
Behavioral/Cognitive

Regional Striatal Cholinergic Involvement in Human
Behavioral Flexibility
X Tiffany Bell,1 X Michael Lindner,1 X Angela Langdon,2 X Paul Gerald Mullins,3 and X Anastasia Christakou1

1School of Psychology and Clinical Language Sciences, and Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading RG6
6AL, United Kingdom, 2Princeton Neuroscience Institute, Princeton University, New Jersey 08544, and 3School of Psychology, Bangor University, Bangor
LL57 2DG, United Kingdom

Animal studies have shown that the striatal cholinergic system plays a role in behavioral flexibility but, until recently, this system could not be
studied in humans due to a lack of appropriate noninvasive techniques. Using proton magnetic resonance spectroscopy, we recently showed that
the concentration of dorsal striatal choline (an acetylcholine precursor) changes during reversal learning (a measure of behavioral flexibility) in
humans. The aim of the present study was to examine whether regional average striatal choline was associated with reversal learning. A total
of 22 participants (mean age � 25.2 years, range � 18 –32 years, 13 female) reached learning criterion in a probabilistic learning task with
a reversal component. We measured choline at rest in both the dorsal and ventral striatum using magnetic resonance spectroscopy. Task
performance was described using a simple reinforcement learning model that dissociates the contributions of positive and negative
prediction errors to learning. Average levels of choline in the dorsal striatum were associated with performance during reversal, but not
during initial learning. Specifically, lower levels of choline in the dorsal striatum were associated with a lower number of perseverative
trials. Moreover, choline levels explained interindividual variance in perseveration over and above that explained by learning from
negative prediction errors. These findings suggest that the dorsal striatal cholinergic system plays an important role in behavioral
flexibility, in line with evidence from the animal literature and our previous work in humans. Additionally, this work provides further
support for the idea of measuring choline with magnetic resonance spectroscopy as a noninvasive way of studying human cholinergic
neurochemistry.
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Introduction
Acetylcholine (ACh) plays an important role in adaptive behav-
ior and has been implicated in disorders of cognitive flexibility,

such as Parkinson’s disease (Tanimura et al., 2018; Zucca et al.,
2018). Studies in rodents have repeatedly demonstrated that ACh
transmission, determined by the activity and regulation of cho-
linergic interneurons in the dorsal striatum, is involved in rever-
sal learning and similar forms of behavioral flexibility (Ragozzino
et al., 2002, 2009; Tzavos et al., 2004; McCool et al., 2008; Brown
et al., 2010; Bradfield et al., 2013; Aoki et al., 2018; Okada et al.,
2018). Further, ACh efflux has been shown to increase specifically
during reversal learning (but not during initial learning), and this
effect is specific to the dorsomedial striatum (with no changes in
ACh levels in either the dorsolateral striatum or the ventral stria-
tum) (Ragozzino et al., 2009). It is clear then that cholinergic
activity in the dorsal striatum plays an important role in reversal
learning but, despite the importance of understanding this sys-
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Significance Statement

Behavioral flexibility is a crucial component of adaptation and survival. Evidence from the animal literature shows that the striatal
cholinergic system is fundamental to reversal learning, a key paradigm for studying behavioral flexibility, but this system remains
understudied in humans. Using proton magnetic resonance spectroscopy, we showed that choline levels at rest in the dorsal
striatum are associated with performance specifically during reversal learning. These novel findings help to bridge the gap
between animal and human studies by demonstrating the importance of cholinergic function in the dorsal striatum in human
behavioral flexibility. Importantly, the methods described here cannot only be applied to furthering our understanding of healthy
human neurochemistry, but also to extending our understanding of cholinergic disorders.
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tem, there remain important challenges in probing ACh function
in humans due to a lack of appropriate noninvasive techniques.

Proton magnetic resonance spectroscopy (MRS) is a nonin-
vasive method for measuring brain metabolites in vivo (Puts and
Edden, 2012). Although it cannot be used to study ACh directly
due to its low concentration (Hoover et al., 1978), MRS can be
used to measure levels of certain choline-containing compounds
(CCCs) involved in the ACh cycle, including choline (CHO).
CHO is the product of ACh hydrolysis, and its uptake in cholin-
ergic terminals is the rate-limiting step in ACh biosynthesis
(Lockman and Allen, 2002). Using functional MRS, we previ-
ously demonstrated task-driven changes in the concentration of
CHO in the human dorsal striatum during reversal learning (Bell
et al., 2018). Although MRS studies typically model CCCs as a
single peak due to their proximity on the spectrum, we showed
that using this method may mask CHO-specific effects. There-
fore, in the context of studying ACh function, it is necessary to
separate the metabolites when measuring individual differences
in CHO levels (Lindner et al., 2017; Bell et al., 2018).

Among the many open questions around this approach is the
nature of the relationship between baseline levels of CHO avail-
ability and function-relevant ACh activity. Animal studies have
shown that ACh synthesis is tightly coupled to CHO availability.
For example, depletion of CHO has been shown to reduce ACh
synthesis (Jope, 1979), and administration of CHO has been
shown to increase it (Koshimura et al., 1990). Further, overex-
pression (Holmstrand et al., 2014) and underexpression (Parikh
et al., 2013) of presynaptic CHO uptake transporters have been
shown to increase and decrease ACh levels, respectively. It is pos-
sible, therefore, that baseline CHO availability may modulate
ACh activity, leading to effects on behavioral flexibility. In this
study, we used MRS to test whether baseline levels of dorsal stri-
atal CHO are related to individual differences in reversal learning
performance. Because of limitations of spectroscopy voxel sizes,
it is not possible to precisely target the human homolog of the
rodent dorsomedial striatum; therefore we obtained average
measures of CHO from the dorsal striatum overall. To test the
hypothesized regional striatal specificity, we also measured CHO
levels from the ventral striatum. Finally, we also measured CHO
levels from the cerebellum as a further, more general control. In
line with the animal literature and our previous findings in hu-
mans (Bell et al., 2018), we predicted that average levels of CHO
in the dorsal, but not the ventral, striatum would be associated
with performance during reversal, but not initial, learning.

