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Neural Speech Tracking in the Theta and in the Delta
Frequency Band Differentially Encode Clarity and
Comprehension of Speech in Noise
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Humans excel at understanding speech even in adverse conditions such as background noise. Speech processing may be aided by cortical
activity in the delta and theta frequency bands, which have been found to track the speech envelope. However, the rhythm of non-speech
sounds is tracked by cortical activity as well. It therefore remains unclear which aspects of neural speech tracking represent the processing
of acoustic features, related to the clarity of speech, and which aspects reflect higher-level linguistic processing related to speech com-
prehension. Here we disambiguate the roles of cortical tracking for speech clarity and comprehension through recording EEG responses
to native and foreign language in different levels of background noise, for which clarity and comprehension vary independently. We then
use a both a decoding and an encoding approach to relate clarity and comprehension to the neural responses. We find that cortical
tracking in the theta frequency band is mainly correlated to clarity, whereas the delta band contributes most to speech comprehension.
Moreover, we uncover an early neural component in the delta band that informs on comprehension and that may reflect a predictive
mechanism for language processing. Our results disentangle the functional contributions of cortical speech tracking in the delta and theta
bands to speech processing. They also show that both speech clarity and comprehension can be accurately decoded from relatively short
segments of EEG recordings, which may have applications in future mind-controlled auditory prosthesis.
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Introduction
Speech comprehension requires real-time extraction of acoustic
features from sound signals and their transformation into lin-

guistic representations such as syllables, words, and phrases. The
time scales of these linguistic structures match those of neural
activities in the cerebral cortex, namely in the theta frequency
band (4 – 8 Hz) that is comparable to the rate of syllables, and in
the delta frequency band (1– 4 Hz) that contains the time scale of
words and phrases. The cortical activity in the delta and theta
frequency band has indeed been found to track the speech
rhythm, evident in its envelope, and this entrainment has been
suggested as a neural mechanism for parsing speech into linguistic
constituents (Ding and Simon, 2012, 2014; Giraud and Poeppel,
2012; Horton et al., 2013; Thwaites et al., 2015; Keitel et al., 2018).
Evidence for this hypothesis comes from the modulation of cortical
entrainment to the speech envelope through attention to one of
several competing speakers, and cortical tracking may be particularly
important for understanding speech in adverse conditions such as

Received July 18, 2018; revised May 1, 2019; accepted May 11, 2019.
Author contributions: O.E. and T.R. designed research; O.E. and T.R. performed research; O.E. and T.R. analyzed

data; O.E. and T.R. wrote the paper.
This work was supported by the Royal British Legion Centre for Blast Injury Studies, by Wellcome Trust Grant

108295/Z/15/Z, by EPSRC Grants EP/M026728/1 and EP/R032602/1, as well as in part by the National Science
Foundation Grant NSF PHY-1125915. We thank the Imperial College Research Computing Service, DOI: 10.14469/
hpc/2232.

The authors declare no competing financial interests.
Correspondence should be addressed to Tobias Reichenbach at reichenbach@imperial.ac.uk.
https://doi.org/10.1523/JNEUROSCI.1828-18.2019

Copyright © 2019 Etard and Reichenbach
This is an open-access article distributed under the terms of the Creative Commons Attribution License

Creative Commons Attribution 4.0 International, which permits unrestricted use, distribution and reproduction in
any medium provided that the original work is properly attributed.

Significance Statement

Speech is a highly complex signal whose processing requires analysis from lower-level acoustic features to higher-level linguistic
information. Recent work has shown that neural activity in the delta and theta frequency bands track the rhythm of speech, but the
role of this tracking for speech processing remains unclear. Here we disentangle the roles of cortical entrainment in different
frequency bands and at different temporal lags for speech clarity, reflecting the acoustics of the signal, and speech comprehension,
related to linguistic processing. We show that cortical speech tracking in the theta frequency band encodes mostly speech clarity,
and thus acoustic aspects of the signal, whereas speech tracking in the delta band encodes the higher-level speech comprehension.
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background noise (Ding and Simon, 2012; Horton et al., 2013;
O’Sullivan et al., 2015).

Whether cortical speech tracking is involved in higher-level
linguistic processing, beyond lower-level acoustic processing
such as onset detection, remains, however, debated. Whereas
some studies have found that cortical entrainment is stronger
when speech is comprehended (Ahissar et al., 2001; Peelle et al.,
2013; Ding et al., 2014; Pérez et al., 2015; Mai et al., 2016; Van-
thornhout et al., 2018), others found no difference in the cortical
tracking of intelligible and unintelligible speech sounds (Howard
and Poeppel, 2010; Peña and Melloni, 2012; Millman et al., 2015;
Mai et al., 2016; Zoefel and VanRullen, 2016). A main difficulty in
assessing the role of cortical tracking for speech processing is that
a difference of speech comprehension typically arises from a
change in the acoustics, such as through a different level of back-
ground noise or through speech vocoding. This makes it difficult
to tease apart which changes in cortical responses are because of
lower-level acoustic alterations and which emerge from high-
level linguistic processing. Cortical entrainment is indeed not
unique to speech but has been observed in response to rhythmic
non-speech stimuli such as reverse speech (Howard and Poeppel,
2010), music (Doelling and Poeppel, 2015; Meltzer et al., 2015),
or frequency-modulated tones (Henry and Obleser, 2012).

