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Current models of motor learning suggest that multiple timescales support adaptation to changes in visual or mechanical properties of
the environment. These models capture patterns of learning and memory across a broad range of tasks, yet do not consider the possibility
that rapid changes in behavior may occur without adaptation. Such changes in behavior may be desirable when facing transient distur-
bances, or when unpredictable changes in visual or mechanical properties of the task make it difficult to form an accurate model of the
perturbation. Whether humans can modulate control strategies without an accurate model of the perturbation remains unknown. Here
we frame this question in the context of robust control (H�-control), a control strategy that specifically considers unpredictable distur-
bances by increasing initial movement speed and feedback gains. Correspondingly, we demonstrate in two human reaching experiments
including males and females that the occurrence of a single unpredictable disturbance led to an increase in movement speed and in the
gain of rapid feedback responses to mechanical disturbances on subsequent movements. This strategy reduced perturbation-related
motion regardless of the direction of the perturbation. Furthermore, we found that changes in the control strategy were associated with
co-contraction, which amplified the gain of muscle responses to both lengthening and shortening perturbations. These results have
important implications for studies on motor adaptation because they highlight that trial-by-trial changes in limb motion also reflected
changes in control strategies dissociable from error-based adaptation.
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Introduction
Humans and other animals use internal representations of move-
ment dynamics, called internal models, to shape motor com-

mands in anticipation of their interactions with the environment.
The update of these internal representations with practice con-
tributes to the neural basis of motor learning and adaptation
(Shadmehr et al., 2010; Wolpert et al., 2011). Indeed, several
classic studies have shown that when exposed to novel movement
dynamics, the resulting errors in internal models produce move-
ment deviations. These movement deviations elicit systematic
model updates through a reorganization of motor planning that
is based on sensory feedback about the perturbed movement
(Thoroughman and Shadmehr, 2000; Hwang et al., 2003). This
powerful approach has captured many aspects of motor learning,
including its dependency upon statistical properties of distur-
bances (Singh and Scott, 2003), and the dynamics of learning
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Significance Statement

Humans and animals use internal representations of movement dynamics to anticipate the impact of predictable disturbances.
However, we are often confronted with transient or unpredictable disturbances, and it remains unknown whether and how the
nervous system handles these disturbances over fast time scales. Here we hypothesized that humans can modulate their control
strategy to make reaching movements less sensitive to perturbations. We tested this hypothesis in the framework of robust
control, and found changes in movement speed and feedback gains consistent with the model predictions. These changes im-
pacted participants’ behavior on a trial-by-trial basis. We conclude that compensation for disturbances over fast time scales
involves a robust control strategy, which potentially plays a key role in motor planning and execution.
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across trials (Smith et al., 2006; Kording et al., 2007; Gonzalez
Castro et al., 2014).

Less attention has been dedicated to understanding how
humans control their reaching movements when their internal
models are inaccurate or difficult to acquire, as arises due to
partial or incomplete adaptation to the environmental dy-
namics, or due to transient and unpredictable disturbances.
Here we question whether there is a neural control strategy
that allows the nervous system to mitigate motor errors in
situations where there is no model of the encountered distur-
bance available. The presence of such a strategy would impact
our understanding of the neural bases and timescales of motor
adaptation.

It has been suggested (Shadmehr and Mussa-Ivaldi, 1994;
Burdet et al., 2001; Wagner and Smith, 2008) that the limb’s
intrinsic mechanical impedance counters deviations induced by
inaccurate internal models. However, common techniques sub-
stantially overestimate the influence of limb impedance (Creve-
coeur and Scott, 2014), because they incorporate the influence of
not only the limb, but also of neural feedback (Burdet et al.,
2000).

Stochastic optimal feedback control]linear quadratic
Gaussian (LQG)] was introduced as a model of neural feed-
back control (Todorov and Jordan, 2002). Although this
model handles sensorimotor noise efficiently, it does not con-
sider possible unmodeled disturbances. An alternative strategy
is robust control (H�-control; Basar and Bernhard, 1991),
which can be defined as a model-free control design that is as
insensitive to model errors as possible. We refer to this strategy
as a “model-free” strategy in the sense that it does not require
knowledge of potential disturbances, and thus it is suitable for
unmodeled perturbations. Model-free control has also been
reported as a form of adaptation in a visuomotor rotation task
(Huang et al., 2011), where actions were reinforced because
they were successful. The parallel with robust control is that
actions or strategies may thus be selected without a precise
model of the environment.

Robust and LQG are two optimal solutions based on different
assumptions about potential disturbances. In practice there is a
continuum of control solutions, and the two can overlap with
different sets of cost parameters. Our goal was not to demonstrate
whether one control model fitted behavior better than the other.
Instead, we examined how motor patterns were altered when a
control strategy considered unmodeled disturbances, without
any change in task demand. This is particularly important for
motor adaptation studies, because a common assumption is that
trial-to-trial changes in limb motion reflect adaptation of the
internal models of movement dynamics. Here we investigated
whether trial-to-trial changes in limb motion may include a
change in control strategy.

We characterize a robust control design that predicts an in-
crease in control gains for planar reaching movements. We then
show that following a single perturbation trial, healthy humans
increased the speed of their movements and the amplitude of
their feedback responses to perturbations in a way that was con-
sistent with the simulations of robust control. Interestingly, the
changes in control strategy correlated with co-contraction, which
produced a transient amplification of fast feedback responses to
perturbation loads. Together our results highlighted a rapid and
model-free compensation for unexpected disturbances that im-
pacts learning and control.

Materials and Methods
Experimental procedures
A total of 23 healthy volunteers (11 females, between 19 and 45 years)
participated in this study after providing written informed consent and
following procedures approved by the Ethics Committee at the host in-
stitution (UCLouvain, Belgium).

Movements consisted of 15 cm forward reaches toward visual targets.
In both experiments, the visual display, task instructions, and temporal
constraints were as follows. Participants were instructed to grasp a ro-
botic handle and move a hand-aligned cursor to the home target (radius
0.6 cm). The home target was initially red but turned green when the
participant’s cursor entered the target. The goal target was presented as
an open red circle (radius: 1.2 cm) located 15 cm directly in front of the
start position. After a random delay following stabilization in the home
target (between 2 and 4 s, uniformly distributed), the goal target filled in
and provided a “go signal” for participants to begin their movement. If
participants reached the goal target in �0.6 s following the go cue, the
target turned back to an open circle to indicate that they reached it too
soon. When they reached the goal target after �0.8 s, the target remained
red indicating that they took too long. The goal target turned green when
participants reached it within the prescribed time window (0.6 – 0.8 s).
The trial was considered successful if the hand-aligned cursor remained
stable in this target for 1 s. There were no constraints on movement
speed, only the arrival time, including the reaction time, was constrained.
These instructions were used to maintain similar movement speeds but
all trials were included in the dataset. The two experiments used the same
protocol in the variants described below. Hereafter, baseline trials refer to
trials performed in the null field, without any perturbation applied dur-
ing movement.

Experiment 1. Participants (n � 10) first performed a practice series of
10 –20 trials in the null field dependent on whether they felt comfortable
with the task and instructions. They then performed 25 baseline trials
without any perturbation (null field). Participants were explicitly told
they would not encounter any disturbance during movement. These
trials correspond to a “pre-exposure” phase before the trials with uncer-
tainty about the task dynamics. Then, they performed a series of 6 blocks
of 60 trials composed of 50 null field trials and 10 trials where curl force
fields were randomly interleaved as catch trials [5 clockwise (CW), 5
counterclockwise (CCW)]. These six blocks corresponded to a “peri-
exposure” phase where the dynamics were unpredictable and varied ran-
domly from trial to trial. During this phase, participants were told that
the robot could perturb their movements. Finally they performed an-
other 25 null field trials (“post-exposure”), and were told that there
would not be any perturbation applied during movements. Thus, the
pre-exposure and post-exposure phases were similar in the sense that
there was no uncertainty about the task dynamics.