Materials and Methods
Participants
The study was approved by the University of Reading Research Ethics
Committee (UREC reference 13/15). Thirty-six volunteers (20 female)
between the ages of 18.3 and 32.8 years (mean � SD, 24.8 � 3.5 years)
were recruited from the University of Reading and surrounding areas. All
participants were healthy, right handed nonsmokers, and written in-
formed consent was taken before participation. Two participants were
excluded from analyses due to a high proportion of missed responses
( participant 14: 35% during initial learning and 39% during reversal
learning; participant 31: 27% during initial learning, 54% during reversal
learning). One participant was excluded from spectroscopy analysis due
to issues with segmentation of the structural scan. Data from the ventral
striatum of two participants were excluded from analysis due to poor
data quality.

Behavioral data collection
Learning task. The task used was a probabilistic multialternative learning
task previously described (Bell et al., 2018) and was programmed using
MATLAB (2014a, The MathWorks) and Psychtoolbox (Brainard, 1997).

First, participants were presented with a fixation cross displayed in the
center of the visual display. Participants were then presented with four
decks of cards. Each deck contained a mixture of winning and losing
cards, corresponding, respectively, to a gain or loss of 50 points. The
probability of getting a winning card differed for each deck (75%, 60%,
40%, and 25%), and the probabilities were randomly assigned across the
four decks for each participant. Participants indicated their choice of
deck using a computer keyboard. Outcomes were pseudo-randomized so
that the assigned probability was true over every 20 times that deck was
selected. Additionally, no more than 4 cards of the same result (win/lose)
were presented consecutively in the 75% and 25% decks, and no more
than 3 cards of the same result in the 60% and 40% decks. A cumulative
points total was displayed in the bottom right-hand corner throughout
the session and in the center of the visual display at the end of each trial
(Fig. 1). Participants were instructed that some decks may be better than
others, they are free to switch between decks as often as they wish, and
they should aim to win as many points as possible.

The learning criterion was set at selection of either of the two highest
decks (60% or 75%) on at least 80% of the time over 10 consecutive trials.
Although the optimal strategy is to repeatedly choose the 75% deck, pilot
testing revealed that the participants were not always able to distinguish
between the 75% and 60% decks. Therefore, as both decks generate an
overall gain in points and choice of either deck could be considered a
good strategy, both decks are included in the learning criterion.

The initial learning phase (round 1 [R1]) was completed when either
the learning criterion was reached, or the participant completed 100
trials. The deck probabilities were then reversed so that the high proba-
bility decks became low probability (75% to 25%, and 60% to 40%) and
vice versa. Participants were not informed of the reversal. The task ended
either after the learning criterion was reached following the reversal
(round 2 [R2]), or after another 100 trials (Fig. 2).

Impulsivity. Previous research has shown that trait levels of impulsivity
can influence decision making (Bayard et al., 2011). Individuals with
higher levels of impulsivity have been shown to demonstrate suboptimal
performance on decision making tasks, displaying a decreased ability to
learn reward and punishment associations and implement these to make
appropriate decisions. For instance, individuals with high levels of impulsiv-
ity were relatively impaired in adapting their behavior during a reversal
learning task (Franken et al., 2008). Other tasks of cognitive flexibility have
also been shown to be influenced by trait impulsivity levels (e.g., Müller et al.,
2015). Therefore, all participants completed the Barratt Impulsiveness Scale
(BIS-11) (Patton et al., 1995), and their total score was used as a trait measure
of impulsivity. This was included in the analysis to account for effects driven
by individual differences in impulsivity.

Figure 1. General outline of learning task trials. Participants were instructed to choose be-
tween four decks of cards. Each deck had a different probability of generating wins:losses
(75:25, 60:40, 40:60, 25:75). Once the learning criterion had been reached, the deck probabili-
ties were reversed so that high probability decks became low probability decks and vice versa.
Participants were not informed of this in advance and were simply instructed to gain as many
points as possible. Each screen was shown for 2.5 s. RT, Reaction time.
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Data analysis. Participants were split into two groups based on perfor-
mance. Those who learned both rounds (i.e., reached criterion both
during initial learning and after reversal) were classified as learners, and
those who did not learn both rounds were classified as nonlearners.

Behavior was analyzed for learners only. The task stops at 100 trials in
each round if the criterion is not met. Therefore, participants who did not
reach criterion in either one round or both rounds were excluded from
behavior analysis.

Performance was measured using the number of trials taken to reach
criterion in R1 (initial learning) and in R2 (reversal learning). R2 was
subdivided into perseverative trials and postreversal learning (Fig. 2).
The number of perseverative trials was defined as the number of trials
after reversal until the probability of selecting the previously favored deck
reached chance level (0.25) (i.e., the number of trials taken to identify the
reversal and switch behavior). Postreversal learning was defined as the
number of trials taken to reach criterion in R2, minus the number of
perseverative trials (i.e., the number of trials to reach criterion after the
reversal had been detected). In other words, postreversal learning is mea-
sured by the number of trials the participant took to learn the contingen-
cies once they had realized the deck probabilities had reversed.
Additionally, the postreversal learning period included a measure of re-
gressive errors. The number of regressive errors was defined as the num-
ber of times the previously favored deck was selected during the
postreversal learning period (i.e., after the perseverative period had
ended).

Temporal difference reinforcement learning model. We modeled partic-
ipants’ choice behavior as a function of their previous choices and re-
wards using a temporal difference reinforcement learning algorithm
(Sutton and Barto, 1998). This allows us to track trial-and-error learning
for each participant, during each task stage, in terms of a subjective
expected value for each deck. On each trial t, the probability that deck c
was chosen was given by a soft-max probability distribution as follows:

P�ct � c� � emt�c���je
mt� j� (1)

where mt(c) is the preference for the chosen deck and j indexes the four
possible decks. The preference for the chosen deck was comprised of the
participant’s expected value of that deck on that trial, Vt(c), multiplied by
the participant’s individual value impact parameter � (equivalent to the
inverse temperature) as follows:

mt�c� � �Vt�c� (2)

The parameter � describes the extent to which trial-by-trial choices fol-
low the distribution of the expected values of the decks: a low � indicates
that choices are not strongly modulated by expected value, being effec-
tively random with respect to this quantity (i.e., participants are not
choosing based exclusively on value, and are effectively exploring all
options); conversely, a high � indicates that choices largely follow ex-

pected value (i.e., participants choose the deck with the highest expected
value; exploitation).