Here we used an experimental paradigm that enabled us to
differentiate speech clarity from speech comprehension, and to
accordingly segregate the roles of cortical entrainment in each of
these two aspects of speech processing. Speech clarity is hereby
considered as a function of the acoustic signal only: it measures
how well a speech sound in the presence of certain degradations
such as reverberation or background noise can be understood by
a native speaker (Tasko and Greilick, 2010; Brezina, 2015; Signo-
ret et al., 2018). Speech comprehension, in contrast, assesses how
well a person has in fact understood a certain speech signal
(Hickok and Poeppel, 2007; Price, 2012). We varied both factors
independently by presenting native English speakers with speech
in their native language in different levels of background noise, as

well as with the foreign language Dutch in the same levels of
background noise (Figure 1).

English and Dutch are both stress-timed languages and have
comparable acoustics (Ramus et al., 1999). The English and the
Dutch audio material were acoustically matched and thus had the
same clarity that varied systematically from high to low with
increasing background noise. The participants’ speech compre-
hension, however, agreed with clarity only for the English speech
but was nil for the Dutch. This experimental design allowed us to
disambiguate the roles of cortical tracking for speech clarity, re-
flecting the lower-level acoustic processing, and speech compre-
hension, representing higher-level linguistic aspects.

Materials and Methods
Experimental design and statistical analysis. We first assessed the compre-
hension of spoken English in varying levels of background noise behav-
iorally. We used the results to define four levels of background noise; that
is, no, low, medium, and high background noise (Table 1). The levels
were chosen so that speech comprehension varied from high to low with
increasing noise.

We then presented continuous natural speech in both English and
Dutch at the four different levels of background noise while recording
EEG (Fig. 1). In particular, we used no noise such that speech was pre-
sented in a quiet condition, and we also used low, medium and high
babble noise as defined above (Table 1). Speech comprehension de-
creased from 100% to 81, 60, and 34% from English without background

Figure 1. Overview of the experiment and analysis. Speech signals in both the subjects’ native language English as well as in the foreign language Dutch were presented in different levels of
background noise. We obtained both behavioral responses of the resulting speech clarity and comprehension as well as EEG recordings. EEG correlates of speech clarity and comprehension were then
identified through both a decoding and an encoding approach. The decoding estimated clarity and comprehension from the cortical tracking of the speech envelope. The encoding approach
reconstructed the EEG data from the speech envelope weighted by clarity and comprehension.

Table 1. Experimental design: acoustic stimuli during neural data acquisition

Language Background SNR Clarity, % Comprehension, %

English Quiet N.A. 100 100
Low babble noise 0.4 81 81
Medium babble noise �1.4 60 60
High babble noise �3.2 34 34

Dutch Quiet N.A. 100 0
Low babble noise 0.4 81 0
Medium babble noise �1.4 60 0
High babble noise �0.32 34 0

Etard and Reichenbach • Neural Encoding of Speech Comprehension J. Neurosci., July 17, 2019 • 39(29):5750 –5759 • 5751



noise to English presented in low, medium, and high babble noise. For
Dutch, speech comprehension was 0% for all different noise levels: sub-
jects did not understand the Dutch audio material beyond very few single
and isolated words. However, we verified that subjects nonetheless at-
tended the Dutch audio stimuli during the EEG recordings. In particular,
subjects had to answer questions about rare English sentences that were
embedded in the Dutch speech material as detailed below.

We defined the clarity of speech presented in a certain level of back-
ground noise, either for English or for Dutch, to be equal to the level of
speech comprehension for the English stimuli in that noise level. Speech
clarity was therefore 100, 81, 60, and 34% for either English or Dutch
presented in no noise and low, medium and high babble noise, respec-
tively (Table 1). Because speech clarity thereby was non-vanishing and vary-
ing for the Dutch stimuli, but speech comprehension for them was nil, the
two variables speech clarity and speech comprehension varied indepen-
dently. Our subsequent analysis sought to relate the four different levels of
speech clarity as well as well as the five different levels of speech comprehen-
sion to the neural data, and thereby to disambiguate neural correlates of
purely acoustic processing from those of speech comprehension.

To analyze the data we used both a decoding and an encoding ap-
proach of speech clarity and comprehension (Fig. 1). The neural re-
sponse to the speech envelope occurs in the low-frequency range, 1–12
Hz, encompassing the delta, theta, and alpha frequency bands. The neu-
ral response in these different frequency bands may be affected by a
change in the lower-level acoustical features, by higher-level speech com-
prehension, or by both. To disentangle neural correlates of speech com-
prehension from those of speech clarity we used two independent
analyses. First, in a decoding approach, we determined the cortical track-
ing of the speech envelope. We then decoded both speech clarity and
comprehension from the shape and magnitude of the envelope response.
Second, we used an encoding approach in which we estimated the EEG
recordings through the speech envelope weighted by speech clarity as
well as through the envelope weighted by comprehension.

