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Whereas subcortical structures such as the basal ganglia have been widely explored in relation to motor control, recent evidence suggests
that their mechanisms extend to the domain of attentional switching. We here investigated the subcortical involvement in reward related
top-down control of visual alpha-band oscillations (8 –13 Hz), which have been consistently linked to mechanisms supporting the
allocation of visuospatial attention. Given that items associated with contextual saliency (e.g., monetary reward or loss) attract attention,
it is not surprising that the acquired salience of visual items further modulates. The executive networks controlling such reward-
dependent modulations of oscillatory brain activity have yet to be fully elucidated. Although such networks have been explored in terms
of corticocortical interactions, subcortical regions are likely to be involved. To uncover this, we combined MRI and MEG data from 17
male and 11 female participants, investigating whether derived measures of subcortical structural asymmetries predict interhemispheric
modulation of alpha power during a spatial attention task. We show that volumetric hemispheric lateralization of globus pallidus (GP)
and thalamus (Th) explains individual hemispheric biases in the ability to modulate posterior alpha power. Importantly, for the GP, this
effect became stronger when the value saliency parings in the task increased. Our findings suggest that the GP and Th in humans are part
of a subcortical executive control network, differentially involved in modulating posterior alpha activity in the presence of saliency.
Further investigation aimed at uncovering the interaction between subcortical and neocortical attentional networks would provide useful
insight in future studies.
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Introduction
Functioning in the natural world necessitates the presence of
neuronal mechanisms capable of prioritizing stimuli according
to their relevance (Nobre and Kastner, 2014). Deployment of

attentional resources is biased toward stimuli associated with sa-
lience (e.g., monetary reward or loss), even when unrelated to the
current task (Chelazzi et al., 2013). Posterior neuronal oscilla-
tions in the alpha band (8 –13 Hz) reflect the allocation of covert
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Significance Statement

Whereas the involvement of subcortical regions into higher level cognitive processing, such as attention and reward attribution,
has been already indicated in previous studies, little is known about its relationship with the functional oscillatory underpinnings
of said processes. In particular, interhemispheric modulation of alpha band (8 –13 Hz) oscillations, as recorded with magnetoen-
cephalography, has been previously shown to vary as a function of salience (i.e., monetary reward/loss) in a spatial attention task.
We here provide novel insights into the link between subcortical and cortical control of visual attention. Using the same reward-
related spatial attention paradigm, we show that the volumetric lateralization of subcortical structures (specifically globus palli-
dus and thalamus) explains individual biases in the modulation of visual alpha activity.
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attention (Worden et al., 2000; Kelly et al., 2006; Thut et al., 2006;
Jensen and Mazaheri, 2010) and they have been shown to be me-
diated by corticocortical interactions (Capotosto et al., 2012; Ptak,
2012; Vossel et al., 2014; Marshall et al., 2015a,b). Conversely, these
cortical networks are further modulated by subcortical input (van
Schouwenburg et al., 2010a,b), whose involvement in posterior os-
cillations remains still unclear. Previous literature has indeed linked
subcortical activity to cognitive control (Cummings, 1993; Jahfari et
al., 2011; Braunlich and Seger, 2013), but a direct link between these
structures and alpha band oscillations has not been established.