To update the subjective value of each deck, a prediction error was
generated on each trial, pet based on whether participants experienced a
reward or a loss (rewardt � 1 or �1, respectively). The expected value of
the chosen deck was subtracted from the actual trial reward to give the
prediction error as follows:

pet � rewardt � Vt�c� (3)

Studies have shown that individuals differ in the degree to which they
learn from better than expected outcomes (positive prediction errors)
and worse than expected outcomes (negative prediction errors) (Gray,
1970; Niv et al., 2012; Christakou et al., 2013; Bull et al., 2015). To
account for this, two learning rate parameters were used to model sensi-
tivity to prediction errors in updating the expected values: the weight of
learning from better than expected outcomes (learning rate from positive
prediction errors: � �) and the weight of learning from worse than ex-
pected outcomes (learning rate from negative prediction errors: � �). For
example, individuals who are reward seeking will place a high weight on
the former, whereas those who are loss-aversive will place a high weight
on the latter. The prediction error on each trial was multiplied by either
the positive (� �) or negative (� �) learning rate and used to update the
value of the chosen deck as follows:

�t � �� � pet if pet � 0 (4)

�t � �� � pet if pet 	 0 (5)

V�chosent� � V�chosent�1� 
 �t (6)

Thus, the model has three parameters of interest (�, � �, and � �). In
psychological terms, � captures the degree to which the subjective value
of the chosen deck influenced decisions, whereas the learning rates cap-
ture the individual’s preference for learning from positive (� �) or neg-
ative (� �) prediction errors to guide choice behavior during this task.

Model fitting. The model was fit per participant to provide parameters
that maximized the likelihood of the observed choices given the model
(individual maximum likelihood fit) (Daw, 2011). The reward value was
updated as 1 (win) or �1 (loss). Subjective value was initialized at zero
for all decks, and the initial parameter values were randomized. To en-
sure the model produced consistent, interpretable parameter estimates,
� was limited to between 0 and 1 and � was assumed positive. The
parameters were constrained by the following distributions based on
Christakou et al. (2013) as follows:

� � Gamma�2,1� (7)

� � Beta�1.2,1.2� (8)

The model was fit separately over the trials encompassing R1 (initial
learning) and R2 (perseverative trials and postreversal learning, denoted
as reversal learning). This was done to capture the change in influence of
the model parameters from initial learning to reversal learning. The
model was not fit over the perseverative trials separately as the average
number of perseverative trials was too small to generate a stable model fit.

Traditionally, to investigate the fit of a temporal difference reinforce-
ment learning model, the Bayesian information criterion (BIC) is used.
The BIC is a post hoc fit criterion that looks at the adequacy of a model
while penalizing the number of parameters used. A lower number indi-
cates a better fit (Steingroever et al., 2016). However, the BIC is generally
used to compare different models, rather than model fits over different
sets of data, and will penalize different sized datasets. Alternatively, the
corrected likelihood per trial (CLPT) can be used. The CLPT is a more
intuitive measure of fit that takes into account the number of trials com-
pleted without penalizing different sized datasets. The CLPT varies be-
tween 0 and 1, with higher values indicating a better fit (Leong and Niv,
2013; Niv et al., 2015).

Wilcoxon signed-rank tests showed that there was no significant dif-
ference between the CLPT values for the model fit over R1 (median �
0.23) and R2 (median � 0.23; Z � �1.308, p � 0.191). Additionally,

Figure 2. General overview of learning task structure. Participants completed the initial
learning phase (R1) by reaching the predefined accuracy criterion or after 100 trials. Upon
completion of the initial learning phase, the deck probabilities were reversed. Participants then
completed a reversal learning phase (R2). For behavioral analysis, this was subdivided into
perseverative trials (PER) and a postreversal learning period. The number of perseverative trials
was defined as the number of trials after reversal until the probability of selecting the previously
favored card reached chance level (0.25). The postreversal learning period was the number of
trials to reach criterion in R2, minus the number of perseverative trials. The number of regressive
errors was defined as the number of times the previously favored deck was selected during the
postreversal learning period. The task ended once participants either reached the same accuracy
criterion in R2 or after 100 R2 trials.
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there was no significant difference between the BIC values for the model
fit over R1 (mean � SD, 75.7 � 45.5) and R2 (90.9 � 43.6; t(33) �
�1.533, p � 0.135, r � 0.26).

To summarize, the model fit equally well across rounds. Therefore,
differences in parameter estimates across the task can be examined.

MRS
Data acquisition. Data were collected at the University of Reading on a
Siemens Trio 3 T MRI scanner using a transmit-receive head coil. A
high-resolution whole-brain T1 structural image was acquired for voxel
placement using an MPRAGE sequence parallel to the anteroposterior
commissure line (176 	 1 mm slices; TR � 2020 ms; TE � 2.9 ms;
FOV � 256 	 256 mm 2, flip angle � 9°, voxel size 1 	 1 	 1 mm 3).

Voxels were placed in the left or right dorsal striatum, ventral striatum,
and the cerebellum, with hemisphere placement and order of measure-
ments counterbalanced across participants (Fig. 3). Anatomy was used to
guide voxel positioning. The top of the dorsal striatum was identified by
slice-by-slice examination of the structural scan. The slice below the slice
where the top of the striatum was no longer visible was selected, and the
top of the voxel was aligned with this slice. The slice above the slice where
the bottom of the striatum could no longer be seen was selected and used
for alignment of the ventral striatum voxel. The cerebellum voxel was
placed as high in the superior cerebellar vermis as possible while ensuring
only cerebellar tissue was contained in the voxel. The superior cerebellar
vermis was chosen as it has been shown to have the lowest variability in
both intersubject and intrasubject metabolite ratios as measured with
MRS at rest (Currie et al., 2013). All voxels were visually inspected to
ensure minimal CSF was included in the voxels.

A PRESS sequence was used to acquire data from the three separate
voxel positions (voxel size � 10 	 15 	 15 mm 3; TR � 2000 ms; TE � 30

ms); 128 spectra were collected and averaged for each area. A water-
unsuppressed spectrum was also obtained from each area for data pro-
cessing, which consisted of an average of 15 spectra. The SIEMENS Auto
Align Scout was used in between each scan to adjust the voxel position
based on the actual head position of the participant. This was used to
correct for participant motion and minimize the variability of the voxel
position.