Participants. Ten volunteers (aged 22.5 � 0.6 year, all male) partici-
pated in the psychoacoustics part of the study. Twelve volunteers (aged
22.9 � 2.5 year, 4 females) took part in the EEG recordings, three of
which had undergone the behavioral testing as well. All participants were
English native speakers with no history of auditory or neurological im-
pairments, were right-handed, and provided written informed consent.
The experimental procedures were approved by the Imperial College
Research Ethics Committee.

Psychoacoustics. We used a modified version of the Quick Speech-In-
Noise test to measure speech comprehension in babble noise (Killion et
al., 2004). Briefly, subjects were presented diotically with 72 English sen-
tences in babble noise, and were asked to repeat them. An experimenter
graded their responses based on five keywords. An adaptive Bayesian
procedure was used to fit a sigmoidal psycho-acoustic curve c�x� � �1
� e��� x�����1, where c is the comprehension, x denotes the SNR, and �
and � are two parameters to determine (Shen and Richards, 2012; Shen et
al., 2015). The psychoacoustic curves were averaged over subjects, and
the mean was used to determine comprehension level at a given SNR.

Acoustic stimuli for EEG recordings. Non-repeating English and Dutch
speech-in-noise stimuli were constructed by combining a target female
speaker narrating continuous stories with four-speaker babble noise. The
audio material for the target voice was obtained from publicly available
audiobooks (http://librivox.org). The English babble noise was obtained
from Auditec, and the Dutch babble noise was constructed by normaliz-
ing two female and two male voices to the same root-mean-square value
and adding them. The target stories and background noise were then
combined at three SNRs (0.4, �1.4, �3.2 dB). Additionally, one stimulus
in English as well as another in Dutch with no background noise was
produced. We thus obtained eight different acoustic stimuli (speech in 2
languages, each embedded in four noise levels). Each stimulus lasted �10
min, and was divided in four parts of similar duration. In the Dutch
stimuli, a pseudorandom number of English sentences, between one and
three, spoken by the same speaker as the target Dutch voice were inserted
in each part, for a total of eight in each Dutch condition.

Both the English and the Dutch speech stimuli were different for each
level of background noise, so that no subject heard the same speech twice.

We therefore avoided priming effects that can result from repetitions
(Rugg, 1985).

Neural data acquisition and preprocessing. The English and Dutch stim-
uli were presented diotically in two sessions during which EEG was re-
corded. In each session, the stimuli were presented in order of decreasing
SNR to maximize engagement, and the subject was allowed to rest for as
long as they desired between each part. To ensure the subjects were
attending to the stimuli, comprehension questions were asked after each
part during the English session. During the Dutch session, the volunteers
were instructed to listen to the story as if it were English, and were asked
to identify, out of four choices, which English sentences had appeared in
the excerpt they had just heard.

Scalp EEG was recorded at 1 kHz with 64 active electrodes positioned
according to the standard 10 –20 system actiCAP (actiCHamp, Brain
Products), and referenced to the right earlobe. The audio stimuli were
simultaneously recorded at 1 kHz by the amplifier through an acoustic
adapter (Acoustical Stimulator Adapter and StimTrak, Brain Products),
and this channel was used to temporally align the EEG data and the
stimuli. The EEG data from one participant was too noisy to be used, and
discarded. In the Dutch conditions, the data corresponding to the em-
bedded English sentences was excluded from further analysis.

The raw EEG recordings were first detrended using routines from the
Noise Toolbox (de Cheveigné and Arzounian, 2018). This involves fitting
and subtracting a low-order polynomial to each recording part to remove
slow drifts. The data were then low-pass filtered 	12 Hz [linear phase
FIR filter, cutoff (�6 dB) 12.5 Hz; transition bandwidth 1 Hz, order 3204,
one-pass forward and compensated for delay], downsampled to 100 Hz,
and high-pass filtered 
1 Hz [linear phase FIR filter, cutoff (�6 dB) 0.5
Hz, order 322; transition bandwidth 1 Hz, one-pass forward and com-
pensated for delay] using functions from the EEGLAB toolbox (Delorme
and Makeig, 2004). Bad and missing channels were interpolated, and the
recordings were re-referenced to the average, resulting in 1.6 � 0.5 in-
terpolated channels on average per subject. Infomax independent com-
ponent analysis (ICA) as implemented in the AMICA algorithm was then
run on the data for each subject and condition (Palmer et al., 2012). The
obtained sets of independent components were conservatively pruned to
remove large artifactual components such as eye movements.