The force field applied during peri-exposure was a standard curl force
field where movement velocities were mapped onto a perturbation force
as follows:

� Fx

Fy
� � � 0 L

� L 0 �� ẋ
ẏ � , (1)

where the x and y coordinates correspond to lateral and forward axes
relative to the reach path, Fx,y are the force components along each axis
and the dots indicate time derivatives. The value of L was 15 Ns/m for CW
and �15 Ns/m for CCW perturbations.

Experiment 2. This experiment was designed to study feedback re-
sponses to step perturbations and gain insight into the neurophysiolog-
ical basis of changes in control strategies (Scott, 2016). The step
perturbations consisted of a rightward or leftward constant load (12 N,
10 ms linear buildup) applied when the hand path crossed a virtual line
corresponding to one-third of the reach path. The step perturbations
were always applied during null field trials. Participants first reached in a
null field (baseline) with randomly interleaved step perturbations (2
blocks with 10 leftward, 10 rightward, and 40 null field trials per block),
followed by four blocks with null field trials (30 per block), step pertur-
bations (5 per direction), curl fields (Eq. 1), and orthogonal fields defined
as follows (5 per direction for each FF, L � �13 Ns/m):
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� Fx

Fy
� � � 0 L

0 0 �� ẋ
ẏ � . (2)

The peri-exposure phase was then followed by two post-exposure blocks
that consisted of null-field trials and step perturbations similar to the
pre-exposure phase. We reasoned that the presence of orthogonal and
curl fields would increase uncertainty about the dynamics during the
peri-exposure phase compared with Experiment 1. However, as noted in
the Results, participant behavior in Experiment 2 was distinct and the
analyses were based on a classification of trials into one of two groups that
depended on the number of preceding baseline trials. The median num-
ber of baseline trials that preceded each step perturbation or unperturbed
trial was calculated for each participant, and used to separate trials into
two groups that fell above or below the median. Note that this classifica-
tion was independent of the trials, and only depended on the preceding
sequence of trials.

Data collection and analysis
The two experiments were performed with an endpoint KINARM (BKIN
Technologies). The two-dimensional coordinates of the hand-aligned
cursor and components of the endpoint force were sampled at 1 kHz. The
cursor velocity was obtained numerically with a fourth-order central-
differences algorithm. In Experiment 2, we recorded the activity of
mono-articular shoulder muscles ( pectoralis major and posterior del-
toid). The electrodes were attached to the skin above the muscle belly
after light abrasion with alcohol. The signal was amplified (gain: 10 4),
digitally bandpass filtered with a dual-pass, fourth-order Butterworth
filter (10 –500 Hz bandpass). EMG data were then normalized to the
average activity across 1 s recorded when participants maintained pos-
tural control at the home target against a background load of 12 N ap-
plied three times in each direction. This calibration was performed at the
end of the second and sixth blocks.

The variables extracted were the peak hand velocity calculated on a
trial-by-trial basis, as well as the hand velocity at perturbation onset for
step perturbation trials of Experiment 2. Kinematic variables were then
averaged across trials for group data analysis. Similar to the analysis of
movement kinematics, we classified both baseline and perturbation trials
for Experiment 2 based on the number of baseline trials that preceded
them, and split the data based on the median index. The two classes of
trials are thus defined as the trials occurring “Early” or “Late” relative to
the last perturbation trial. EMG activity was collapsed into the following
epochs defined relative to perturbation onset: (Pre) pre-perturbation
activity [�50, 0] ms; (1) short-latency [20, 50] ms; (2) long-latency [50,
100] ms; (3) early voluntary [120, 180] ms; and (4) voluntary [200, 250]
ms.

Statistical design
Peak hand velocity from Experiment 1 was first analyzed within each
participant. Changes in peak hand velocity were assessed with the Wil-
coxon rank sum test to investigate whether the distribution of peak for-
ward velocities in the peri-exposure phase was distinct from the
distributions during the pre-exposure and post-exposure phases of the
experiment. The p level chosen for this analysis was 0.05. In conjunction
with the observation that a relatively large number of participants exhib-
ited the same effect, this level of significance was sufficient to control for
the rate of false-positive discoveries. In Experiment 1, we further ana-
lyzed group data using a repeated-measures ANOVA (rmANOVA) to
assess the effect of changes in context ( pre-, peri-, post-) on the average
peak hand velocity averaged across trials. The trial-by-trial effect was also
assessed based on the same test applied to the average peak velocity of
trials in the pre-exposure and post-exposure phases, as well as trials that
fell within 1–12 movements for Experiment 1, and up to 7 in Experiment
2 (only a minority of participants experienced several trials with larger
indices). Post hoc analyses were reported based on comparisons between
the data in each index group for peri-exposure trials and the peak hand
velocity during pre-exposure. Sphericity was tested using Mauchly’s test
and the results of the rmANOVA were further considered after Green-
house–Geisser and Huynh–Feldt � corrections when applicable. Post hoc
tests were performed with one-sided paired t tests. One-sided compari-

sons were warranted by the model predictions, as we were interested in
testing whether the peak forward velocities were higher during the peri-
exposure phase. Possible after-effects in Experiment 1 were measured
based on the maximum lateral displacement during unperturbed trials.

Group data of trials occurring early or late following perturbation
trials in Experiment 2 were analyzed based on one-tail paired t tests.
Again the one sided comparison was warranted because a directional
effect was predicted in theory. Changes in the time profile of lateral hand
velocities were assessed with a sliding t test. The moment when the con-
trast of lateral hand velocities dropped �0.01 was reported in the analysis
after verifying they were followed by very small p values. Corrections for
multiple comparisons do not apply in this case because consecutive sam-
ples are not independent, and because there is only one comparison
performed at each time step. We also extracted the norm of the endpoint
error averaged across trials for Early and Late trials, as well as the area of
endpoint dispersion ellipses calculated at 800 ms following reach onset to
characterize endpoint distributions. This analysis was performed on the
data of Experiment 2 across Early and Late categories to calculate the
variances on the same number of trials.

The analysis of EMG recordings was based on repeated-measures
ANOVA with the classification (Early and Late) and response epochs
(Pre, SLR, LLR, early Vol, and Vol) as factors. Finally, comparisons of the
amplitude of after-effect and of the maximum hand displacement in
force fields across experiments was based on Wilcoxon rank sum tests to
assess differences in the distributions of individual trials for each partic-
ipant. This nonparametric test on grouped data was used as the two
experiments were performed with distinct groups of participants, and
thus comparisons could not be paired. The rank sum tests were based on
two-tailed comparisons because there was no reason to expect direc-
tional differences a priori. Significance was considered at the level p �
0.05, although our interpretations and the reported comparisons (with
the exception of a few comparisons for on EMG data) were based on
statistical differences at the level p � 0.005 (Benjamin et al., 2018).

