spatial attention, and feature attention effects. The model ex-
plained 95% of the variance across stimulus conditions for this
example of a unit-configuration with large normalization (NMI:
0.23), spatial attention (SMI: 0.26), and feature attention modu-
lations (FMI: 0.14). Figure 5B illustrates the model fits for a unit-
configuration with small normalization (NMI: 0.06), spatial
attention (SMI: 0.06), and feature attention modulations (FMI:
0.04; 97% explained variance across all stimulus conditions). Fi-
nally, Figure 5C illustrates the model fits for a unit-configuration
with large normalization (NMI: 0.24) and spatial attention mod-
ulation indices (SMI: 0.25), but no apparent modulation due to
feature attention (FMI: 0.00; 92% explained variance across all
stimulus conditions).

Whereas locking the �2 and �1 parameters had detrimental
effects on how well the model described NMIs and SMIs, this was
not the case for FMIs. Instead, the parameter that most influ-
enced how well the model explained the variance in FMIs across
the population was �. Locking the � parameter reduced the vari-
ance explained from 45 to 2% (t � 5.9, p � 3.4 � 10�9). Locking
the other parameters reduced the variance explained to a lesser
extent (LP: 21%, t � 2.9, p � 3.2 � 10�3; LN: 37%, t � 1.5, p �
0.14; �1: 40%, t � 0.80, p � 0.42; �2: 41%, t � 0.61, p � 0.54; �:
42%, t � 0.54, p � 0.59). In summary, whereas feature attention
modulations were largely dependent on the � parameter, spatial
attention modulations were dependent on both the � and � pa-
rameters because spatial attention interacts with a spatially tuned
sensory normalization mechanism in a distinct manner.

The model supports the results from the data that demon-
strate that normalization strength cannot explain the correlation
between spatial and feature attention modulation strengths. In
the model, a single � parameter per unit-configuration can inter-

act with the normalization strength of that unit-configuration in
the case of spatial attention, but not in the case of feature atten-
tion. In the case of spatial attention (Eq. 5), the � parameter can
interact with the spatially tuned � parameters in the denomina-
tor. But in the case of feature attention (Eq. 6), that same �
parameter cannot interact with the spatially tuned � parameters
due to the spatially global effects of feature attention. In the case
of feature attention, the � parameter is only present in the numera-
tor. Thus, the model demonstrates how spatial and feature attention
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Figure 5. Model fits to all 16 stimulus conditions for three example unit-configurations. A,
The model fits (gray bars) for the responses of a representative unit-configuration to 16 stimulus
conditions compared against the observed responses (black bars) of the same unit-
configuration to the same stimulus conditions. The 16 stimulus conditions are illustrated in the
order that follows. The first eight conditions were collected during the normalization task vari-
ant, with attention directed outside of the RF: N50 (null stimulus at 50% contrast), P50 (pre-
ferred stimulus at 50% contrast), P50N100 (preferred stimulus at 50% contrast with null
stimulus at 100% contrast), P100N50, P50N50, N100, P100, P100N100. The next two conditions
were collected during the spatial attention task variant (the stimulus receiving spatial attention
input is illustrated with an “S” in the x-axis labels): attend preferred (P100 SN100), attend null
(P100N100 S). The next two conditions were collected during the feature attention task variant
(the stimulus receiving feature attention input is illustrated with an “F” in the x-axis labels):
P100 FN100, P100N100 F. The last four conditions were collected during the spatial and feature
attention task variants: P100 S, N100 S, P100 F, N100 F. The model explained 95% of the variance
across stimulus conditions for this example unit-configuration with large normalization (NMI:
0.23), spatial attention (SMI: 0.26), and feature attention modulations (FMI: 0.14). B, The
model explained 97% of the variance for this example unit-configuration with small normal-
ization (NMI: 0.06), spatial attention (SMI: 0.06), and feature attention modulations (FMI: 0.04).
C, The model explained 92% of the variance for this example unit-configuration with large
normalization (NMI: 0.24) and spatial attention modulation indices (SMI: 0.25), but no appar-
ent modulation due to feature attention (FMI: 0.00).
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can share common or similar top-down attention signals (repre-
sented by �), while still having differing interactions with a spatially-
tuned normalization mechanism (represented by �).