For the decoding approach (backward models), the original detrended
recordings were then bandpass filtered in the delta range (1– 4 Hz), theta
range (4 – 8 Hz) and alpha range (8 –12 Hz) [high-pass: linear phase FIR
filters, cutoff (�6 dB): 0.5 Hz (delta), 4 Hz (theta), 8 Hz (alpha), order:
162; low-pass: linear phase FIR filters, cutoff (�6 dB): 4 Hz (delta), 8 Hz
(theta), 12.5 Hz (alpha), order 3204; all: transition bandwidth 1 Hz,
one-pass forward and compensated for delay], and downsampled to 50
Hz. The cleaning parameters and ICA weights previously determined on
the broadband (1–12 Hz) recordings were then applied to the corre-
sponding datasets, hence ensuring that the same preprocessing was ap-
plied to all three bands.

For the encoding approach (forward model), the original detrended
recordings were processed similarly. They were filtered in either the delta,
theta or alpha bands [low-pass: linear phase FIR filters, cutoff (�6 dB): 4
Hz (delta), 8 Hz (theta), 12.5 Hz (alpha), order: 3204; high-pass: linear
phase FIR filters, cutoff (�6 dB): 4 Hz (theta), 8 Hz (alpha), order 322;
all: transition bandwidth 1 Hz, one-pass forward and compensated for
delay], and downsampled to 100 Hz. The cleaning parameters and ICA
weights previously determined on the broadband (1–12 Hz) recordings
were then applied to the corresponding datasets.

These filters were noncausal filters that are designed to preserve the
timing of the output but that violate causality by invoking future inputs
in the computation of the output. To investigate potential artifacts of the
noncausal filtering, we also filtered the recordings using a causal
minimum-phase low-pass filter [FIR filter, cutoff (�6 dB) 16 Hz, order
202, transition bandwidth 16 Hz]. These causal filters were constructed
such that the output depends only on the past and on the present of the
input, and chosen to minimize the introduced delay at the expense of
additional distortions (Press et al., 1986).

Computation of the speech envelope. To compute the envelopes of the
target speakers we first ran the speech signals through a low-pass filter
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imitating the earphones’ frequency response [linear phase FIR filter, cut-
off (�6 dB) 3500 Hz, transition bandwidth 1000 Hz, one-pass forward
and compensated for delay], downsampled them from 44,100 to 8000 Hz
and applied a full-wave rectification. The auditory periphery uses a non-
linear compression of the amplitude of a sound, and the cortical tracking
of the speech envelope emerges particularly strongly when the nonlinear
compression follows a power law with an exponent of 0.6 (Reichenbach
and Hudspeth, 2014; Biesmans et al., 2017). We therefore transformed
the envelope through this power law before bandpass filtering it.

For the decoding approach (backward models) the envelope was
bandpass filtered in either the delta, theta or alpha range (filters as de-
scribed for the neural data), and downsampled to 50 Hz, analogous to the
EEG recordings. For the encoding approach (forward models), and in the
noncausal approach, the envelope was gently low-pass filtered [linear
phase FIR filters, cutoff (�6 dB) 31 Hz, order 86, transition bandwidth
38 Hz, one-pass forward and compensated for delta], and downsampled
to 100 Hz. In the causal approach, the envelope was filtered with an
anti-causal minimum-phase low-pass filter [envelope flipped in time and
filtered by a causal filter; FIR filter, cutoff (�6 dB) 31 Hz, order 86,
transition bandwidth 38 Hz] before downsampling to 100 Hz.

Cortical entrainment to the speech envelope. First, single-lag linear back-
ward models were computed to reconstruct the attended speech enve-
lope from the neural recordings. Separate models were constructed for
each subject, each acoustic stimulus and for each frequency band. At each
time point tn the envelope y of the target speech was modeled as a linear
combination of the EEG channels with a given lag �k : ŷ�tn� � �

j�1
N

�j,kxj�tn � �k�, where ŷ is the reconstructed envelope, xj denotes the
activity at channel j, and �j,k are a set of coefficient to determine. Lags �k

from �200 to 400 ms in increments of 20 ms were used, resulting in M �
31 lags. The models at each lag were estimated using a regularized ridge
regression coupled with a fivefold cross-validation (Hastie et al., 2009).
The performance of the models was obtained from the testing data by
dividing the predicted envelope ŷ and the actual envelope y into 10-s-
long segments and computing the Pearson’s correlation coefficient be-
tween these segments. For each subject, condition and frequency band,
we thus obtained a set of correlation coefficients ck

�l �. The index k hereby
denotes the lag �k used in the backward model, and l denotes the testing
segment: 1 � l � Ns with Ns the number of 10 s segment in the testing
data. The correlation coefficients ck

�l � quantified how accurately the at-
tended speech envelope could be predicted from the EEG recording at a
specific lag.

Decoding speech clarity and comprehension. The correlation coefficients
ck

�l � were used to train two linear models that predicted clarity or com-
prehension of all 10 s testing segments: ẑ�sl� � �

k�1
M �kck

�l �, where k in-
dexes the lag, sl denotes a testing segment, ẑ is the predicted clarity or
comprehension, and �k are the coefficients to determine. This model can
be viewed as a backward model that reconstructs a property of the acous-
tic stimulus from the EEG recordings.