Model
The system model describes the translation of a point mass (m � 1 kg) in
the horizontal plane against dissipative viscous forces. The controlled
force is modeled as a first-order low-pass response to the control vector
as a linear approximation of muscle dynamics. We must acknowledge
from the outset that the translation of a point mass is a simplified model
of the complex and nonlinear nature of even simple biological systems
like the multi-jointed arm. In practice, we have used linear models for
simplicity and constrained experimental testing accordingly (Crevecoeur
and Scott, 2013, 2014). In the context of the present paper, the linear
model is in part imposed by the limitation of current robust control
theories. We used a robust control design based on game-theoretic prin-
ciples (H�-control; Basar and Bernhard, 1991), which has the advantage
of being a natural extension of the more common stochastic optimal
control framework (Bitmead et al., 1990). The downside of this approach
is that it forces us to consider a linear state-space representation, as well as
constraints imposed to the cost-function that guarantee a solution exists.
An extension of this control design would be to linearize the system
around a state or a trajectory and derive locally optimal controllers that
are updated across time or space. This can also be done for stochastic
optimal control (Li and Todorov, 2007). However, we believe that such
an extension is beyond the scope of this study and suggest that the math-
ematical limitations do not hinder the use of this model to illustrate some
underpinnings of biological control.

We first concentrate on force-field trials and note that for complete-
ness, an additional variable capturing the external force is needed to
model step-perturbations (Crevecoeur and Scott, 2013). The
continuous-time differential equations are as follows:

ẍ � � kẋ � �xẏ � Fx, (3)

ÿ � � kẏ � �yẋ � Fy, (4)

�Ḟx � ux � Fx, (5)

�Ḟy � uy � Fy. (6)
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where x and y are the coordinates of the workspace and the dot(s) repre-
sent the time derivative. The variables ux and uy are the control com-
mands. The viscous constant was set to k � 0.1 Ns/m and the time
constant of the linear muscle model was set to � � 60 ms (Brown and
Loeb, 2000). The parameters �x and �y are unknown from the point of
view of the controller. In the case of a baseline trial, these parameters are
�x � �y � 0. For an orthogonal force field, we have �x � �L Nsm �1, and
�y � 0. For a curl field we have �x � �L Nsm �1 and �y � � �x.

In our experiment, all trials were randomly interleaved. Thus there
was uncertainty about movement dynamics. It is important to stress
that this uncertainty was random from trial to trial, but it was not
random within a trial, as previously assumed (Izawa et al., 2008).
Thus the uncertainty for a given trial is not zero on average and the
problem of control with fixed model errors must be considered. We
express this mathematically by rewriting the differential equation in
an algebraic form and grouping the unknown terms (�x and �y) into a
model disturbance that is unknown to the controller (�A). Defining
the state vector as follows: x � 	 x, y, ẋ, ẏ, Fx, Fy


T and the control
vector as u � 	ux, uy


T we have (note that we used boldface xfor the
state vector, and normal x for the coordinate):

ẋ � �A � �A�x � Bu. (7)

The model disturbance impacts the unforced dynamics ( A) in agreement
with the nature of the perturbation induced by the force field. In general
there can also be disturbances to the matrix B. Taking noise into account,
we rewrite this equation based on instantaneous differences instead of
derivatives, and include stochastic disturbances as follows:

dx � 	�A � �A�x � Bu
dt � Cdw. (8)

Equation 8 introduces the standard Brownian motion w of appropriate
dimension and C is a scaling function that characterizes the noise prop-
erties. Observe that C is allowed to depend on control or state variable
and capture signal-dependent noise. We now rearrange terms as follows:

dx � 	Ax � Bu
dt � �Axdt � Cdw, (9)

or equivalently:

dx � 	Ax � Bu
dt � ��x, w�, (10)

where ��x, w�: � �Axdt � Cdw is the unknown disturbance that
lumps together the impact of process noise and the fixed model error.
Equation 10 expresses that the dynamics corresponds to the modeled
dynamics, plus an unknown disturbance function.

The control problem consists in deriving a time-varying control law
that minimizes a performance index. When the process disturbance is
purely stochastic with zero mean and known covariance matrix, that is
�A � 0 and ��x, w� � N�0, ��� the solution can be derived in the frame-
work of stochastic optimal control (Todorov, 2005). When �A 
 0, there
is a fixed bias or error in the expected dynamics, and the formalism of
stochastic optimal control does not apply. A dedicated control design
consists in deriving a control solution in the worst-case scenario, includ-
ing fixed model errors or possibly worse input disturbances. This is for-
malized in the framework of robust, or H�-control (Basar and Bernhard,
1991). It is important to stress that the two control designs produce a
goal-directed, state-feedback control law that is consistent with behav-
ioral results in a wide range of perturbation paradigms (Crevecoeur and
Kurtzer, 2018).

Briefly, the controller design is expected to minimize a quadratic cost-
function that captures the intended behavior (in this case a reaching
task). We call J�x, u� the quadratic penalty at each time step. For robust
control design, because the controller must minimize the cost-function,
it is assumed that a second “player” is trying to maximize the same cost by
manipulating the unknown disturbance function ��x, w�. Thus, the ro-
bust control problem is to find a control sequence u*, which minimizes
the maximum of J�x, u� assuming a worst-case disturbance. This formu-
lation requires considering the following augmented cost-function:

J̃�x, u, �� � J�x, u� � 	2�T�, (11)

and the robust optimal controller in the sense of H�-control is defined as
the control function that minimizes the time integral until the final time
(tf) of the running cost plus the final cost in the worst case scenario, or
equivalently when this cost is maximized over �:

u* � argminu�max��
0

tf

J̃�x, u, ��dt � xf
TQxf�. (12)

The parameter 	 must be jointly optimized to ensure that the solution
exists and corresponds to H�-optimal control (Basar and Bernhard,
1991). This parameter was optimized through numerical search stopped
when the relative improvement in its value before violating conditions of
existence was 
0.1%. When the process disturbance does not contain a
fixed error, the expected value of the second term of the right-hand side
of Equation 11 is equal to the variance of �, which is constant, and the
control problem reduces to the minimization of the expected value of
J�x, u�. This problem is handled in the usual framework of stochastic
optimal control (Todorov, 2005).

Finally, the control problem was transformed into a discrete time sys-
tem based on Euler integration with 10 ms time steps. The transforma-
tion into a discrete time system allowed us to consider sensorimotor
delays through system augmentation. We use 50 ms (6 time steps) in
agreement with the long-latency pathway through cortex (Scott, 2016).
We use the index “d” to refer to the discrete-time representation and the
subscript “t” indicates the time step. With these definitions, we write the
discrete time system as follows:

xt�1 � Adxt � Bdut � �t, (13)

with �t containing the potential model bias and a noise term defined as
�t � N�0, �1���. The information available to the controller is as follows:

yt � xt�h � 
t, (14)

with 
t � N�0, �2�
�. The definition of the cost is scaled such that the
penalty of the command has unity weight, and the target was mapped to
the origin of the workspace. This cost-function corresponds to:

J�x, u� � �t�1

N
�3�t/N�6�xt

TQxt� � �t�1

N�1
�ut�2. (15)

Previous studies considered only a terminal penalty on the state, and no
penalty during movement. This is not allowed for robust control, indeed
a condition for the existence of solution in the sense of H�-control is that
the matrix Q be positive definite. We use the following: Q � diag[(10 6,
10 6, 10 5, 10 5, 1,1)] for the terminal cost, and scaled it by the factor �t/N�6

to ensure low initial cost while positive definite, and a smooth build up
until the terminal cost. The cost of forces was kept low compared with
minimize their impact while keeping a positive definite Q. As the behav-
ior of the controller depends on the ratio between state and command-
related costs, we varied �3 over an order of magnitude to investigate the
impact of the cost-function on the model behavior. Similarly the model
predictions were derived through changes in the intensity of the motor
and sensory noise factors (�2 and �3).