Structural segmentation. Structural scans were processed using FSL
version 5.0.8 (Smith et al., 2004; Jenkinson et al., 2012). First, the skull
was removed using the brain extraction tool (Smith, 2002). Images were
segmented into three separate tissue types: gray matter, white matter, and
CSF using the FAST tool (Zhang et al., 2001). The coordinates and di-
mensions of the voxel were then superimposed on these images, and the
proportion of each of the three tissue types contained within the voxel
was calculated.

Quantitation. Data were processed in the time domain using Java-
Based Magnetic Resonance User Interface (jMRUI software version 5.0;
http://www.mrui.uab.es/mrui) (Naressi et al., 2001). Phase correction
was performed using the corresponding water spectrum from each area.
Each spectrum was then apodized using a Gaussian filter of 3 Hz to
improve signal quality, reduce noise, and reduce effects of signal trunca-
tion (Jiru, 2008). The residual water peak was removed using the Hankel-
Lanczos Singular Value Decomposition filter tool.

Metabolite models were generated using the software Versatile Simu-
lation, Pulses and Analysis (VeSPA; https://scion.duhs.duke.edu/vespa/
project) (Soher et al., 2010). Fourteen typical brain metabolites (acetate,
aspartate, CHO, creatine, GABA, glucose, glutamate, glutamine, lactate,
myo-inositol, N-acetyl aspartate [NAA], phosphocreatine, PC and GPC,
scyllo-inositol, succinate, taurine) were simulated at a field strength of 3

Figure 3. Location of voxels and example spectra. Heat maps showing the sum of the MRS voxels over all subjects in MNI space, along with a voxel and a representative spectrum from a single
subject. A, Dorsal striatum, MNI coordinates: �3.41, 2.37, 11.16. B, Ventral striatum, MNI coordinates: �2.99, 5.92, �3.93. C, Cerebellum, MNI coordinates: �2.10, �61.03, 19.20.
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T using a PRESS pulse sequence (TE1 � 20 ms, TE2 � 10 ms, main
field � 123.25 MHz). For initial analyses, CHO was modeled separately
from PC�GPC based on the method described by Bell et al. (2018).
Additionally, the sum of the three peaks (total choline [tCHO]) was
included in the analyses for comparison. If tCHO produced similar re-
sults to CHO, it would potentially suggest that there may not be a need to
separate the three peaks, or that the quantitation method is not separat-
ing CHO effectively.

The jMRUI tool Accurate Quantification of Short Echo time domain
Signals (AQSES) was used for automatic quantification of spectra signals.
AQSES was applied using the method described by Minati et al. (2010).
To correct for any chemical shift displacement, the spectrum was shifted
so that the peak for NAA was at 2.02 ppm. The frequency range selected
for processing was limited to 0 – 8.6 ppm: equal phase for all metabolites,
begin time fixed, � damping (�10 to 25 Hz), � frequency (�5 to 5 Hz),
no background handling, 0 truncated points, 2048 points in AQSES, and
normalization on. Based on common practice in the field, values with a
Cramér-Rao Bound (CRB) 
30% were excluded on a case-by-case basis.

Metabolite concentrations were calculated for CHO, PC�GPC,
tCHO, NAA, and total creatine (tCR, creatine � phosphocreatine), cor-
recting for partial-volume and relaxation effects, using the formula de-
scribed by Gasparovic et al. (2006).

Experimental design and statistical analysis
Statistical analysis was performed using SPSS (IBM Corp. Released 2013.
IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM
Corp).

The relationships between model parameters and behavior, along with
model parameters and metabolite levels, and behavior and metabolite
levels were assessed using correlation analysis. The distribution of the
data was analyzed using measures of skewness and kurtosis, along with
the Shapiro–Wilk test. When the assumptions of normality and homo-
geneity were met, Pearson’s correlation (r) was used to assess correla-
tions. When assumptions of normality were not met, Kendall’s tau (r�)
was used to assess correlations, as it provides a better estimation of the
correlation in a small sample size compared with other nonparametric
methods (Field, 2009). Both the behavioral and MRS data reported sat-
isfy false discovery correction using the Benjamini–Hochberg procedure
at a reasonably conservative 10% false discovery rate (Benjamini and
Hochberg, 1995). We report the false discovery rate correction because of
our strong a priori prediction and the high cost of false negatives. Further,
in the case of model-behavior correlations, the false discovery rate cor-
rection is more appropriate than a family-wise error rate correction for
multiple comparisons (e.g., the Bonferroni method) because of the high
correlation rate expected in the data, given that model parameters were
estimated from behavior itself. We included a bootstrap approach (1000
iterations) to calculate bias-corrected 95% CIs. Where appropriate, hier-
archical multiple regression analysis was used to assess the variance in
behavior explained by metabolite levels, after the model parameters were
accounted for.

Confounding variables. There were no significant differences in metab-
olite levels between hemispheres; therefore, the results were combined
across hemisphere of acquisition.

To examine whether variations in the metabolite values might be
caused by differing proportions of tissue composition, correlations were
performed between CCC levels and proportion of gray and white matter
present in the voxel. Additionally, metabolite values were checked
against the water signal for the same reason. No significant correlations
were found between CCCs and gray/white matter content, indicating
that any variance seen is generated by differing metabolite levels. The
water signal significantly correlated with dorsal striatum tCHO (r�(34) �
�0.348, p � 0.003) and ventral striatum PC�GPC (r�(31) � �0.270, p �
0.001). Therefore, analyses involving dorsal striatum tCHO or ventral
striatum PC�GPC were corrected for this source of variance using par-
tial correlations. No other significant correlations were seen between the
water signal and metabolite levels of interest.

There is evidence that metabolite levels in the brain can vary based on
time of day (Soreni et al., 2006) and age (Pfefferbaum et al., 1999;
Reyngoudt et al., 2012). Therefore, all metabolites were checked against

these two variables to ensure this was not a source of variance. Time of
day significantly correlated with dorsal striatum tCHO (r�(34) � 0.249,
p � 0.038) and cerebellum tCHO (r�(30) � 0.285, p � 0.026). Therefore,
analyses involving dorsal striatum tCHO or cerebellum tCHO were cor-
rected for this source of variance using partial correlations. No other
significant correlations were seen between metabolite levels and time of
day or age of participant.