Electrophysiological activity from subcortical regions are
poorly detected with magnetoencephalography (MEG). Alterna-
tively, subcortical structures measured by magnetic resonance
imaging (MRI) can be related to oscillatory brain activity (Tomer
et al., 2008, 2013). For instance, it has been demonstrated that
individual hemispheric asymmetries in the volume of the supe-
rior longitudinal fasciculus (SLF) relates to the individual ability
to modulate posterior alpha oscillations (Marshall et al., 2015a).
Importantly, subjects with greater right than left SLF volume also
displayed higher modulation of posterior alpha activity in the left
hemisphere, compared with the right (and vice versa). Through
an analogous approach, we postulated that volumetric asymme-
tries of subcortical areas would be reflected by individual inter-
hemispheric biases in the modulation of alpha oscillations during
selective attention in a reward context. Basal ganglia (BG), in
addition to motor control, have a well established role in reward
processing and salience attribution (Hikosaka et al., 2008, 2014;
Shulman et al., 2009; Braunlich and Seger, 2013), and recent
studies have already pointed to their functions extending into
higher level cognitive processing (Arcizet and Krauzlis, 2018).
This notion has been initially explored in animal recordings
(Tremblay et al., 1998; Schultz et al., 2000; Lauwereyns et al.,
2002; Shipp, 2004; Saalmann and Kastner, 2011; Schechtman et
al., 2016), whereas in humans, it has recently been suggested that
the BG play also a specific role in spatial attention and selection
(van Schouwenburg et al., 2010a; Tommasi et al., 2015a; Van
Schouwenburg et al., 2015). Another subcortical structure play-
ing a crucial role in cognitive processing is the thalamus
(Fiebelkorn et al., 2019; Jaramillo et al., 2019), whose nuclei are
involved in the regulation of synchronized activity in the visual
cortex in relation to visual attention and largely interact with the
BG (Lopes da Silva et al., 1980; Saalmann et al., 2012; Zhou et al.,
2016; Halgren et al., 2017).

Here, we reanalyzed MEG and structural data collected in a
previous study that considered the impact of stimuli paired with
value salience on the modulation of oscillatory brain activity in a
covert attention task (Marshall et al., 2018). The participants
performed a spatial cueing task, with Chinese symbols serving as
targets and distractors. Before the recordings, stimuli were paired
with monetary rewards or losses. Marshall et al. (2018) success-
fully demonstrated a location-specific influence for the stimuli
associated with reward and loss. Specifically, alpha lateralization
demonstrated sensitivity to stimulus salience, but not to stimulus
valence: both positive and negative targets (i.e., salient targets)

produced increased alpha lateralization compared with neutral
targets, and both positive and negative distractors (i.e., salient
distractors) reduced alpha lateralization compared with neutral
distractors. Given these findings, we here examine the further
link between lateralization of subcortical structures and alpha
oscillations. We hence reanalyzed these data with the aim to in-
vestigate the putative role of the subcortical brain areas in biasing
alpha power modulation during attentional shifts to stimuli
paired with value saliency. MRI data of the participants were
processed to estimate volumetric asymmetries of subcortical ar-
eas, consistent with methods used in previous studies on clinical
and healthy population (Womer et al., 2014; Guadalupe et al.,
2017; Okada et al., 2016). We focused on identifying the link
between individual volumetric asymmetries of subcortical areas
and individual interhemispheric bias in the ability to modulate
posterior alpha oscillations. Crucially, we further examined
whether this relationship was affected by the degree of stimulus-
value associations in the task. Furthermore, we included 612 MRI
scans to evaluate subcortical volumetric asymmetries in a larger
dataset.

Materials and Methods
Participants
In the present study, we reanalyzed the previously acquired dataset de-
scribed in Marshall et al. (2018), where 28 healthy volunteers participated
in the study (mean age: 23 � 2.7 years; 17 female; all right handed). All
participants reported normal or corrected-to-normal vision and no prior
knowledge of Chinese language. Of these, datasets from three partici-
pants were excluded from the analysis (due to respectively: technical
error during acquisition, excessive eye movements during MEG record-
ing and structural MRI data not acquired), leaving 25 participants. The
experiment was conducted in compliance with the Declaration of Hel-
sinki and was approved by the local ethics board (CMO region Arnhem-
Nijmegen, CMO2001/095).