In all, the only free parameters were �i, i � 	1, 2, 3 and we report the
impact of changing these parameters over a wide range to address the
sensitivity of the corresponding model. In all cases, the same perturba-
tions and noise were applied to simulations derived in the context of
stochastic or robust optimal feedback control. In the case of stochastic
disturbances the problem was solved in the context of extended linear–
quadratic–Gaussian regulator (Todorov, 2005). Otherwise the control
problem was solved in the framework of robust H�-control (Basar and
Bernhard, 1991). In general, the derivation for H�-control is based on
matrix recurrences that extend the framework of LQG to the cases where
disturbances are not Gaussian. Details about these recurrences are pro-
vided in the references above, and an application to human reaching
movements without experimental validation was proposed previously by
Ueyama (2014). A detailed description of the derivation is beyond the
scope of the present paper, but access to working code for replication can
be found here: http://modeldb.yale.edu/258846. We should underlie that
both control designs compensated for delays through system augmenta-
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tion and allowed the increase in control gains observed for the robust
controller. In the absence of accurate delay compensation such an in-
crease in control gains may be problematic (Michiels and Niculescu,
2007; Crevecoeur and Scott, 2014).

Results
Model
We first describe the properties of robust controllers (H�-control) by
contrasting the predictions of this control design with those ob-
tained from a stochastic optimal controller (LQG). Under the
assumption of stochastic disturbances (which are zero on aver-
age; Fig. 1a), the control and estimation algorithms minimize the
expected cost of movements (LQG; Todorov, 2005). When the
model error includes nonrandom disturbances, such as for in-
stance fixed biases in the model parameters, robust control min-
imizes the impact of these disturbances in the worst-case scenario
(Fig. 1a; min-max or H�-control; Basar and Bernhard, 1991).
Optimizing the performance index for the worst-case scenario
effectively minimizes the sensitivity of the control design to any
kind of disturbance (in particular to the worst case), and thus this
design is advantageous where there is no model of the distur-
bance available.

The reason why robust control is not a good default choice is
because, although this controller is less sensitive to unmodeled
disturbances, it is also costlier because it typically produces con-
servative strategies. In our examples, robust control responds to
noise as if it were disturbances, which is not desirable in the case
of zero-mean stochastic disturbances. This is a well known prop-
erty of control design: there is an inherent tradeoff between effi-
ciency and robustness (Fig. 1b). Intuitively, a costly but safe
control strategy is warranted in the presence of dynamic uncer-
tainty (robust control), whereas a more predictable context may

promote an efficient strategy at the cost of sensitivity to unmod-
eled disturbances (LQG control).

The robust controller exhibited larger feedback gains, which
for linear systems are the same control gains that steer the system
to the target and respond to perturbations. This increase in con-
trol gains resulted in faster movement velocities toward the target
and more vigorous responses to external perturbations applied to
the virtual mass. Exemplar trajectories are presented in Figure
1c–e: the robust controller displayed higher forward velocity for
unperturbed trials (Fig. 1e, forward velocity, solid), and limited
the perturbation-evoked velocity following lateral disturbances
(Fig. 1e, lateral velocity, dashed). The faster reduction of lateral
velocity was due to a phasic increase in control response shown in
Figure 1f. Indeed, because the actuator was linear, the increases in
feedback gains amplified the perturbation response and gener-
ated a phasic modulation of the control response (Fig. 1d, dashed
trace).

The tradeoff between sensitivity and robustness was apparent
when we calculated the cost of the simulated movements. Com-
pared with the LQG controller, we found the cost of movements
generated by the robust controller was �15% higher (normalized
to the average cost of LQG control) even for unperturbed trials
(Fig. 1d). However, the perturbation had a proportionally smaller
impact on the robust controller. The increase in cost associated
with step-load perturbations for this controller was �20% com-
pared with the LQG controller, which exhibited close to 30%
increase because of larger lateral hand displacements.

We attempted to limit the dependency of our predictions on
model parameters to the extent possible. First, the parameters of
the biomechanical system were fixed a priori based on measured
or standard values (see Materials and Methods). Second, the
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noise covariance matrices and cost-function were set based on
the fact that they generated trajectories that resembled human
behavior when participants performed movements of the same
amplitude under the same time constraints. Then, we scaled the
cost-function and noise covariance matrices over an order of
magnitude to assess how much they impacted the model predic-
tions. Qualitatively, the following predictions were independent
of the cost or noise parameters: (1) the robust controller always
generated faster movement velocities toward the target; and (2)
when disturbed by the same perturbation, the robust controller
responded more vigorously, resulting in smaller lateral devia-
tions and velocities than the stochastic optimal controller.

Experiment 1
We sought to investigate whether unexpected disturbances im-
pacted human reaching control in a way that was consistent with
the predictions of robust control presented above. We first con-
trasted the behavior of individual subjects across the pre-, peri-,
and post-exposure phases to unpredictable disturbances (Fig.
2a). The prediction that uncertainty about dynamics modulated
control gains was clearly borne out in our results. Figure 2b illus-
trates the modulation of forward hand velocities from one par-
ticipant chosen to illustrate the main effect. The peak hand
velocities during peri-exposure were larger than the same data in
the pre-exposure and post-exposure conditions as emphasized by
the arrows aligned with this participant’s average velocity.

Group data from all participants are presented in Figure 2c
based on 20 trials taken from the pre-, peri-, and post-exposure
conditions. We selected 20 evenly spaced trials during the peri-
exposure phase simply to represent the data with the same num-
ber of trials as the pre- and post-exposure phase. For statistical
comparisons, all trials from the peri-exposure were included. The
increase in hand speed during the peri-exposure blocks was sig-
nificant for 7/10 participants when assessed on the distribution of
individual trials (peri � pre; Fig. 2d, left). Moreover, the decrease
back to near-baseline velocities (i.e., pre-exposure) in the post-
exposure phase was significant for 8/10 participants (post � peri;
Fig. 2b, right; Wilcoxon rank sum test, p � 0.05). Accordingly,
group-level data revealed a highly significant effect of the condi-
tion (rmANOVA: F(2,18) � 14.3, all corrected p � 0.001). Post hoc
comparisons based on paired t tests confirmed the increase in
forward hand velocity during the peri-exposure phase (one-sided
comparisons: VelPRE � VelPERI: t(9) � 4.64, p � 0.001; VelPERI �
VelPOST: t(9) � 6.11, p � 10�4; there was no statistical difference
between VelPRE and VelPOST, two-sided comparison: t(9) � 0.62,
p � 0.55). Average forward hand velocities in the peri-exposure
and other phases of the task are shown in Figure 2d. These data
only included the baseline trials that were preceded by �2 base-
line trials to remove a possible influence of after-effects evoked by
the perturbation. The analysis below characterizes the lateral de-
viations induced by after-effects in more detail. The filled and
open dots indicate participants who did (p � 0.05) or did not
display (p � 0.05) significant changes in forward velocity across
the different phases of the experiment.