Controls. The cerebellum was used as a control to demonstrate the
regional specificity of results. None of the effects was present in the
cerebellum; therefore, these results are not reported further. NAA and
tCR were used as controls to demonstrate the neurochemical specificity
of the results (i.e., that the relevant individual differences were specific to
choline and not to spectrum-wide interindividual differences). None of
the effects was present in either NAA or tCR; therefore, these results are
not reported further. Furthermore, none of the reported effects was
found when using tCHO as a measure of cholinergic availability; there-
fore, these results are not reported further.

Results
Behavioral results
Twenty-two participants reached criterion during both rounds
(i.e., they reached criterion both during initial learning and after
the reversal) and were included in the analysis. Table 1 shows the
average number of trials taken to complete each component.

Model parameters and performance
A reinforcement-learning model was used to disentangle compo-
nents of learning that contribute to overall behavior. We looked
at three parameters of interest: the learning rates from positive
(��) and negative (��) prediction errors, and the overall impact
of subjective value of the deck on the participants choice (value
impact parameter, �). Table 2 shows the mean of the model
parameters for both rounds. Outlier analysis resulted in the ex-
clusion of the value impact parameter (�) during initial learning
for one participant (Z � 3.12).

To explore how the contribution of the model parameters to
behavior changes over time, we looked at correlations between
behavior (as measured by trials to criterion, number of persevera-
tive trials, and number of regressive errors) and the correspond-
ing model parameters separately (i.e., behavior during initial
learning was correlated with model parameters fit over the initial
learning period), and likewise for the reversal learning period.

Table 3 shows the correlation coefficients for the relationships
between model parameters and behavior. Faster initial learning
(low number of trials to criterion) was associated with a higher
learning rate from positive prediction errors (r(21) � �0.439, p �
0.041) and a higher value impact parameter (r(20) � �0.536, p �

Table 1. Performance variables

Average no. of trials SD

Initial learning 44 28
Reversal learning 47 23

Perseveration period 12 8
Postreversal learning 35 22

Regressive errors 7 6

Table 2. Estimates of model parametersa

�� �� �

Initial learning 0.37 0.42 1.44
(0.30) (0.31) (0.56)

Reversal learning 0.24 0.31 1.37
(0.35) (0.27) (0.97)

aData are mean (SD).
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0.012). A lower number of perseverative trials was associated with
a higher learning rate from negative prediction errors (r(21) �
�0.527, p � 0.012). As was the case during initial learning, dur-
ing postreversal learning (after the reversal has been identified), a
lower number of trials taken to reach criterion was associated
with a higher learning rate from positive prediction errors (r�(21)

� �0.335, p � 0.03), and a higher value impact parameter (r�(21)

� �0.352, p � 0.022). Additionally, during postreversal learn-
ing, a lower number of regressive errors was associated with a
higher learning rate from positive prediction errors (r�(21) �
�0.355, p � 0.023) and a higher value impact parameter (r�(21) �
�0.337, p � 0.031).

Effects of trait impulsivity on performance
To investigate the influence of impulsivity on decision making,
we looked at correlations between impulsivity (total BIS-11
score) and measures of behavior (including model parameters) in
learners. Higher impulsivity levels were associated with a lower
number of perseverative errors (r(21) � �0.470, p � 0.027). No
other measures of behavior correlated with impulsivity.

Summary
The contribution of learning parameters to performance changes
over the learning period. Faster initial learning was indexed by
both higher learning rates from positive prediction errors
(R1��) and higher value impact parameters (R1�). However,
reduced numbers of perseverative trials were associated with
higher learning rates from negative prediction errors (R2��) and
higher impulsivity levels. Similar to initial learning, faster postre-
versal learning was associated with higher learning rates from
positive prediction errors (R2��) and higher value impact pa-
rameters (R2�). Additionally, during postreversal learning, lower
numbers of regressive errors were associated with higher learning
rates from positive prediction errors (R2��) and higher value
impact parameters (R2�).

Spectroscopy results
One participant was excluded from spectroscopy analysis due to
issues with segmentation of the structural scan. All metabolite
values had Cramér-Rao Bound (CRB) � 30% and were all in-
cluded in the analysis.

Association of reversal learning with dorsal striatal choline
Table 4 shows the average metabolite levels in the dorsal striatum.
To test the hypothesis that reversal learning performance is asso-
ciated with dorsal striatal CHO levels, we looked at the correla-
tion between measures of reversal learning performance
(number of perseverative trials and learning rate from negative
prediction errors; R2��) and levels of CHO in the dorsal stria-
tum in learners (n � 21).

A lower number of perseverative trials was associated with
lower levels of dorsal striatum CHO (r�(20) � 0.367, p � 0.021;

95% CI [0.081, 0.669]; Fig. 4A). The opposite effect was seen with
dorsal striatum PC�GPC (r(20) � �0.447, p � 0.042; 95% CI
[�0.779, 0.004]). Additionally, higher learning rates from nega-
tive prediction errors were associated with lower dorsal striatum
CHO levels (r�(20) � �0.371, p � 0.019; 95% CI [�0.258,
�0.025]; Fig. 4B). This result is specific to dorsal striatum CHO,
with no other dorsal striatum metabolites found to correlate with
learning rates from negative prediction errors.

After establishing an association between CHO levels and re-
versal performance, we wanted to examine whether CHO con-
tributed to reversal efficiency over and above behavioral and
personality variables. Using a hierarchical multiple regression, we
first modeled the contribution of variance from learning rates
from negative prediction errors and total BIS scores to the vari-
ance in the number of perseverative trials (Model 1; F(2,18) �
9.460, p � 0.002, R 2 � 0.512; Table 5). The second model looked
at whether the addition of dorsal striatum CHO would explain
significantly more variance, over and above that explained by
learning rates from negative prediction errors and total BIS score
(Model 2; F(3,17) � 9.574, p � 0.001, R 2 � 0.628; Table 5).

The amount of variance in the number of perseverative trials
explained by learning rates from negative prediction errors was
significant in both Model 1 (� � �0.493, t(18) � �2.980, p �
0.008; Table 5) and Model 2 (� � �0.430, t(17) � �2.843, p �
0.011; Table 5). Additionally, total BIS score also explained a
significant amount of variance in both Model 1 (� � �0.472, t(18)

� �2.855, p � 0.011; Table 5) and Model 2 (� � �0.419, t(17) �
�2.787, p � 0.013; Table 5).