For each subject and each frequency band (delta, theta, alpha), a single
model was fitted that reconstructed the clarity for all 10 s testing seg-
ments. Speech comprehension was reconstructed likewise through single
models for each subject and frequency band. Critically, all eight acoustic
stimuli were fitted by the same model, thus ensuring that acoustic cues
could not be used when predicting comprehension and that differences
in comprehension could not be used for decoding clarity. The models
were trained using a regularized ridge regression with fivefold cross-
validation, and the regularization parameter that yielded the lowest root-
mean-square error (RMSE) on the testing data were selected to yield the
best model. To investigate the temporal features of the model we consid-
ered its forward version (Haufe et al., 2014).

Two null distributions were established by shuffling the clarity or com-
prehension values randomly between the different conditions (same set
of values but attributed to random conditions), and by computing null
backward and forward models that related the shuffled values to the
cortical tracking. The shuffling and subsequent model computation was
repeated 1000 times. When comparing the coefficients of the forward
models to the null distributions, the significance threshold was corrected
by FDR over the time lags.

Encoding of speech clarity and comprehension. We modeled the neural
activity at each electrode and in each frequency band as the linear super-
position of three features. First, we accounted for the acoustic back-
ground through the envelope of the babble noise yB. Second, we
considered a feature that reflected the speech clarity by multiplying the
envelope of the target speech yT by the clarity value a. Third, comprehen-
sion was described through a feature that multiplied the envelope of the
target speech yT by the comprehension value c. Multiplying the speech
envelope by the clarity as well as by the comprehension of speech thereby
yielded two continuous features that encoded the corresponding speech
property and that could be related to neural responses through temporal
response functions (TRFs). The estimated EEG response êj at channel j
thus follows as êj � �1 	 a� � TB

� j� � yB � TA
� j� � �a � yT� � TC

� j� �

�c � yT�, where � is the convolution symbol and where TB
� j�, TA

� j�, and TC
� j�

denote the TRF for the background noise, speech clarity and speech
comprehension, respectively.

The TRFs were computed using either the EEG data and the speech
envelope both processed by noncausal filters (delta, theta, and alpha), or
by using the EEG data and the speech envelope both processed by the
causal filters. For each subject, the data from all eight acoustic conditions
was pooled together, and the model was fitted using a regularized ridge linear
regression. The obtained TRFs were then averaged over all subjects.

To assert the significance of the obtained TRFs, empirical null distri-
butions were established by shuffling the EEG recordings between the
acoustic conditions, that is, by mismatching the EEG data and the enve-
lopes, and by computing the resulting TRFs as described in this section.
The shuffling was repeated 5000 times. Finally a null distribution was
established for each channel, feature, and frequency band by pooling
together the corresponding null responses in the �500 to 700 ms time
range, and fitting a Gaussian distribution to the resulting data. These
distributions were used to compute p � 0.01 thresholds (two-tailed with
Bonferroni correction for multiple comparison). The TRFs that repre-
sented the actual neural responses were then compared with these
thresholds.

Results
Behavioral assessment
We first characterized the comprehension of English sentences in
varying levels of background noise behaviorally. We used multi-
talker babble noise as a real-world type of background noise (Wil-
son, 2003), and characterized its level through the signal-to-noise
ratio (SNR) of the embedded target speech. We used a speech-in-
noise test to quantify the dependence of comprehension on the
SNR. The sigmoidal dependence can be described by two param-
eters: the SNR that yields a comprehension of 50%, and the slope
of the sigmoidal curve at that point (Fig. 2). We obtained a SNR of
�2.0 dB at 50% comprehension, and a slope of 0.15 dB�1. From
the resulting sigmoidal curve we could infer that the comprehen-

Figure 2. Behavioral responses. The mean comprehension of English in babble noise (black
line) increased most from �5 to 2 dB SNR, and had only a small SD across subjects (gray
shading). The subsequent EEG recordings used SNRs of �3.2, �1.4, and 0.4 dB as well as no
background noise that led to low, medium, high, and full comprehension for the English stimuli
(red disks) but yielded no comprehension for the Dutch stimuli (black squares).
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sion at a SNR of �3.2 dB was 34%, that the comprehension at a
SNR of �1.4 dB was 60%, and that the comprehension at a SNR
of 0.4 dB reached 81% (Fig. 2). We refer to these three SNRs as
high, medium, and low babble noise in the following (Table 1).
Moreover, we found speech comprehension to be consistent
among the different individuals: the SD across participants was
only 5.8% at the SNR of �2.0 dB that produced 50% comprehen-
sion, and was smaller at both lower and higher SNRs. For the
subsequent EEG recordings we therefore used English as well as
Dutch speech in the low, medium, and high babble noise, as well
as in quiet.

Cortical tracking of the speech envelope
As a first step toward the decoding of speech clarity and compre-
hension from the EEG recordings, we quantified the strength of
the cortical entrainment to the target speech envelope at different
time lags and in the delta, theta, and alpha frequency bands sep-
arately. In particular, we reconstructed the attended envelope
from the EEG recordings through a linear backward model. The
correlation of the reconstructed envelope to the speech envelope
informed on the magnitude of the cortical entrainment.