More interestingly, we uncovered a trial-by-trial change in
control strategy, where a single perturbation was followed imme-
diately by an increase in average forward hand velocity in the next
trial. This result is illustrated in Figure 3a for a time series of 100
trials selected from an exemplar participant. Observe the partic-
ipant’s forward hand velocities often increased in the trial imme-
diately after an unexpected force field. Moreover, the forward
hand velocities decayed gradually during each sequence of unper-
turbed movements. This result was not expected a priori and was

observed during exploratory analyses as we investigated the time
scale of changes in control strategies. We quantified this effect at
the group level by sorting unperturbed trials as a function of their
index following the last force-field perturbation. This analysis
revealed a substantial increase in average peak forward velocity
recorded in baseline trials following a force-field perturbation
(Fig. 3b; rmANOVA, F(13,117) � 10.7, all corrected p � 10�6).
Movement velocities decayed back to pre-/post-exposure values
within �10 undisturbed trials. Post hoc comparisons were used to
contrast the average peak velocity in the post-exposure phase to
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Figure 2. Experiment 1: behavior. a, Illustration of the experimental procedures: partici-
pants performed visually guided reaching movements in the forward direction while grasping
the handle of a robotic manipulandum. They performed movements with or without force-field
(curl field) trials randomly interleaved. See Materials and Methods for more details. b, Hand
velocity of individual trials from one representative participant. Ten traces were randomly se-
lected for illustration from the pre- (orange), peri- (purple), and post-exposure to uncertain
context (green). The peak hand speed computed for each trial is highlighted with dots following
the same color code and the triangles are aligned with the average peak velocity in each con-
dition. c, Group data of forward hand velocity in the pre-, peri-, and post-exposure to randomly
applied disturbances. The figure shows the mean � SEM across 20 trials in each phase (trials
chosen from the peri-exposure were evenly spaced, n � 10 subjects). d, Left, Individual change
in average peak velocity in the peri-exposure as a function of the average from the pre-
exposure. Each dot represents one participant. The filled dots represent the participants who
exhibited significant differences in the distribution of individual trials (Wilcoxon rank sum test,
p � 0.05). Right, Same as the left for the data post-exposure as a function of the average in the
peri-exposure. The arrow points to the participant chosen to illustrate the main effect in b. FF,
Force Field.
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groups of trials sorted by how closely they followed a perturba-
tion trial (Indices 1–12, and post-exposure; paired, one-sided t
tests). Significant differences at the level p � 0.005 after correct-
ing for multiple comparisons are illustrated in Figure 3b. Because
the data from each trial index was compared with the data from
post-exposure, we performed 12 comparisons and consequently
the actual p levels corresponded to 0.004 and 0.0004 for the re-
ported levels 0.05 and 0.005, respectively. Thus, recent exposure
to an unexpected disturbance produced a substantial and sus-
tained increase in the forward hand velocity.

It was important to verify that this increase in forward hand
velocity was not merely due to a possible after-effect evoked by
the occurrence of force-field trials. To mitigate such an influence,
we first excluded two baseline trials immediately following per-
turbations trials for the analysis presented in Figure 2d. Second,
we verified that the analyses shown in Figure 3b were similar by
taking only the forward had velocity, based on the idea that an
after-effect would primarily impact the lateral velocity. We found
the same result as reported in Figure 3b. Finally, we quantified the
after-effect by extracting the maximum lateral deviation, in trials
that followed a force-field trial. Consistent with an after-effect,
we found an increase in maximum lateral deviation following
force-field trials. However, we found the after-effect decayed
faster than changes in forward hand velocity because significant
increases in lateral deviations were observed only for trial indices

up to 3 (Fig. 3c). We directly compared
the decay in forward hand velocity with
the reduction in maximum lateral dis-
placement by transforming the data into
z-score relative to the population from
trial Index 12, and regressed the peak for-
ward velocity as a function of the maxi-
mum lateral displacement (Fig. 3d). We
found that the peak forward hand velocity
decayed slower. Indeed, the linear regres-
sion had a slope that was significantly �1
[value: 0.66, 95% CI: (0.46, 0.86)], and an
intercept that was significantly �0 [value:
0.5, 95% CI: (0.32, 0.7)]. Thus, as illus-
trated in Figure 3d, the lateral displace-
ment following a force-field trial returned
to baseline levels faster than changes in
peak forward velocity. Collectively, these
analyses suggest that alterations in forward
hand velocity were not simply because of
after-effects evoked by perturbation trials.

Experiment 2
Experiment 2 was designed to probe the
model prediction that the increase in con-
trol gain should generate more vigorous
responses to abrupt perturbations applied
to the limb during movement (step-
loads). We designed a similar series of
blocks (pre-, peri-, and post-exposure)
and varied the level of uncertainty by us-
ing different kinds of perturbations. How-
ever, the behavior in this experiment was
distinct. In contrast to the results of Ex-
periment 1, we did not observe any sys-
tematic increase in forward hand velocity
when comparing the peri- and pre-expo-
sure phases of the experiment (Fig. 4b,c).

Instead, the peak hand velocity decayed across trials during the pre-
exposure phase, and then remained relatively constant during the
peri-exposure phase (Fig. 4b). Congruent with Experiment 1, how-
ever, we did observe a significant decrease in forward hand velocity
during the post-exposure phase (one-sided paired t test, t(12) � 2.14,
p � 0.026). This behavior can be explained in our framework if the
presence of step-perturbations already promoted a more robust
strategy during the pre-exposure phase, which reduced the contrast
between pre-and peri-exposure phases.

Because there was no systematic modulation across phases of
the experiment, we leveraged the trial-by-trial modulation of for-
ward hand velocities observed in Experiment 1. We indexed both
perturbation and baseline trials dependent on the preceding
number of baseline trials. We then analyzed the kinematics and
EMG for both unperturbed and perturbed trials based on this
index. For the unperturbed trials, we found as in Experiment 1 a
clear change in movement velocity toward the target that de-
pended on the preceding number of unperturbed trials. Figure 5a
reproduces the analysis of Figure 3b and reveals similar trial-by-
trial modulation of forward velocity following unanticipated per-
turbation trials encountered by participants in Experiment 2.
Because of the larger proportion of perturbation trials in this
experiment, the series of unperturbed trials were shorter and the
rmANOVA had to be performed on trial Indices 1–7 to ensure a

a

b c d

Figure 3. Trial-by-trial modulation. a, Illustration of trial-by-trial changes in control strategy for one selected series of trials.
Dots represent the time series of peak hand velocity across baseline trials. Vertical lines indicate the occurrence of perturbation
trials. Black dots highlight the baseline trials for which there was an increase in hand velocity following a force field. Open dots
represent the baseline that followed a force field but did not display an increase in forward peak hand velocity after being exposed
to a force field. Observe the relatively high proportion of baseline trials displaying an increase in hand velocity following force field,
and the tendency for peak forward velocities to decay between two force-field trials. The arrows at the end of the series are aligned
on the averaged forward velocities of baseline trials across pre-, peri-, and post-exposure phases for this participant. b, Trial-by-
trial modulation of peak forward velocity in each condition. In the peri-exposure phase, trials were grouped as a function of their
index after each force-field trials. Statistical comparisons are based on paired t tests between trials in each index and peak hand
velocity in the post-condition (*p � 0.005, †p � 0.05, after Bonferroni correction, n � 10). c, After-effect quantified as the
maximum lateral deviation across the different phases of the experiment. Statistical comparisons were performed as for the peak
forward hand velocity by comparing data of each trial index with the data from the post-exposure phase. Similar Bonferroni
correction corrections were used as in b. d, Peak forward velocity as a function of maximum lateral displacement. Data were
transformed into z-score for comparison relative to the mean and population of the data from trial Index 12. Dashed trace is the
identity line; gray and red illustrate least-square regressions and 95% confidence interval. Only population averages are displayed
but the regression and confidence intervals were calculated on individuals’ averages. FF, Force Field.
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balanced test because perturbations were
more frequent (rmANOVA, F(6,72) �
13.9, all corrected p � 10�4).

Interestingly, the activity of pectoralis
major and posterior deltoid muscles fol-
lowed a similar pattern, which is surpris-
ing because they were chosen for their
antagonist actions. We extracted the aver-
age activity in a window of 50 ms before
the crossing of the position threshold used
for the step perturbation trials. We found
a similar trial-by-trial decay in the activity
of both muscles during movement, in par-
ticular in the 50 ms time window before
the position threshold used to trigger the
step loads (Fig. 5b; rmANOVA, F(6,72) �
6.4, all corrected p values � 0.005). The
concomitant variation of activity in both
muscles indicated the presence of co-
contraction. To further illustrate this
change in activity, we plotted the average
activity across trials with Indices 1, 3, or
�4 chosen as they are representative of
the range of variation of muscle activity
(Fig. 5c). This figure shows that the overall
activity throughout the movement depended on the preceding
sequence of trials. The relationship between forward velocity
and co-contraction was further assessed on a trial-by-trial ba-
sis as we found for both muscles a positive correlation between
the mean EMG in the 50 ms window before threshold crossing
and the peak velocity (Fig. 5d,e). The link between co-
contraction and forward hand velocity can be deduced from
the fact that both muscles exhibited positive correlation and
concomitant trial-by-trial modulation. To complement this
analysis, we calculated the linear regressions between forward
hand velocities and the minimum activity across muscles, used
as an index of co-contraction. We found significant regres-
sions with positives slopes for all participants (means slope:
0.2, range: 0.07, 0.4).