Experimental design
The experiment consisted of two phases: in the learning phase, partici-
pants were trained to memorize associations between six Chinese
characters and three different values ( positive, negative, neutral). Con-
ditioning was implemented by means of visual and auditory feedback:
two symbols were associated with reward (�80 cents and a “ka-ching”
sound), two with loss (�80 cents and a “buzz” sound) and two with no
value (0 cents and a “beep” sound) (see Fig. 1A for an example stimulus–
reward association). The stimulus–reward pairing was randomized
across participants. Each trial started with the display of three fixation
crosses (1000 ms), followed by the presentation of a Chinese character
(1000 ms), together with its matching visual and auditory feedback (Fig.
1B). Stimuli were displayed on a gray background and each was pre-
sented 12 times in a randomized order. The learning phase was con-
ducted in a laboratory with attenuated sound and light and without MEG
recording. With the aim of reducing extinction, upon completion of this
phase participants were informed that the learnt stimulus-feedback as-
sociations would be signaling real reward outcomes throughout the test-
ing phase (i.e., the presentation of a Chinese character, regardless of its
role as target or distractor, would result in a financial reward, loss or
none). After the learning phase, participants performed a testing phase
(Fig. 1C), when they were required to perform a covert spatial attention
tasks including the stimuli previously associated with a monetary out-
come, whereas ongoing electromagnetic activity was recorded with
MEG.

In the testing phase, participants performed eight blocks of 72 trials.
Each trial started with the presentation of three fixation crosses for 1000
ms (pretrial interval), whose contrast subsequently decreased, as a pre-
paratory cue indicating imminent stimuli presentation. After 500 ms,
two symbols were presented to the left and right of the screen (8° visual
angle) respectively, together with a central fixation cross flanked by two
arrows, indicating the target side. Participants were instructed to covertly
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attend the symbol on the cued side (“target”) and to ignore the other one
(“distractor”), until one of them changed contrast. The contrast change
either increased or decreased with equal probability, with onset after 750
ms (13% trials), 1450 ms (47% trials, “short interval trials”) or 2350 ms
(40%, “long interval trials”) from stimulus presentation. Participants
were asked to report the direction of the contrast change at the targeted
(‘cued’) location as quickly as possible by button press, using the index or
middle finger of the right hand to indicate their choice (finger-direction
mapping was randomized across participants). Participants were in-
structed to refrain from responding when the distractor changed con-
trast. Shorter intervals of 750 ms were used to ensure that participants
would start covertly directing their attention rapidly after the cue; these
trials were not included in the analysis. The target changed contrast on
95% of the trials (valid trials), whereas in the remaining trials the distrac-
tor did (invalid trials). The approximate duration of the full task in the
MEG was 50 min.

As a result of the conditioning manipulation in the learning phase,
targets and distractors in the task would be associated with either a salient
(positive or negative) or a neutral value, resulting in three categories of
trials of interest, as represented by different levels of value salience, name-
ly: zero (target and distractor neutral), one (target or distractor salient) or
two (target and distractor salient) value salience levels.

MEG data acquisition
Electromagnetic brain activity was recorded from participants while
seated, using a CTF 275-channel whole-head MEG system with axial
gradiometers (CTF MEG System; VSM MedTech). The data were sam-

pled at 1200 Hz, following an anti-aliasing filter set at 300 Hz. Head
position was constantly monitored throughout the experiment via online
head-localization software. This had access to the position of the three
head localization coils placed at anatomical fiducials (nasion, left and
right ear), allowing, if necessary, readjustment of the participant’s posi-
tion between blocks (Stolk et al., 2013). Horizontal and vertical EOG and
ECG electrodes were recorded with bipolar Ag/AgCl electrodes.