We found that, for English presented without background
noise, the cortical tracking in the delta and theta band was stron-
gest at time lags of 80 ms (Fig. 3A). Entrainment of the alpha-
band activity peaked at 60 ms, and was the weakest, presumably
reflecting weaker phase locking to the envelope at higher frequen-
cies. For each frequency band, the temporal spread around the
peak was on the order of a few hundred milliseconds, corre-
sponding to the inverse of the width of the frequency band.

The cortical tracking of the Dutch audio stimuli, without
background noise, was very similar to that of the English speech
material (Fig. 3B). In particular, the tracking of the Dutch speech
envelope in the different frequency bands did not peak at a dif-
ferent latency as for the English speech envelope (p 
 0.05, two-
tailed paired Wilcoxon signed rank test). Moreover, at the latency
of peak average entrainment, the amplitude did not differ signif-
icantly between the Dutch and the English speech material (p 

0.05, two-tailed paired Wilcoxon signed rank test). When com-
paring the cortical tracking of speech in different levels of back-
ground noise across languages, the amplitude at peak average

entrainment of the neural response only differed significantly
between English and Dutch in the delta band (Fig. 4; p � 0.001,
two-tailed paired Wilcoxon signed rank test, FDR correction for
multiple comparison), but not in the theta or alpha band. This
suggested that speech comprehension might be reflected by cor-
tical tracking in the delta band.

Decoding of speech clarity and comprehension from EEG
We computed two linear models, one model to predict speech
clarity and another to estimate comprehension, from the strength
of the cortical entrainment to the speech envelope in the delta,
theta, and alpha band and at different delays. We found that the
cortical tracking in the different frequency bands and at the var-
ious lags allowed to estimate both speech clarity as well as com-
prehension (Fig. 5A,B). When predicting speech clarity the
model predicted comparable values for English and for Dutch at
the same SNR. Similarly, when predicting comprehension, the
predictions for the Dutch stimuli in the different noise levels were
all similar. The predictions of speech clarity and comprehension
therefore followed the same trend regardless of the language and
were not driven by a particular category of stimuli.

To ascertain the statistical significance of the predictions of
speech clarity and comprehension, we compared the results to
empirical null distributions. The null distributions were obtained
by shuffling the clarity or comprehension values at random be-
tween the different acoustic conditions. The null models then
attempted to estimate the randomized clarity or comprehension
values from the cortical entrainment. We quantified the perfor-
mance of the null models through their RMSE, and used the
distribution of the RMSEs to determine whether the RMSE of the
sensical models were significant (Fig. 5C,D).

We found that the cortical tracking in the theta band allowed
a statistically-significant prediction of clarity (p � 0.017; Fig.
5C). The RMSE of the clarity prediction was not significant when
using the alpha band (p � 0.080), or the delta band (p � 0.14).

Conversely, the best decoding of speech comprehension was
achieved from the cortical tracking in the delta band, which was
also statistically significant (p � 0.038; Fig. 5D). Prediction of
speech comprehension was not significant when based on the
theta band (p � 0.22) or the alpha band (p � 0.45).

Time lags of neural speech tracking that inform on clarity
and comprehension
We wondered which temporal lags of the cortical speech tracking
in the different frequency bands informed most on speech clarity

Figure 3. Population average (black) of the cortical tracking of the speech envelope in quiet,
and its SD across subjects (gray). A, Neural entrainment to the English speech material. The
cortical tracking in the delta band and theta band was strongest at a delay of 80 ms, whereas the
alpha band tracked the envelope most at a latency of 60 ms. B, The neural tracking of the Dutch
speech showed peaks at the same delays as for the responses to English. The neural tracking of
the Dutch speech showed peaks at similar latencies as for the responses to English. Moreover, at
the latency of peak average entrainment, the amplitude did not differ significantly between
English and Dutch.

Figure 4. Amplitude of the cortical tracking at peak average entrainment to the speech
envelope for English and Dutch in different levels of background noise. The neural entrainment
at the peak latency was comparable between English and Dutch in both the theta and the alpha
frequency bands. However, the cortical tracking of English was significantly higher than that of
Dutch in the delta band in the presence of background noise. *p � 0.001.
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and comprehension. We accordingly
computed two linear forward models that
reconstructed the strength of the neural
entrainment at the different delays and in
the different frequency bands from the
speech clarity and the speech comprehen-
sion. The coefficients of these two models
revealed how strongly each feature, that is,
the strength of the cortical entrainment to
the speech envelope at each time lag and
in each frequency band, correlated with
speech clarity and comprehension (Fig.
6). We found that the theta entrainment
at 160 ms correlated most with speech
clarity. For speech comprehension, how-
ever, the delta entrainment at a latency of
�100 and 240 ms was most informative.
The entrainment at the �100 ms delay
hereby preceded the acoustic signal.