We now turn back to the perturbation trials. We classified
them based on a median split on their indices. Trials with an
index below the median were classified as Early, and those with an
index higher than the median were classified as Late (Fig. 6a).
Our prediction was clear: if the increase in velocity following
disturbances indeed reflected a more robust strategy, then per-
turbation trials classified as Early (presumably more robust)
would also display more vigorous feedback responses when dis-
turbed by a step load.

The distribution of trial indices for all participants is shown in
Figure 6b. The median number of baseline trials between pertur-
bation trials was equal to 1 for all participants. Thus, the classifi-
cation separated perturbation trials that directly followed a force
field or step load (index � 1) from perturbation trials that fol-
lowed one or more baseline trials (index � 2). First, the forward
hand velocity at perturbation onset tended to be larger for
trials classified as Early. This effect was present for 6/13 par-
ticipants as assessed on the distribution of individual trials
(Wilcoxon rank sum test, p � 0.05; Fig. 6c). Average forward
hand velocities at perturbation onset were significantly higher
for Early trials when examined at the group level (one-sided
comparison: t(12) � 2.37, p � 0.018). Similar results were ob-
served when this analysis was performed based on the peak forward
hand velocity instead of peak hand speed to reduce possible effects of

lateral velocities induced by the after-effect: 6/13 participants exhib-
ited increases based on trialwise distributions (p � 0.05), and the
group effect was also significant (one-sided paired t test: t(12) �
�3.46, p � 0.005).

It is interesting to note that there were no systematic changes
in endpoint distributions across Early and Late trials. For baseline
trials, there was an small increase in endpoint variance for Early
trials (t test on areas of endpoint dispersion ellipses: t(12) � 2.27;
p � 0.04), and no statistical difference in the norm of the end-
point error. For the perturbation trials, we found no effect of the
categories on the norm of the endpoint error and on the disper-
sion ellipses (all t(12) � 1.4, p � 0.1).

Strikingly the classification of trials separated not only the
hand velocity toward the target (Fig. 6c), but also the lateral hand
velocity and lateral deviation when a step-perturbation was ap-
plied to the hand. Indeed, the absolute lateral hand velocity fol-
lowing the perturbation quickly became smaller for trials
classified as Early (Fig. 6d). We performed a sliding t test on the
lateral hand velocity and found a strong reduction of the absolute
lateral hand deviation for Early trials consistent with the model
prediction (Fig. 1e). Vertical arrows correspond to the moment
when p � 0.01, and p values dropped later to levels �10�4. As a
consequence, the lateral displacement exhibited lesser excursion
for these trials, and the difference in maximum lateral displace-
ment was highly significant (Fig. 6e–g). Figure 6g shows the dif-
ference between maximum displacements in Late–Early trials,
such that the peak lateral displacement in Early trials was always
smaller in absolute value than the peak lateral hand displacement
in Late trials (**p � 0.0005, one-tail paired t test). Thus, this
analysis highlighted that trials with increased average forward
hand velocity also exhibited larger, more forceful responses to the
same lateral step-force disturbances. This modulation was con-
sistent with the hypothesis that these trials were controlled with a
more robust strategy as the perturbation loads impacted hand
trajectories to a lesser extent.

We now turn back to the surface EMG data from step pertur-
bation trials to address whether the change in behavior shown in
Figure 6 resulted from a modulation of neural feedback gains

a

b c

Figure 4. Behavior from Experiment 2. a, Illustration of the experimental procedure: the task and workspace were identical to
Experiment 1. Pre- and post-exposure phases include step perturbations triggered when the cursor crossed a position threshold
corresponding to one-third of the reach path, whereas the peri-condition includes step perturbations, orthogonal and curl force
fields, all randomly interleaved. b, Trial by trial peak forward velocity during pre-, peri-, and post-exposure phases with the same
color code as in Figure 3. c, Same as Figure 3b for the data from Experiment 2. There was no systematic difference in peak forward
hand velocities between pre- and peri-exposure phases, whereas the reduction in hand velocity during post-exposure was weakly
significant (paired t test, p � 0.05, n � 13).
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predicted in theory. Raw EMG activities for each muscle are
shown in Figure 7 for stretch and shortening responses (after
normalization; see Materials and Methods). As for unperturbed
trials analyzed in Figure 5, we observed an increase in co-
contraction for trials classified as Early compared with trials clas-
sified as Late in the Pre epoch (�50 to 0 ms re: perturbation
onset), which corresponded to 25 � 4% increase in pectoralis
major (PM) and a 30 � 4% increase in posterior deltoid activity

(PD; mean � SEM). We focus on the interaction between the
classification criterion (Early or Late) and the different epochs
(Nieuwenhuis et al., 2011). The rmANOVA performed on the
stretch responses with classification labels (Early and Late) and
epochs as factors revealed significant interactions between these
factors for both muscles (PD: F(4,48) � 11.9, p � 0.001; PM: F(4,48)

� 3.8, p � 0.009). Regarding the shortening response, we also
observed a significant interaction between classes and epochs for
both muscles (PM: F(4,48) � 5.4, p � 0.001; PD: F(4,48) � 3.22, p �
0.02).

Considering the dependency of the stretch reflex on the base-
line activity for loading and unloading conditions (Pruszynski et
al., 2009; Nashed et al., 2015), we compared the difference be-
tween the stretch responses and the baseline activity in the short-
and long-latency epochs across classes. That is, we subtracted the
raw activity collected during unperturbed trials classified as Early
(high baseline) and Late (low baseline) trials from the perturba-
tion responses corresponding to the same Early and Late classes.
This difference reflected the response while taking changes in
baseline activity into account. Stretch responses from PM and PD
were averaged for this analysis and direct comparisons were per-
formed based on paired t test. We found a significant increase the
stretch response (one-sided comparison: t(12) � 2.34, p � 0.018
for long-latency, t(25) � 2.74, p � 0.005 for long-latency and
short-latency pooled together, although short-latency alone was
not significant: t(12) � 1.63, p � 0.063). It is clear that the scaling
of the muscle responses in these early epochs is small and only
visible in Figure 7, c and f. The fact that this scaling was still
observed based on rather low levels of coactivation indicated that
it was a reliable effect. The phasic increase and decrease in the
stretch response, along with the larger shortening response was
consistent with the change in control gains predicted in the
model (Fig. 1f).

Comparisons across Experiments 1 and 2
Collectively our experimental results demonstrated a change in
control strategy impacting forward velocity and feedback re-
sponses to perturbations based on co-contraction and amplifica-
tion of control gains. Thus, if two force-field trials occur in a row,
we may expect that the lateral displacement in the second force
field be reduced compared with the first one because of the use of
a more robust strategy. Indeed, in Experiments 1 and 2 we found
that a sequence of perturbations (in any direction) evoked a
buildup in forward hand velocity, suggesting a gradual increase in
robustness (Fig. 8a–c). We performed a similar analysis on the
EMG data from Experiment 2 and also found a concomitant
buildup of activity in both pectoralis and deltoid muscles, as ex-
pected (Pre epoch 50 ms before threshold, Indices 0 –3:
rmANOVA, F(3,48)�17, p � 10�6). In parallel, when perturba-
tions were separated based on direction, we also found in each
experiment the presence of an after-effect, which increased fol-
lowing one or two perturbations experienced in a row (Fig. 8d–f).
Thus, unexpected disturbance evoked both a gradual increase in
control gains, as well as an increase in standard after-effect in the
next baseline trial.