MEG data analysis
MEG data analysis was performed using the FieldTrip Toolbox running
in MATLAB (Oostenveld et al., 2011). Continuous data were segmented
in epochs, centered at the onset of the target contrast change, encompass-
ing the preceding 1500 ms and the following 200 ms (this way covering
the full stimulus presentation window for short trials). A notch filter was
applied at 50, 100, 150 Hz to remove line noise, the mean was subtracted
and the linear trend removed. Automatic artifact rejection was imple-
mented for detection and removal of trials containing eye blinks and
horizontal eye movements (detected with EOG), MEG sensor jumps and
muscle artifacts. We produced virtual planar gradiometers by computing
spatial derivatives of the magnetic signal recorded with axial gradiom-
eters (Bastiaansen and Knösche, 2000). The method has the advantage of
improving the interpretation of the topographic mapping since neural
sources would produce a gradient field directly above them. Time–fre-
quency representations (TFR) of power were then calculated for the
resulting pairs of orthogonal planar gradiometers, before summing the
power values at each sensor. The analysis was performed by sliding a fixed
time window of 500 ms in steps of 50 ms. The resulting data segments
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Figure 1. Illustration of selective attention task: stimuli and reward manipulation. A, Six Chinese symbols served as stimuli for the task and were associated with three values: two paired with
reward, two with loss and two with no financial change (neutral). B, Representative trial of the learning phase. Symbols were displayed for 1000 ms, systematically paired with the corresponding
(positive, negative or neutral) value, via visual and auditory feedback. Characters presentation was alternated with a 1000 ms fixation period. During the training phase, participants learned
associations between the stimuli and their reward value. C, Representative trial of the testing phase. After a 1000 ms pretrial interval, participants were primed with a 500 ms preparatory cue
signaling the upcoming stimuli. Two characters were then presented to the left and right hemifield, together with a spatial cue, instructing participants to covertly attend the symbol on the cued side
(target) and ignore the other one (distractor). Participants’ task was to report when the target stimulus changed contrast. Contrast change could either occur after 750 ms (13% of trials), 1450 ms
(47% of trials), or 2350 ms (40% of the trials). In 95% of the trials, the target changed contrast (valid trials), whereas in 5% of the trials, the distractor changed contrast (invalid trials). (Figure adapted
with permission from Marshall et al., 2018).
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were multiplied by a Hanning taper and a fast Fourier transform was
applied in the 2–30 Hz frequency range, in steps of 2 Hz. This procedure
was applied only for correct valid trials, separately for left and right cued
conditions.

For each participant, TFRs were averaged across trials and a modula-
tion index (MI) was computed for each sensor k and over all time points
t belonging to the time window of interest, 750 – 0 ms, according to the
following formula:

MI� f �k,t �
Power� f �k,tatt right

� Power� f �k,tatt left

Power� f �k,tatt right
� Power� f �k,tatt left

(1)

Where Power� f �k,tatt left
represents the power at a given frequency f in the

condition “attend left” and Power� f �k,tatt right
is the power of the same

frequency in the condition “attend right.” As a result, positive (or nega-
tive) MI values, at a given sensor k and given time point t, indicate higher
power at a given frequency f when attention was covertly directed toward
the right (or left) hemifield.

Two clusters of sensors were then derived, by selecting the 20 symmet-
rical occipitoparietal sensors (i.e., 10 pairs of sensors) showing the high-
est interhemispheric difference in alpha modulation indices, when
considering the grand average over all conditions (see Fig. 2A) averaged
over the previously defined time window of interest. These clusters con-
stituted the regions of interests (ROIs) on which subsequent analysis was
focused. Subsequently, to quantify individual hemispheric-specific bias
with respect to modulation indices in the alpha range (MI(�), we calcu-
lated the hemispheric lateralized modulation (HLM) index per partici-
pant as follows:

HLM��� �
1

nright
�

kright�1

nright

MI���kright
�

1

nleft
�

kleft�1

nleft

MI���kleft
(2)

Where kleft and kright denote sensors belonging to the aforementioned
and previously defined left and right clusters, respectively. Please note
that MI(�)k indices in Equation2 (for both k � 1, . . . , nright and k � 1,
. . . , nleft) are already a result of an average over time points of interest t.
Since MI(�) values were obtained by subtracting alpha power in attend
left trials from attend right trials and given that, as a result of attentional

allocation, alpha power is suppressed in the hemisphere contralateral to
the attended hemifield, a positive HLM(�) value indicated that a given
participant displayed higher modulation of absolute magnitude of alpha
power in the right compared with the left hemisphere, and vice versa (see
Fig. 2B).