In Model 2, dorsal striatum CHO also explained a significant
amount of variance in the number of perseverative trials (� �
0.351, t(17) � 2.300, p � 0.034; Table 5). The addition of dorsal
striatum CHO to the model increased R 2 by 0.116, and this in-
crease was statistically significant (F(1,23) � 5.291, p � 0.034;
Table 5).

To assess the specificity of this result, dorsal striatum
PC�GPC was also included in the model. However, analysis of
multicollinearity diagnostics showed a tolerance of 0.175, which
is below the acceptable value of 0.2. This is due to the strong
significant correlation between dorsal striatum CHO and dorsal
striatum PC�GPC (r�(20) � �0.667, p � 0.001). As a result,
including the two variables in the same regression model would
violate the assumption of multicollinearity and the regression
model would not be able to provide unique estimates of the re-
gression coefficients, as each will account for overlapping

Table 3. Correlation coefficients for relationships between model parameters and behaviora

�� �� �

Initial learning (TTC) �0.439 ��0.710, �0.066
 �0.218 ��0.307, �0.680
 �0.536* ��0.808, �0.248

Reversal learning

Perseverative errors �0.176 ��0.516, 0.233
 �0.527* ��0.754, �0.285
 0.132 ��0.117, 0.403

Postreversal learning (TTC) �0.335* ��0.593, �0.014
 0.322 ��0.164, 0.673
 �0.352* ��0.674, �0.051


Regressive errors �0.355* ��0.612, �0.047
 0.292 ��0.174, 0.649
 �0.337* ��0.639, �0.054

aRanges in brackets indicate bias-corrected 95% CIs.

*p � 0.05.

Table 4. Average metabolite levels in the dorsal striatuma

CHO PC � GPC tCHO NAA tCR

Learners 0.15 0.27 0.42 8.73 11.58
(0.20) (0.10) (0.12) (0.77) (1.74)

Nonlearners 0.11 0.36 0.46 8.83 11.80
(0.16) (0.14) (0.10) (2.37) (2.31)

aData are mean (SD).
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variance (Field, 2009). Therefore, we instead repeated the hierar-
chical regression with dorsal striatum PC�GPC in place of dorsal
striatum CHO. The amount of variance explained by dorsal stria-
tum PC�GPC was not significant (� � �0.301, t(17) � �1.900,
p � 0.075). The addition of dorsal striatum PC�GPC to the
model increased R 2 by 0.085, and this increase was not statisti-
cally significant (F(1,23) � 3.611, p � 0.075). This indicates that
dorsal striatum CHO levels can explain part of the variance in
the number of perseverative trials; however, dorsal striatum
PC�GPC levels cannot.

Association of other learning parameters with dorsal
striatal choline
No significant correlations were seen with measures of perfor-
mance in R1 (trials to criterion, R1�� or R1�) and average levels
of CHO in the dorsal striatum.

No significant correlations were seen with dorsal striatal CHO
levels and measures of performance during postreversal learning
(trials to criterion, R2�� or R2�). Additionally, there were no
significant correlations between dorsal striatal CHO levels and
the number of regressive errors.

Association of learning parameters with ventral
striatal choline
Two participants were excluded from analysis due to poor data
quality of the ventral striatal spectra. Table 6 shows the average
metabolite levels in the ventral striatum. To test the hypothesis
that associations between dorsal striatal CHO levels are region-

specific and not from the striatum as a whole, we looked at the
correlation between measures of learning performance and levels
of CHO in the ventral striatum in learners (n � 20).

Ventral striatal CHO did not correlate with trials to criterion
in R1. However, low levels of CHO in the ventral striatum were
associated with higher learning rates from positive prediction
errors during initial (but not reversal) learning (r(19) � �0.625,
p � 0.003; 95% CI [�0.873, �0.363]; Fig. 5A) and lower value
impact parameters during initial (but not reversal) learning (r(18)

� 0.555, p � 0.014; 95% CI [0.312, 0.874]; Fig. 5B).
Ventral striatal CHO was not found to correlate with either

the number of perseverative trials or learning rates from negative
prediction errors.

No significant correlations were seen with ventral striatal
CHO levels and measures of performance during postreversal
learning (trials to criterion, R2�� or R2�). Additionally, there
were no significant correlations between ventral striatal CHO
levels and the number of regressive errors.

Group comparisons
To investigate whether average levels of CHO in the striatum
relate to learning ability, the average levels were compared be-
tween learners and nonlearners. There was no significant differ-
ence in CHO levels between learners and nonlearners in either
the dorsal striatum or the ventral striatum.

Summary
In the dorsal striatum, average CHO levels were associated with
performance during reversal, but not during initial learning.
There was a significant positive correlation between dorsal stria-
tal CHO levels and the number of perseverative trials, and a sig-
nificant negative correlation between dorsal striatal CHO levels

Figure 4. Correlations between dorsal striatum CHO levels and performance during reversal. A, Positive correlation between the number of perseverative trials and levels of CHO in the dorsal
striatum (r�(21) � 0.367, p � 0.021). B, Negative correlation between the learning rate based on negative prediction errors derived from R2 (R2� �) and levels of CHO in the dorsal striatum (r� (21)

� �0.371, p � 0.019). DS, Dorsal striatum.

Table 5. Summary of hierarchical regression analyses for variables predicting
perseverationa

B SE B � R 2 �R 2 p

Model 1 0.512 0.002
R2�� �14.476 4.858 �0.493 0.008
BIS total �0.504 0.176 �0.472 0.011

Model 2 0.628 0.116 0.034
R2�� �12.619 4.439 �0.430 0.011
BIS total �0.447 0.160 �0.419 0.013
DS CHO 5.306 2.307 0.351 0.034
aFor �R 2 � 0.139, p � 0.037. B, Unstandardized coefficient; �, standardized coefficient.

Table 6. Average metabolite levels in the ventral striatuma

CHO PC�GPC tCHO NAA tCR

Learners 0.24 0.27 0.5 5.39 12.02
(0.17) (0.12) (0.17) (1.97) (2.26)

Nonlearners 0.23 0.25 0.48 5.45 11.13
(0.17) (0.14) (0.16) (1.54) (3.95)

aData are mean (SD).