These observations are particularly important because they
suggest that robust control and error-based adaptation occurred
in parallel. Because these processes varied from trial to trial, their
respective contributions to behavior are difficult to dissociate.
We end this section by showing that robust control is in fact
necessary to explain an apparent contradiction in the data. Recall
that we used the same curl field randomly interspersed in each
experiment. Thus, it was possible to compare participants’ be-

c

a b

d e

Figure 5. Behavior of Experiment 2: baseline trials. a, Peak forward velocity as a func-
tion of trial index similar to Figure 4d. Paired comparisons were based on paired t test with
the data with minimum average velocity (Index 6). b, Same as a with the activity of each
muscle. Paired comparisons were performed with the data from Index 7. c, Surface activity
of PD (left) and PM (right) during baseline trials averaged across trials and subjects. Trials
were separated dependent on the preceding number of baseline trials. The categories
chosen to highlight the dependency on the trial sequence were trials with Indices 1
(black), 3 (gray), and �4 (light gray). The traces were aligned to the moment when the
hand crossed the position threshold, and smoothed with a 5 ms-sliding window for illus-
tration. The dashed rectangles shows the time window used in the subsequent analyses
and corresponds to the Pre epoch (�50 to 0 ms before threshold crossing). d, Correlation
between mean EMG in the same time window and peak velocity across trials. Data from
one exemplar participant. f, Slopes of the correlations as computed in e for each subject.
One dot is one participant, filled dots illustrate significant regressions, open does illustrate
indicate nonsignificant regressions ( p � 0.05). Observe that all but two fits were signif-
icant, and all but two display positive correlations of activity from antagonist muscles with
forward hand velocity. Horizontal bars are population averages and vertical bars are 1 SEM
(n � 13).
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havior when facing the same disturbance
across the two experiments, as well as the
after-effect. First we observed that the
hand paths from Experiment 2 were less
deviated than in Experiment 1 (Fig. 9a).
This result could be quantified by com-
paring the maximum absolute hand dis-
placement from participants’ average
traces. We grouped data from CW and
CCW perturbations to increase the power
(because the comparisons could not be
paired due to the fact our experiments in-
volved distinct groups of participants), and
found a significant trend toward smaller
hand deviation for Experiment 2 (Fig. 9b;
Wilcoxon rank sum test: Z � 2.07, p �
0.038). Taking lateral deviation as an index
of error-based adaptation to the force field,
one would conclude from this result alone
that participants from Experiment 2 were
more adapted. The contradiction is that the
after-effects displayed from participants of
Experiment 2 were significantly smaller
than the after-effects displayed by partici-
pants of Experiment 1 (Fig. 9a,c; Z � 3.11,
p � 0.0019).

How could participants from Experi-
ment 2 appear more adapted but at the same
time express smaller after-effects? Our
framework may resolve this contradiction.
Indeed, we believe that the increased fre-
quency and variation of dynamical distur-
bances caused by curl and orthogonal force
fields in Experiment 2 evoked an overall
more robust strategy than in Experiment 1 where perturbation were
less frequent. To verify this hypothesis, we observed that curl field
trials in Experiment 2 occurred on average after �2 baseline
trials, and this number never exceeded 10 (Fig. 9d). In contrast
in Experiment 1, curl field trials occurred on average after �4
baseline trials, and the distribution of indices was much
broader (note that this could not be directly assessed based on
velocity during curl field trials, because the increase in feed-
back gains and the impact of the force field have opposite
effects). A statistical comparison on the distribution means
also revealed highly significant differences across experiments
(KS stat � 1, p � 10 �5). In light of these results, our explana-
tion is that the increased frequency of perturbations in Exper-
iment 2 produced a more robust strategy in these participants,
which limited the lateral hand displacement without necessar-
ily evoking internal model adaptation.

Discussion
We explored the hypothesis that compensation for unmodeled
disturbances was supported by a robust neural control strategy.
We studied the predictions of stochastic optimal control (LQG;
Todorov, 2005) and a robust control design that can equivalently
be described as a “min-max” or worst-case strategy (Basar and
Bernhard, 1991) applied to linear models of planar reaching
movements. The robust controller displayed an increase in con-
trol gains, resulting in faster movements toward the target and
more vigorous responses to perturbations. Our experimental results
supported these predictions: the occurrence of unexpected force-
field disturbances evoked both faster movements and more vigorous

responses to perturbations. Thus, the neural controller was more
robust in the sense that the feedback responses reduced the impact of
the perturbations (step and force field). Thus the compensation for
disturbances involved a model-free component.

Our results suggest a robust control strategy, which can be
dissociated from automatic stiffening of the limb through imped-
ance control (Hogan, 1984; Shadmehr and Mussa-Ivaldi, 1994;
Burdet et al., 2001). Indeed, the increase in co-contraction could
have only moderately altered the intrinsic properties of muscles
(
30% increase in baseline activity; Crevecoeur and Scott, 2014).
Even when considering a change in mechanical impedance of the
limb, the modulation of forward hand velocity as well as the
phasic modulation of agonist and antagonist responses together
supported a modulation of control gains.

We should underline that there is no disagreement between
robust control and stochastic optimal control (Todorov and Jor-
dan, 2002). In theory, LQG yields efficient control in the presence
of Gaussian disturbances based on goal-directed, task-dependent
state-feedback control law (Todorov, 2004; Franklin and Wolp-
ert, 2011; Scott, 2012; Crevecoeur and Kurtzer, 2018). The con-
trol solution produced by robust control also consists of a
goal-directed, state-feedback control law that can change flexibly
should there be a change in the task or cost-function. Thus, pre-
vious evidence for flexible state-feedback control in humans sup-
ports robust control as well as LQG as models of sensorimotor
coordination.

Clearly it is possible to modify the cost-function to fit the
modulation of control gains in the context of LQG. However, we
do not feel that such a model would provide much conceptual
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Figure 6. Behavior of Experiment 2: step perturbations. a, Illustration of the classification of perturbation trials depen-
dent on the number of preceding baseline trials. The classification was a median split based on this index (below median:
trials occurring Early: above median, trials occurring Late). b, Distribution of baseline trial indices. These indices for each
step-perturbation trial correspond to the number of unperturbed trials that preceded them. c, Average forward hand
velocity for perturbation trials measured at perturbation onset. The data are the average across trials classified as Early
(preceded by a perturbation) as a function of the same variable for perturbation trials classified as Late (preceded by �1
baseline trials). d, Lateral hand velocity for the step perturbation trials (left or right) dependent on the classification shown
in a. Vertical arrows depict the movement when the sliding t test on participant averages across trial types became dropped
below p � 0.01. e, Average hand path for each category of trial and perturbation responses. Trials were aligned on
perturbation onset. f, Grand average of differences in the x-coordinate. Displays are Late minus Early, indicating that trials
classified as Early exhibited smaller lateral displacement in absolute value. g, Changes in average maximum lateral
displacement from each individual. As in g, positive and negative data for positive and negative perturbations indicate that
trials classified Early exhibited smaller lateral displacement. Asterisks indicate significant differences ( p � 0.005, one-tail,
paired comparisons, n � 13).
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advance, as there was no change in spatial,
temporal, or accuracy requirements justi-
fying a change in cost-function in the
model. In contrast, considering robust
control highlighted that changes in behav-
ior could be explained by considering un-
modeled dynamics, which was directly
motivated by our experiments and did not
require arbitrary fitting. Other behavioral
signatures may provide further insight
into the control strategy dependent on the
context. Indeed, previous work high-
lighted incomplete correction for target
jumps predicted in the framework of sto-
chastic optimal control (Liu and Todorov,
2007). In our study, the simulations of
LQG displayed incomplete corrections
(Fig. 1f), whereas the robust controller
was steering the system to the target re-
gardless. This paralleled participants’ be-
havior, as we did not see any systematic
effect on endpoint distributions across
conditions. We believe the details of error corrections dependent
on the context is an interesting topic for future work.