Analogously, lateralized indices (LI) of power modulation were com-
puted for the alpha frequency band and for each subject at the cluster
level according to the following formula:

LI��� �
1

nright
�

kright�1

nright

MI���kright
�

1

nleft
�

kleft�1

nleft

MI���kleft
(3)

Also in this formula, kleft and kright denote sensors belonging to the afore-
mentioned left and right clusters, respectively. Because MI(�) values
were obtained by contrasting alpha power in ‘attend right’ versus ‘attend
left’ trials (see Eq.1), left hemisphere MI(�) were mostly represented by
negative values, and right hemisphere MI(�) by positive values. Conse-
quently, higher LI(�) indicated higher alpha lateralization for a given
subject (i.e., higher interhemispheric difference in absolute alpha
modulation).

Structural data acquisition
T1-weighted images of three out of 25 participants were acquired on a 3
T MRI scanner (Magnetom TIM Trio; Siemens), acquisition parameters:
TR/TE � 2300/3.03 ms; FA � 8°; FoV � 256 � 256 mm; slice thickness �
1 mm; Acquisition matrix � 0 � 256 � 256 � 0. For the remaining
participants, a 1.5T MRI scanner was used (Magnetom AVANTO; Sie-
mens). Acquisition parameters were as follows: TR/TE � 2250/2.95 ms;
FA � 15°; FoV � 256 � 256 mm; slice thickness � 1 mm; acquisition
matrix � 0 � 256 � 256 � 0.

Analysis
Structural analyses were conducted using the Integrated Registration and
Segmentation Tool (FIRST) within FMRIB’s Software Library (FSL)
v5.0.9 (www.fmrib.ox.ac.uk/fsl/, Oxford Centre for Functional MRI of
the Brain). A standard 12 degrees of freedom affine registration to
MNI152 space was applied to individual T1 images, adjusted with opti-
mal subcortical weighting. Bayesian models implemented in the software

Figure 2. Grand average MI and HLM distribution across participants. A, TFRs and topographical plot showing contrast between the ‘attend right’ and the ‘attend left’ trials trials. A clear
modulation is visible at posterior sensors in the alpha band (8 –13 Hz) in the �750 to 0 ms interval (this time window being considered for the computation of HLM(�) indices in B. Sensors included
in the left and right ROIs are marked as dots. Trials are locked to the onset of the contrast change (t � 0). B, Side panels show the temporal evolution of modulation indices in the alpha range MI(�)
averaged over sensors within left and right hemisphere ROIs. The magnitude (absolute value) of MI(�) progressively increased in the stimulus interval until the onset of the contrast change. Middle,
Distribution of HLM(�) indices across participants, computed over the ROIs and 8 to 13 Hz frequency band (see Materials and Methods). A normal density function is superimposed, denoting no
hemispheric bias in lateralized modulation values across participants (Shapiro–Wilk, W � 0.958, p � 0.392).
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are derived from a training based on previous manual segmentation of
336 datasets ( provided by the Center for Morphometric Analysis at Mas-
sachusetts General Hospital in Boston) and applied to registered images
to extract subcortical volumetric outputs for left and right hemispheres
(see Fig. 3A).

Given the reward components of the task we then focused on regions
of the BG identified by the algorithm namely the globus pallidus (GP),
nucleus accumbens (Acb), caudate nucleus (CN), and putamen (Pu), as
well as the thalamus (Th). However, an appropriate model attempting to
describe basal ganglia influence on reward-related alpha modulation
needs to take into account the broader network of subcortical intercon-
nections with neighboring nuclei. To this end, we included in the analysis
the amygdala (Am) and the hippocampus (Hpc), whose interconnection
has particularly been highlighted in the context of guided behavior when
saliency processing was crucial (Paton et al., 2006; Zheng et al., 2017).

To compute hemispheric lateralized volume indices (LVs) for each
substructure of interest s, we used the following formula, which controls

for individual differences in specific subcortical volumes via normaliza-
tion by total bilateral volume, commonly used to evaluate structural
brain asymmetries (Guadalupe et al., 2017; Okada et al., 2016) as follows:

LVs �
V�s�right � V�s� left

V�s�right � V�s� left (4)

Where Vsright
and Vsleft

represent, respectively, the anatomical right and left
volumes (in voxels) for a given substructure s. Analogously to Equation
2, a positive (or negative) LVs index, in a given participant, indicated a
greater right (or left) volume for a given substructure s (see Fig. 3B).