Encoding of speech clarity and
comprehension in the neural response
We sought to confirm the results from our
decoding approach by running a comple-
mentary encoding analysis. To this end,
we determined how speech clarity and
comprehension are encoded in the EEG
response through computing a forward
model. In particular, the neural response
in each frequency band and at each elec-
trode was estimated from three features of
the audio stimuli. The first feature was
the envelope of the babble noise and ac-
counted for the acoustic background.
The second and third features were the
speech envelope weighted by the speech
clarity and the speech comprehension,

respectively (see Materials and Methods). The estimation of
the EEG data from these three features resulted in three TRFs.
A null distribution for the TRFs was computed as well by
mismatching the EEG recordings and the acoustic features.

All TRFs exhibited regions where they were significantly dif-
ferent from the null distributions (Fig. 7A; p 	 10�2 mass uni-
variate two-tailed test with Bonferroni correction for multiple
comparison). In the delta band, the responses to the noise were
found to exhibit a right lateralized peak at 80 ms, and no later
components. In contrast, the neural response to speech clarity
exhibited two distinct peaks. The first one was right lateralized
and at a delay of 90 ms, whereas the second one was left later-
alized and at a latency of 390 ms. The EEG response to speech
comprehension had significant contributions at both negative
and positive latencies. The lateralization changed from left at a
latency of �110 ms to right at 230 ms, with a polarity inversion
at 100 ms. In the theta band, the neural responses were sym-
metrical between the hemispheres and peaked at a latency of
40, 110, and 90 ms for the noise, clarity, and comprehension,
respectively. In the alpha band, we observed weak and noisy
responses presumably reflecting the weaker phase locking of
EEG neural data to the speech envelope at higher frequencies.
They peaked at 55 ms for the background noise and speech
clarity, and at 90 ms for comprehension.

To investigate the role of the filters in the shape of the TRFs,
and in particular their role in the negative latency of �100 ms

Figure 5. Predictions of speech clarity as well as comprehension. Clarity (A) and comprehension (B) were predicted from the
neural tracking of the speech envelope in different frequency bands (disks, population mean; error bar, population SD; black,
Dutch; red, English; gray, mean. Note that the points were jittered along the x-axis so they could be visually distinguished). C, D, the
null distributions (gray) allow to compute the threshold of the RMSE (dashed line) below which the prediction of speech clarity or
speech comprehension (black disks) is significant ( p 	 0.05). C, The prediction of clarity is significant for the theta band. D, Only
the delta band allows significant decoding of speech comprehension.

Figure 6. Contribution of the cortical speech tracking at different latencies to speech
clarity and comprehension. The population averages (black lines) of the coefficients of the
forward model predicting neural entrainment from clarity (A) or from comprehension (B)
are compared with the null distribution obtained by shuffling the clarity respectively
comprehension values (gray shading, two-tailed, p � 0.05, FDR corrected over time lags).
Latencies at which the coefficients of the forward model reach statistical significance are
indicated through a bold line. A, Clarity relates to the neural entrainment in theta band at
a delay of 160 ms. B, Comprehension modulates delta band entrainment at �100 and
240 ms.
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that emerged for speech comprehension, we used causal filters
as well. Causal filters will strictly preserve the causal rela-
tionship between input and output, but typically introduce
phase distortions. We found that causal filters resulted in

strikingly similar TRFs to the ones we obtained for the delta
band from the noncausal filters (Fig. 7B). In particular, the
early component in the TRFs for speech comprehension was
conserved.

Figure 7. Neural encoding of speech clarity and comprehension. A, TRFs obtained from noncausal filtering describing the responses to the babble noise (left), clarity (center), and comprehension
(right) at each electrodes and in different frequency bands. The significance threshold is indicated in gray. Both the background noise and speech clarity are encoded at positive lags, reflecting the
lower-level acoustic nature of these features. In contrast, speech comprehension is partly encoded at a negative lag of �100 ms in the delta band, hinting at an early component of speech
comprehension. B, We also computed TRFs using causal filters. These TRFs capture both delta and theta band activity, and are strikingly similar to those obtained from the noncausal filters. However,
their timing exceeds the one of the TRFs computed from noncausal filters by 50 ms.
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Discussion
Using natural speech in a subject’s native as well as in a foreign
language, and in different levels of babble noise, allowed us to
separate neural correlates of speech clarity from those of speech
comprehension. We used this experimental paradigm to disam-
biguate the role of the cortical entrainment to the speech enve-
lope for the processing of lower-level acoustic features as well as
of higher-level linguistic ones.

We found that only cortical speech tracking in the theta fre-
quency band could significantly predict speech clarity, reflecting
the stimulus acoustics, whereas delta band tracking alone yielded
a significant prediction of speech comprehension, associated to
higher-level linguistic processing. Although we considered clarity
and comprehension as independent, there likely are interactions
between the two variables that our model could not capture. Our
finding that the cortical speech tracking in the delta band relates
most to speech comprehension agrees with recent results on the
delta band for linguistic processing (Kösem and Van Wassen-
hove, 2017). In particular, cortical activity in the delta band has
been found to track syntactic structure in speech as well as the
semantic dissimilarity between successive words (Ding et al.,
2016; Broderick et al., 2018). Both syntactic as well as semantic
aspects of speech represent high-level linguistic features that re-
flect speech comprehension and that cannot be perceived in a
foreign language. Moreover, the mutual information between
neural activity in the delta band and the speech envelope has been
shown to be larger when subjects correctly understood speech in
noise than when they misunderstood the target speech (Keitel et
al., 2018), and delta-band neural coherence was stronger when
subjects listened to speech compared with amplitude-modulate
noise or spectrally-rotated speech (Molinaro and Lizarazu,
2018). These magnetoencephalographic studies allowed to spa-
tially localize the neural sources to the auditory cortex and more
frontal regions, in particular the premotor cortex. The EEG mea-
surements that we have analyzed here showed scalp topographies
that were consistent with these findings, evidencing neural ori-
gins in the temporal areas, in particular from the auditory corti-
ces and associated areas (Fig. 7).