5746 • J. Neurosci., July 17, 2019 • 39(29):5740 –5749 Bell et al. • Role of Human Striatal Choline in Reversal Learning



and learning rates from negative prediction errors (R2��). Ad-
ditionally, dorsal striatal CHO levels explained variance in the
number of perseverative trials over and above that explained by
learning rates from negative prediction errors.

In the ventral striatum, average CHO levels were not associ-
ated with performance during reversal learning. Although ventral
striatal CHO levels were not associated with the speed of initial
learning, there was a significant positive correlation between ven-
tral striatal CHO levels and learning rates from positive predic-
tion errors, and a significant negative correlation between ventral
striatal CHO levels and the value impact parameter during initial
learning.

Discussion
We used MRS to investigate the relationship between average CHO
levels in the human striatum (at rest) and probabilistic reversal
learning. We show that baseline levels of CHO in the human dorsal
striatum are associated specifically with individual differences in re-
versal learning efficiency, but not in initial learning, and that this
effect is specific to the dorsal, but not the ventral striatum.

Behaviorally, we show that faster initial learning is indexed by
a higher learning rate from positive prediction errors (��) and a
higher value impact parameter (�). Therefore, during this pe-
riod, participants are using wins and expected value to guide their
choices. This is also seen during the postreversal learning period,
in which faster postreversal learning is indexed by higher learning
rates from positive prediction errors (��) and higher value im-
pact parameters (�). Faster reversal (less perseveration), how-
ever, was indexed by higher learning rates from negative
prediction errors (��) only. During this period (i.e., after the
reversal has been implemented), participants must now pay in-
creased attention to worse than expected outcomes to identify the
change in contingencies. Therefore, to adapt to changes in task
structure, participants adapt their strategy by altering the weight
of learning from prediction errors based on reward history.

The learning rate for negative prediction errors, even after ac-
counting for trait impulsivity, explained a significant amount of
variance in perseveration, providing a simple mechanism to explain
reversal efficiency. Average dorsal striatum CHO levels explained
variance in perseveration over and above this original model. This
suggests a more complex mechanism in which perseveration is in-

fluenced, in part, by the learning rate from negative prediction errors
(which can change due to task demand) and by resting levels of
dorsal striatum CHO. Indeed, Franklin and Frank (2015) showed
that a model that takes into account cholinergic activity performs
better on a reversal learning task than a model based solely on dopa-
mine prediction error signaling.

Our results indicate that participants who were quicker to
reverse had lower average levels of dorsal striatum CHO, suggest-
ing that low trait levels of dorsal striatum CHO are beneficial for
reversal learning. Based on evidence that ACh efflux increases
during reversal learning (Ragozzino et al., 2009; Brown et al.,
2010), this suggests two potential mechanisms. First, lower levels
of dorsal striatum CHO at rest could reflect lower levels of ACh at
rest. This is also supported by evidence from the animal litera-
ture, which has shown a positive correlation between ACh levels
at rest as measured by microdialysis and average CCCs as mea-
sured by MRS (Wang et al., 2008). Additionally, higher levels of
CHO availability have been shown to lead to higher levels of ACh
release, implying a positive correlation between the two metabo-
lites (Koshimura et al., 1990). Based on this notion, the findings
here suggest that lower levels of ACh at rest may be beneficial for
reversal learning because they enable a higher contrast between
ACh levels at rest and during reversal learning. However, it is
important to note that Wang et al. (2008) modeled all three CCCs
as a single peak. It is likely that the relationship between CHO
levels as measured by spectroscopy and ACh levels in the brain is
not straightforward, and this interpretation should be considered
with caution. Indeed, animal studies have shown the relationship
between CHO and ACh can change based on neuronal firing and
ACh requirement (Löffelholz, 1998; Klein et al., 2002). Further-
more, we have previously demonstrated a drop in CHO levels in
the human dorsal striatum during reversal learning, thought to
reflect the sustained increase in ACh release seen in animal stud-
ies (e.g., Ragozzino et al., 2009). This drop is thought to be due to
an increase in translocation of CHO uptake receptors in response
to sustained neural firing (Bell et al., 2018). Although we have
described the measurements in this study as “at rest,” cholinergic
interneurons are tonically active, and therefore the relationship
between CHO and ACh levels in the striatum will likely reflect a
more complex dynamical relationship between the two.

Figure 5. Correlations between ventral striatum CHO levels and performance during initial learning. A, Negative correlation between learning rate based on positive prediction errors derived from
R1 (R1� �) and levels of CHO in the ventral striatum (r(19) � �0.625, p � 0.003). B, Positive correlation between impact of participant’s subjective value on their future choice derived from R1
(R1�) and levels of CHO in the ventral striatum (r(18) � 0.555, p � 0.014). VS, Ventral striatum.
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The second potential mechanism supported by our findings is
that lower levels of dorsal striatum CHO at rest may result from a
more efficient CHO uptake system. Mice carrying mutations in
the gene coding for CHO uptake transporters have reduced neu-
ronal capacity to both clear CHO and release ACh. Moreover,
performance on an attention task was impaired in these mice
(Parikh et al., 2013). Additionally, in a study of frontal cortex
cholinergic modulation during attention, humans with a gene
polymorphism, which reduces CHO transport capacity, showed
reduced activation in the prefrontal cortex during an attentional
task. Furthermore, the pattern of activation predicted CHO ge-
notype (Berry et al., 2015). Although our findings are in line with
biochemical and functional evidence in various models, it is clear
that further work is needed to determine the relationship be-
tween CHO uptake, ACh release, and reversal learning.

With regard to performance, disruption of cholinergic signal-
ing in rodents typically results in an increase in regressive errors
(Brown et al., 2010; Bradfield et al., 2013). However, here we
found no association between dorsal striatum CHO levels and the
number of regressive errors. In humans, measures of individual
differences in perseverative and regressive errors are likely to be
confounded by individual differences in representation of the
task structure. Rather than making perseverative and regressive
errors based solely on feedback, the ability to flexibly alter re-
sponse depends in part on a higher-level representation of the
task, which is thought to be maintained in frontal areas of the
cortex (Armbruster et al., 2012). It should be noted that the basal
ganglia-thalamo-cortical system has been shown to be modu-
lated by the maintenance of task rules, with individuals with
stronger representation of the task structure showing higher ac-
tivation in the caudate and thalamus during a behavior switch
(Ueltzhöffer et al., 2015), indicating that representation of task
structure likely modulates dorsal striatum activity in response to
the need for behavioral flexibility. Inevitably, caution is needed
when translating evidence from rodent studies of learning to hu-
man studies. This emphasizes the need to further develop nonin-
vasive techniques for studying human neurochemistry in vivo.