An important finding was the trial-by-trial adjustments of
control gains. An unexpected perturbation evoked an increase in
control gains for the next trials, whereas a sequence of unper-
turbed trials tended to push these control gains back toward val-
ues corresponding to the predictable context (Figs. 3b, 5b). The
theory provides a framework for interpreting these results. So-
lutions of LQG and robust controllers impose a tradeoff be-
tween efficiency and robustness of movement control (Fig. 1).
The most efficient controller (LQG) is achieved at the cost of
sensitivity to model errors, whereas the most robust controller
generates costly control solutions, but is less sensitive to model
errors. This result is well known in theory (Levine, 1996; Bou-
let and Duan, 2007). Thus, the adjustments of control strate-
gies that we observed experimentally could be understood as
the behavioral expression of competing mechanisms that pro-
mote either robustness through an increase in control gains or
efficiency by decreasing the gains after a series of predictable
trials. Reproducing the trial-by-trial change in the model
could be achieved by altering the parameter 	, which deter-
mines the optimal level of disturbance attenuation, whereas
suboptimal values of this parameter correspond to solutions
that may resemble LQG. A simple algorithm could be to set 	
to the optimal value following a disturbance (robust control),
and relax this constraint in predictable contexts or after
adaptation.

This trial-by-trial modulation correlated with co-contraction,
which potentially presents two advantages. On the one hand, the
elevated levels of muscle activity enable both stretch and short-
ening responses in antagonist muscles at short latencies, which
may increase the range of the feedback response. On the other
hand, an increase in baseline muscle activity, evoked by a back-
ground load or by co-contraction, is associated with “gain-
scaling” (Stein et al., 1995; Pruszynski et al., 2009; Crevecoeur
and Scott, 2014; Nashed et al., 2015), which may increase feed-
back gains by �-gamma coactivation (Vallbo, 1974). Indeed a
modulation of spindles sensitivity is likely involved, because
studies using galvanic stimulations (H-reflex) did not always ob-
serve gain-scaling with co-contraction (Nielsen and Kagamihara,
1993; Carroll et al., 2005). The tradeoff between efficiency and

robustness is also apparent in this scenario, as it is clear that there
is a metabolic cost incurred with the increased activity in neural
circuits and in muscles used to maintain higher levels of activity.
Our results demonstrated that co-contraction was inhibited
gradually but systematically in the absence of disturbances, likely
to save energy.

Feedback modulation was observed during motor adaptation
(Wagner and Smith, 2008; Franklin et al., 2012; Cluff and Scott,
2013). This modulation could also involve a change in robust-
ness, but most importantly reflected knowledge of the environ-
ment following adaptation. Here we observed a specific role of
co-contraction. Thus, this strategy differed from that observed
after learning, but it may be a component of the early stages of
adaptation as highlighted in previous studies (Milner and Frank-
lin, 2005; Franklin et al., 2008). In the latter reference, Franklin
and collaborators showed that unexpected muscle stretches dur-
ing reaching evoked co-contraction, whereas the absence of un-
expected disturbances was followed by a decrease in coactivation
(“V” learning scheme). This update rule was shown to converge
to novel patterns of activity suitable for adapting motor
commands to altered dynamics. Here we reproduced similar ad-
justments across trials: unpredictable perturbations evoked co-
contraction, and a sequence of similar (unperturbed) trials
decreased it. Our contribution was show that co-contraction may
not only modulate the limb’s intrinsic impedance (Hogan, 1984;
Burdet et al., 2001), but also adjust the robustness of neural con-
trol through a change in feedback gains.

Behaviorally, robust control is consistent with previous re-
ports exploring human motor control. For instance, Wei et al.,
2010 studied adaptation to perturbations of different kinds and
concluded that humans used a nonspecific strategy. This result
was consistent with a model-free compensation as the perturba-
tions were unpredictable, and such a default strategy must also be
suitable for the worst-case disturbance. Robust control may also
explain strategies observed by Hadjiosif and Smith (2015) in the
context of object manipulation. In this experiment, participants
encountered force fields where the coefficient mapping forward
hand velocities onto lateral forces was normally distributed with
differing levels of variance across conditions. Hadjiosif and Smith
(2015) reported changes in grip control that scaled with the vari-
ance of encountered loads during movement. In general, a sto-

a b c d

Figure 9. Apparent adaptation. a, Left, Average hand displacements during curl field trials from Experiments 1 and 2 depicted
with thin and thick traces, respectively. Blue and red traces correspond to CCW and CW perturbations. The maximum absolute
lateral displacement was extracted from each participant’s individual average and data from the two directions were pooled to
increase power. Right, Hand traces in baseline trials following force-field trials to highlight the after-effect. This after-effect was
extracted at the position threshold similar to Figure 8. The lateral component of the average baseline trajectory was subtracted for
each participant. Ellipses represent 2D dispersion for the mean (i.e., the axes of the ellipses were scaled by the square root of sample
size). b, Maximum absolute hand displacement across experiments. The absolute hand displacement was larger in Experiment 1
(n � 10 � 2 directions) than in Experiment 2 (n � 13 � 2 directions) at the level p � 0.05 (see also Results). Dots represent
average traces for each participant for CCW (dark blue) and CW (dark red) trials. c, Same as b for the after-effect. The two
distributions were statistically different at the level p � 0.005. d, Cumulative distribution of the number of baseline trials preced-
ing each force-field trial per participant and in each experiment. Vertical lines represent participant averages. Statistical difference
at the level p � 0.005 are highlighted.
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chastic optimal controller would not scale with the variance of the
noise, as it optimizes the expected cost. In contrast, a robust
controller would produce sufficient grip force in the worst-case
scenario, and thus it would be sensitive to, and scale with, the
variance of disturbances.

Our findings have important impact on our interpretations of
the neural basis of motor learning. Indeed, although a reduction
of perturbation-related motor errors is commonly viewed as ev-
idence for adaptation, our experiments revealed that such
changes also involved a robust (model-free) control strategy. The
use of force channels to measure adaptation may partially over-
come this difficulty, but because of spontaneous movement cur-
vature, the robust strategy may also impact the force produced
against the channel walls. In addition, we uncovered that the
selection of a robust strategy potentially impacted learning (Fig.
9). We previously reported a tradeoff characterizing individual
differences in motor learning (Cluff et al., 2019): some individu-
als exploited robust strategies to compensate for partial learning
of a force field, whereas others who expressed better learning and
reliance on their internal models also displayed less robust strat-
egies when exposed to unpredictable loads. Whether the relation-
ship between robustness and learning shown in Figure 9 was
because of differences across the two groups or to interaction
between these processes remains unknown but constitutes an
important question for future work. Furthermore, it was recently
reported that online control during unexpected force fields or
visuomotor perturbations involved very rapid learning (Braun et
al., 2009; Crevecoeur et al., 2018). Thus, a clear challenge is to
disentangle robust control from rapid adaptation, because the
function of both processes is to counter perturbation-related mo-
tor errors over fast timescales.
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