Our prior study of attention modulation variance within neu-
rons (Ni and Maunsell, 2017) rejected both our previously pub-
lished stimulus-tuned normalization model (Ni et al., 2012) and
an EMS stimulus-tuned normalization model, in favor of the
EMS-spatially tuned normalization model tested here. However,
that study only analyzed data collected during normalization and
spatial attention variants of the behavioral tasks. An outstanding
question from that paper is whether stimulus-tuned normaliza-
tion would better describe data collected in the context of a fea-
ture attention behavioral task.

Our feature attention data allow us to address that question for
the first time. Unlike the EMS-spatially tuned normalization model,
in which each � term is associated with the suppression at a partic-
ular location in space, in the EMS stimulus-tuned normalization
model, each � term is associated with the suppression from a partic-
ular stimulus (in this case, the preferred or the null stimulus), regard-
less of the location in which it appears:

RPFeat,N �
�cPLP

cP � cN�N � �
�

cNLN

cP�P � cN � �
, (7A)

RN,PFeat �
cNLN

cN � cP�P � �
�

�cPLP

cN�N � cP � �
. (7B)

The EMS stimulus-tuned model uses six free parameters, just like
the spatially-tuned model (Equation 6). In this model, Equation
7A describes data collected in Configuration A and Equation 7B
describes data collected in Configuration B. Unlike EMS-spatially
tuned normalization, in which �1 always modulates suppression
at the bottom location and �2 always modulates suppression at
the top location, EMS stimulus-tuned normalization has one �
parameter (�P) always modulating suppression from the pre-
ferred stimulus and one � parameter (�N) always modulating
suppression from the null stimulus.

We fit each unit-configuration’s responses to 12 stimulus con-
ditions only (because we already know that stimulus-tuned nor-
malization models do not adequately describe spatial attention
data; Ni and Maunsell, 2017): the eight stimulus conditions from
the normalization task variant and the four stimulus conditions
collected during the feature attention task variant (P Feat, N Feat,
P FeatN, PN Feat). The model described by Equations 7A and 7 B
used the same six free parameter estimates for all 12 stimulus
conditions per unit-configuration, with the exception of the �
input set to equal 1 for the eight stimulus conditions collected
during the normalization task variant.

The EMS stimulus-tuned normalization model only ac-
counted for an average of 78% of the data variance across all
tested stimulus configurations. This was significantly less than
the variance explained by the EMS spatially-tuned model (F sta-
tistic � 3.5, p � 0.024). Additionally, the model only accounted
for 21% of the variance in FMIs across unit-configurations. This
was significantly less than the FMI variance explained by the
spatially tuned model (t � 3.5, p � 5.6 � 10�4). In summary, the
EMS spatially-tuned model does a superior job of describing neu-
ronal responses modulated by feature attention as well, and sug-
gests that spatial and feature attention differ only in how their
top-down signals interact with a spatially tuned sensory normal-
ization mechanism.