Statistical analysis
Generalized linear model. To determine the relationship between basal
ganglia lateralized volumes (LVs) and electromagnetic indices [HLM(�)] we
applied a generalized linear regression model (GLM), specifying subcor-

Thalamus

Nucleus Accumbens

Caudate Nucleus

Amygdala

Hippocampus

Globus Pallidus

Putamen

-0.2 0 0.2
LVGP

0

5

10

15

N
r. 

of
 s

ub
je

ct
s

-1 -0.5 0
LVAcb

0

5

10

15

-0.2 0 0.2
LVCN

0

5

10

15

LVPu

0

5

10

15

LVHpc

0

5

10

15

20

-0.5 0 0.5 1
LVAm

0

2

4

6

8

10

-0.2 -0.1 0 0.1
LVTh

0

2

4

6

8

10

**

***

***

B

A

0.5 -0.2 0 0.2

-1 -0.5 0 0.5

p=.128 p<.001 p=.003 p=.443

p=.777 p=.201 p<.001

Figure 3. Basal ganglia volumes resulting from semiautomated subcortical segmentation implemented. A, Orthogonal view and 3D rendering. Subcortical volumes are overlaid as meshes on the
anatomical MRI of one of the participants (following defacing procedure in Freesurfer, where voxels outside the brain mask with identifiable facial features were excluded (Bischoff-Grethe et al.,
2007). B, Histograms with superimposition of normal density function, showing the distribution of subcortical lateralization indices for each substructure. In our sample, Acb and Th volumes were
left lateralized ( p � 0.0001 and p � 0.0003, respectively), whereas CN showed a right lateralization ( p � 0.0029).
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tical volumes lateralization (LVs values) as regressors and individual
HLM values as the response vector.

To identify the optimal set of regressors to best predict HLM(�) indi-
ces, we pursued a model building strategy that would enable us to test the
key hypothesis concerning the role of the BG and the thalamus. Hence,
we considered all linear mixed-effects models including all possible com-
binations of at least 3 regressors (LV indices) using maximum likelihood
estimation as parameter estimation method. We hence separately con-
sidered the models derived from all possible combinations of regressors,
including 2, 3, 4, 5, or 6 regressors (i.e., ROIs), by “picking” the regressors
from the lateralized subcortical volumes initially considered: (LVGP,
LVAcb, LVCN, LVPu, LVTh, LVAm, LVHpc).

This resulted into a set of models for each of the four options (2, 3, 4,
5, or 6 regressors). Next, for each of the options, we derived the model
associated with the lowest Akaike information criterion (AIC) and Bayes-
ian information criterion (BIC), values commonly used for selection of
best predictor subsets for a statistical model. Upon selection, we ended
up with the four best models, representative of each of the four options
described above.

The final step, was to identify the winning model among the selected
ones (i.e., those with the lowest AIC and BIC values) and compare it with
the full model (seven regressors), which included the whole set of sub-
structures, according to the following formula:

HLM��� � �0 � �1LVGP � �2LVAcb � �3LVCN � �4LVPu

� �5LVHpc � �6LVAm � �7LVTh � � (5)

All subsequent analysis on the relationship between volumetric and os-
cillatory data specifically focused only on the subcortical structure(s)
associated with a significant � coefficient in the model in Equation 5,
below referred as LVs.

Cluster-based permutation test. To evaluate whether the linear associ-
ation between LVs and HLM was effectively limited to the alpha band, a
cluster based permutation approach (Maris and Oostenveld, 2007) was
used over the full time frequency spectrum of interest. This method
effectively allows to statistically control for multiple comparisons over all
time and frequency points of interest. After selecting the a priori sensors
belonging to the formerly specified ROIs, we considered a permutation
distribution of regression coefficients derived from randomly pairing
participants’ LVs value (independent variable) and modulation indices
(MI( f ) 1000 times. At every time-by-frequency point, the actual regres-
sion coefficient was evaluated against the aforementioned distribution by
means of a specified critical � value. Afterward, a time–frequency map of
the cluster level statistics was derived showing sets of sensors associated
with a significant effect.