As predicted, and in line with evidence from the animal liter-
ature (Ragozzino et al., 2009), levels of CHO in the ventral stria-
tum were not associated with reversal learning. However, ventral
striatum CHO levels were associated with model parameters that
contributed to initial learning. Although Ragozzino et al. (2009)
demonstrated that ACh levels in the rat ventral striatum did not
change during reversal learning, they did not test whether they
changed during initial learning. Successful learning requires the
ability to learn from feedback, which is encoded through dopa-
minergic prediction error signaling in the ventral striatum
(Schultz et al., 1997). The rodent ventral striatum has a higher
density of cholinergic interneurons than the dorsal striatum
(Matamales et al., 2016), and changes in cholinergic activity are
time-locked to changes in dopaminergic activity, which is
thought to enhance the contrast of prediction error signaling
(Aosaki et al., 2010). Indeed, cholinergic activity in the ventral
striatum has been linked with effective learning of a stimulus-
outcome association (Brown et al., 2012); therefore, it is likely
that cholinergic activity in the ventral striatum is involved in
some aspect with goal-directed learning, and further studies
should explore this contribution.

Due to our specific a priori hypotheses and novel MRS appli-
cation, we used several controls to demonstrate that these effects
are specific to CHO levels in the striatum. We acquired data from
a voxel in the cerebellum, geometrically identical to the striatal
voxels. No learning effects were present in the cerebellum, dem-

onstrating that our findings are specific to the striatum. Addi-
tionally, we also quantified two control metabolites (NAA and
tCR) to ensure that the results were specific to the metabolite of
interest, rather than a general measurement or region effect.
None of the effects were seen in levels of NAA and tCR in the
dorsal striatum or ventral striatum. Importantly, none of the
effects were seen when modeling all three peaks together (tCHO),
highlighting once more the importance of separating CHO when
using MRS to investigate individual differences in CCC levels.

As is common with learning tasks, a significant proportion of our
sample did not reach criterion, leaving a smaller sample for analysis.
This proportion is similar to that reported in previous studies using
this task (i.e., Schönberg et al., 2007); and although the final sample
size was reduced by this effect, it is in line with the size of typically
published MRS/MRI samples. This observation notwithstanding,
the novelty of the approach presented here naturally warrants fur-
ther validation of both the method and the findings.

In conclusion, we used MRS to demonstrate that average lev-
els of CHO in the human dorsal striatum are associated with
performance during probabilistic reversal, but not during initial
learning. This is in line with evidence from the animal literature
and our own prior work with humans, which suggests a specific
role for cholinergic activity in the dorsal striatum during reversal
learning. These results provide evidence for the role of the human
cholinergic striatum in reversal learning and behavioral flexibility
more generally. Additionally, these findings further support the
idea of using CHO levels as measured by MRS as a tool for non-
invasive in vivo monitoring of both healthy human neurochem-
istry, as well as disorders of the human cholinergic system.
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(2012) Ventral tegmental area GABA projections pause accumbal cho-
linergic interneurons to enhance associative learning. Nature 492:452–
456.

Bull PN, Tippett LJ, Addis DR (2015) Decision making in healthy partici-
pants on the Iowa Gambling Task: new insights from an operant ap-
proach. Front Psychol 6:391.

Christakou A, Gershman SJ, Niv Y, Simmons A, Brammer M, Rubia K

5748 • J. Neurosci., July 17, 2019 • 39(29):5740 –5749 Bell et al. • Role of Human Striatal Choline in Reversal Learning



(2013) Neural and psychological maturation of decision-making in ad-
olescence and young adulthood. J Cogn Neurosci 25:1807–1823.

Currie S, Hadjivassiliou M, Wilkinson ID, Griffiths PD, Hoggard N (2013)
Magnetic resonance spectroscopy of the normal cerebellum: what degree
of variability can be expected? Cerebellum 12:205–211.

Daw ND (2011) Trial-by-trial data analysis using computational models.
In: Decision making, affect, and learning: attention and performance, Vol
23 (Delgado MR, Phelps EA, Robbins TW, eds). Oxford: Oxford UP.

Field A (2009) Discovering statistics using SPSS, Ed 3. London: Sage.
Franken IH, van Strien JW, Nijs I, Muris P (2008) Impulsivity is associated

with behavioral decision-making deficits. Psychiatry Res 158:155–163.
Franklin NT, Frank MJ (2015) A cholinergic feedback circuit to regulate

striatal population uncertainty and optimize reinforcement learning.
Elife 4:e12029.

Gasparovic C, Song T, Devier D, Bockholt HJ, Caprihan A, Mullins PG, Posse
S, Jung RE, Morrison LA (2006) Use of tissue water as a concentration
reference for proton spectroscopic imaging. Magn Reson Med
55:1219 –1226.

Gray JA (1970) The psychophysiological basis of introversion-extraversion.
Behav Res Ther 8:249 –266.

Holmstrand EC, Lund D, Cherian AK, Wright J, Martin RF, Ennis EA, Stan-
wood GD, Sarter M, Blakely RD (2014) Transgenic overexpression of
the presynaptic choline transporter elevates acetylcholine levels and aug-
ments motor endurance. Neurochem Int 73:217–228.

Hoover DB, Muth EA, Jacobowitz DM (1978) A mapping of the distribu-
tion of acetycholine, choline acetyltransferase and acetylcholinesterase in
discrete areas of rat brain. Brain Res 153:295–306.

Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012)
FSL. Neuroimage:782–790.

Jiru F (2008) Introduction to post-processing techniques. Eur J Radiol
67:202–217.

Jope RS (1979) High affinity choline transport and AcetylCoA production
in brain and their roles in the regulation of acetyl-choline synthesis. Brain
Res Rev 1:313–344.

Klein J, Weichel O, Ruhr J, Dvorak C, Löffelholz K (2002) A homeostatic
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