Discussion
Although all forms of top-down attention involve the feedback of
attention-related signals from higher cortical areas (Knudsen,
2007; Baluch and Itti, 2011) that modulate the activity of specific
cortical sensory neurons (Maunsell and Treue, 2006), it has been
unclear whether two well studied forms of top-down attention,
spatial attention and feature attention, engage common or dis-
tinct mechanisms in modulating the responses of sensory neu-
rons (Kastner and Ungerleider, 2000; Maunsell, 2015). Although
similarities in the ways that spatial and feature attention modu-
late sensory neuron firing rates and correlations between pairs of
neighboring sensory neurons (Treue and Martínez-Trujillo,
1999; Martinez-Trujillo and Treue, 2004; Patzwahl and Treue,
2009; Cohen and Maunsell, 2011) support the feature similarity
gain model of a common neuronal mechanism (Treue and
Martínez-Trujillo, 1999; Maunsell and Treue, 2006), trial-to-trial
neuronal response fluctuations due to spatial and feature atten-
tion have been found to be uncorrelated when measured within a
single task (Cohen and Maunsell, 2009). Here we described a
model that accounts for both the similarities and distinctions
between the effects of spatial and feature attention on sensory
neuron activity. These two forms of attention may share common
top-down attention signals, or top-down inputs with similar ef-
fects on sensory neurons; however, these attention signals have
differing interactions with a spatially tuned normalization mech-
anism, leading to differing effects on sensory neuron responses.

A previously described EMS-spatially tuned normalization
model (Ni and Maunsell, 2017) accounts well for these results.
This model captures the spatial localization of normalization
strength observed in multiple sensory areas, including V1, V4,
and MT (Ruff et al., 2016; Verhoef and Maunsell, 2016). The
spatial localization of the suppressive drive of normalization was
conceptualized in earlier normalization studies as spatially local-
ized pools of neurons (DeAngelis et al., 1992; Carandini et al.,
1997), with neurons in a normalization pool having overlapping
RFs and the collective activity of a pool driving the suppressive
effects of normalization. This spatial tuning of the normalization
mechanism may be the key to differentiating the neuronal mod-
ulation effects of spatial versus feature attention reported here in
area MT: whereas the localized spatial extent of spatial attention
effects matches the localized spatial extent of normalization in
MT neurons, the global spatial extent of feature attention effects
does not match the spatial extent of normalization. Thus, only
spatial attention can differentially modulate tuned normalization
for each of the stimuli presented in the RF.

Although the difference in the spatial extent of the neural
effects of spatial (Treue and Maunsell, 1996; Brefczynski and
DeYoe, 1999) versus feature attention (Treue and Martínez-
Trujillo, 1999; McAdams and Maunsell, 2000; Saenz et al., 2002;
Serences and Boynton, 2007) has long been regarded as a poten-
tially significant distinction between these two forms of attention,
the consequences of this distinction have not been clarified. Our
results demonstrate that interactions between attention and a
spatially-tuned normalization mechanism depend critically on
this distinction. They extend previous studies that used modeling
(Reynolds and Heeger, 2009), psychophysics, and fMRI (Herr-
mann et al., 2010, 2012) to show that the visual field extent of
spatial attention can greatly affect the way that human contrast
response functions are altered by attention.

Earlier work by Rust et al. (2006) identified a range of tuned
normalization in MT, and showed that it correlated with greater
pattern versus direction selectivity. However, they assigned their
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tuned normalization to V1 inputs and found it was strongest for
inputs sharing the same direction preference as each MT neuron,
whereas the tuned normalization we describe appears to be more
selective for RF location (Ni and Maunsell, 2017). It is possible that
normalization differs between brain areas, and that other brain areas
do not share the spatial localization of normalization strength re-
ported in areas V1, V4, and MT. In fact, of those three brain areas,
MT could have the strongest normalization strength localization
(Ruff et al., 2016). Spatial and feature attention may have different
relationships with normalization in other areas, changing the rela-
tionship between the effects of these two forms of attention.

The results of this study reinforce the idea that the normaliza-
tion mechanism plays an important role in the effect of attention
on neuronal activity. Indeed, normalization provides a mecha-
nism for the “biased competition” associated with attention
(Desimone and Duncan, 1995; Maunsell, 2015). At the same
time, our results underscore that attention and normalization are
distinct. Prior electrophysiological studies of the relationship be-
tween attention and normalization focused mainly on the rela-
tionship between spatial attention and normalization (Lee and
Maunsell, 2009; Ni et al., 2012; Verhoef and Maunsell, 2016; Ni
and Maunsell, 2017; Ruff and Cohen, 2017). In those studies, the
strong relationship between spatial attention and normalization
made distinguishing the contributions of these two phenomena
to the recorded neuronal modulations difficult. Here, the tests of
the relationship between feature attention and normalization
make the distinction between top-down attentional signals and
sensory-level mechanisms clear: the magnitude of attention ef-
fects does not need to be correlated with normalization strengths.