Our results highlight in particular that delta band entrain-
ment at 100 ms before the stimulus is significantly related to
comprehension. We have shown that causal filters whose output
does not depend on future inputs leads to a similar early neural
component, which therefore does not appear to be an artifact of a
particular filter design or acausal filtering. This preceding com-
ponent could indicate a predictive mechanism involved in speech
comprehension. Predictive processing such as through probabi-
listic word pre-activation has indeed been implicated in spoken
language comprehension (DeLong et al., 2005; Otten et al., 2007;
Friston and Kiebel, 2009; Kutas et al., 2011; Lewis and Bastiaan-
sen, 2015). A predictive neural component is also consistent with
a recent report that envelope-shaped transcranial current stimu-
lation preceding aural input improves speech comprehension
(Riecke et al., 2018).

Alternatively, the preceding neural component may reflect
neural activity that originates after the acoustic stimulus, but that
is masked by other neural activity at the positive lags. Indeed, the
spectral filtering of the EEG response into the different frequency
bands introduces a smearing of the timing of the response. A
neural signal related to speech comprehension at an early positive
delay will accordingly show contributions at somewhat shorter
and longer delays as well, including at negative latencies if non-
causal filters are used (Fig. 3A). If another later neural component

of cortical entrainment exists that is not related to speech com-
prehension and whose temporal range partially overlaps with
that of the first neural component, then only the earliest lags
associated to the first component that do not overlap with the
second later component may be predominantly associated to
speech comprehension. Such an early neural component for
speech comprehension is consistent with a recent finding on a
rapid transformation from auditory to linguistic speech struc-
tures (Brodbeck et al., 2018).

The role of the theta band for the lower-level acoustic process-
ing that we have identified may reflect the role of these faster
neural activities in the tracking of shorter acoustic features such
as syllables and phonemes (Di Liberto et al., 2015; Brodbeck et al.,
2018). Although we found significant entrainment to the speech
envelope in the alpha band, this did not contribute significantly
to the decoding of either speech clarity and speech comprehen-
sion. Although neural activity in the alpha band has previously
been found to correlate to aspects of speech processing, this con-
tribution emerged indeed for the power in the alpha band but not
for its entrainment to the speech envelope (Obleser and Weisz,
2012; Strau� et al., 2014a,b; Kayser et al., 2015).

Although we assumed a monotic relationship between the
cortical tracking of the speech envelope and speech clarity as well
as comprehension, some of our results suggest that this may not
be the case at relatively high levels of the SNR, �0.4 dB, as is
apparent in the relation between predicted to target speech clarity
(Fig. 5). Future studies that use a larger number of SNRs, partic-
ularly at higher values, may further clarify this issue.

Beyond evidencing different functional roles of the cortical
entrainment in the delta and theta frequency bands, our results
also show how speech intelligibility and speech comprehension
can be decoded from short segments of EEG recordings of a
duration of 10 s only. The decoding of speech comprehension
may be particularly useful for future auditory brain– computer
interfaces (BCIs). As an example, an auditory BCI may allow a
locked-in patient with traumatic brain injury who cannot com-
municate overtly to be assessed for their speech comprehension
and consciousness (Laureys et al., 2004; Goldfine et al., 2011).
Moreover, an auditory BCI to decode speech comprehension
may guide the settings in an auditory prosthesis, such as a hearing
aid or a cochlear implant, to adapt if the wearer’s comprehension
drops because of changes in the acoustic environment, which
may enable the wearer to better understand speech in different
types of background noise (Knudsen et al., 2010).

Practical applications of the decoding of speech comprehen-
sion will benefit from further optimization of the decoding. In
particular, we have used linear models because of their interpret-
ability and robustness. However, speech clarity and comprehen-
sion exhibit a sigmoidal dependence on the SNR, and adding a
corresponding sigmoidal function in the model may improve the
prediction. Additionally this procedure could be refined by ex-
ploiting the spatial patterns highlighted by our encoding analysis.
Moreover, nonlinear models such as deep neural networks are able
to extract highly nonlinear dependencies from the input data includ-
ing EEG recordings, which may improve decoding even further
(Sturm et al., 2016; Schirrmeister et al., 2017). Our work opens the
door to such further investigations that will increasingly clarify the
different intertwined neural mechanisms of speech processing as
well as use them for technological applications.
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