Normalization has been linked not only to modulations of
single-neuron firing rates (Carandini and Heeger, 2011) but also
to modulations of the correlated variability between the firing
rates of pairs of sensory neurons in response to repeated presen-
tations of the same stimulus (for review, see Schmitz and Dun-
can, 2018). Growing evidence suggests that normalization plays
an important role in the relationship between changes in corre-
lated variability and behavioral improvements due to attention
(Ruff and Cohen, 2016; Ruff et al., 2016; Verhoef and Maunsell,
2017). Although this evidence is mainly based on studies of spa-
tial attention, studies have demonstrated that feature attention is
also associated with changes in correlated variability (Cohen and
Newsome, 2008; Cohen and Maunsell, 2011). Thus, although we
demonstrated here that spatial and feature attention effects on
single-neuron responses differ due to normalization, in the fu-
ture it will be important to clarify and possibly distinguish how
spatial and feature attention effects on correlated variability are
affected by normalization.

Our model does not explain why spatial attention effects on
neuronal responses in MT should be greater in magnitude than
feature attention effects. It is possible that spatial attention is
innately more potent than feature attention, perhaps because it is
central to orienting responses and can involve multiple sensory
modalities. Alternatively, the disparity might be due to a higher
level of difficulty in the spatial attention task, which involved
directing attention to one of the two stimuli in close proximity.
Prior studies have demonstrated that task difficulty can affect
firing rates (Boudreau et al., 2006; Chen et al., 2008). Although we
used an adaptive staircase procedure that adjusted the difficulty
of the change detection for each task variant individually, the
spatial attention variant may have evoked more effort for the
same level of performance than the others, and produced greater
modulations for that reason. However, even if difficulty differed
between task variants, that would not have affected the qualitative

findings of this study. Task difficulty has been shown to primarily
affect the magnitude of modulations associated with spatial at-
tention (Boudreau et al., 2006; Chen et al., 2008) and is likely to
have an equivalent effect on modulations associated with feature
attention. The analyses that matched modulation strength be-
tween spatial and feature attention demonstrate that there are
significant differences between these two types of attention that
are robust to the absolute strength of modulation.

Though the goal of this study was to devise an experimental
paradigm that allowed independent measurements of spatial and
feature attention, true independence is difficult to achieve. Dur-
ing the feature attention task variant, attention was always di-
rected to a particular location in space. Although that location
was as far away from the RF as possible, and feature attention
modulation indices were calculated between two stimulus condi-
tions in which the attended location never changed, spatial atten-
tion may have still affected the feature attention modulations.
Similarly, during the spatial attention task variant, the monkeys
were tasked with responding to a change in the stimulus features.
Although the task was designed to prevent feature attention from
varying systematically across different stimulus conditions, the
monkey still had to actively ignore changes in direction between
the preferred and null directions.

However, the behavioral paradigm allowed measurements of
attention that were independent enough to suggest that spatial
and feature do in fact differ in how they interact with normaliza-
tion. In conclusion, although many previous studies of the rela-
tionship between attention and normalization have focused on
spatial attention, understanding the relationship between feature
attention and normalization may clarify not only our under-
standing of the relationship between spatial and feature attention
effects on neuronal responses, but also of the relationship be-
tween top-down cognitive processes and sensory processes.
Studying feature attention may similarly change our understand-
ing of the relationship between normalization and correlated
variability, and the role that normalization plays in processes that
affect the amount of information available in the activity of a
population of neurons in general.
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