An equivalent approach was later applied to investigate possible
hemisphere-specific differences in alpha modulation between partici-
pants showing a right or left lateralized substructure s. Directionality of
lateralization was determined by median split of the distribution of LVs

per participant, producing two subgroups of n � 12, representing sub-
jects with a larger left or right volume of substructure s. After having a
priori averaged across the time–frequency spectrum of interest ([�1500
to 0] ms, 8 –13 Hz), MI(�) values at every sensor were compared between
the two subgroups (right vs left lateralized substructure). The actual
t-value was then compared with a permutation distribution of t-statistic
derived from randomly partitioning indices between the two groups
1000 times. As a result, a topography map was plotted displaying eventual
cluster(s) of sensors associated with a significant t-value (i.e., a significant
difference in MI(�) between subgroups).

Comparison between Pearson’s correlation coefficients. Finally, we
aimed at comparing the association between the derived structural and
functional lateralization indices in different value salience occurrences.
To this end, we calculated HLM(�) values for each participant separately
for the three reward-related contingencies and computed the Pearson’s
correlations with LVs indices that displayed a significant � as arising from
the model in Equation 5. We statistically assessed the difference in cor-
relation coefficients between the three experimental conditions consid-
ered, according to the method described in (Wilcox, 2016a). The test
implements a percentile resampling technique by generating a bootstrap

sample of the difference of the correlation coefficients between the over-
lapping variable LVGP (Y) and the two variables representing the
HLM(�) for the two experimental conditions (VO levels) to be com-
pared (X1, X2). As suggested in the method, we used a Winsorized cor-
relation to achieve a robust measure of association between variables.
This transformation has been shown to effectively control for the
influence of outliers on the correlation estimate (Wilcox, 2016b). A
confidence interval was then computed on the resulting bootstrap distri-
bution, to assess the statistical significance of the actual difference be-
tween correlation coefficients describing the different VOs.

Behavioral data analysis. To assess whether subjects displayed a spatial
bias during the task, we first averaged across left and right cued trials
separately, averaged across all conditions (i.e., regardless of VO). We
then used paired t test on the derived reaction times (RT) and accuracy
(ACC) (expressed as percentage of correct responses) measures for the
left and right cued trials. Second, we divided trials according to VO
pairings, averaging left and right cued trials, to determine whether be-
havioral performance varied as a function of saliency in both RT and
ACC. We here used one-way repeated-measures ANOVA to assess
whether group means in the three conditions significantly differ from
each other. We also considered individual lateralized measures of RT and
ACC across different VO conditions. To this end, behavioral asymme-
tries in performance (BA) for both measures were calculated according to
the following formula:

BART/ACC �
BART/ACCright

� BART/ACCleft

BART/ACCright
� BART/ACCleft

(6)

Where BART right and BART left represent mean reaction times for attend
right and attend left trials, respectively. A positive BART for a given sub-
ject indicated faster responses when a participant was validly cued to the
left compared with the right hemisphere, whereas negative values indi-
cated the opposite pattern. Consequently, positive BAACC values indi-
cated higher accuracy on attend right trials compared with left attend
trials and vice versa.

A one-way repeated-measures ANOVA was used to test the difference
across group means in the three VO conditions examined.

In a next step, we sought to investigate the possible association of
behavioral performance with structural and functional hemispheric lat-
eralization, we used Pearson’s correlation to examine the association of
individual asymmetries in accuracy (BAACC) and reaction times (BART)
with individual HLM(�) and LV values of subcortical structures that
showed significant correlation with HLM(�).

In a last step, we used a GLM to assess whether spatial biases in behav-
ioral performance could be explained by a combination of the other
variables, namely HLM(�) and the LV indices of the subcortical areas
considered, according to the following formula:

BART/ACC � �0 � �1LVGP � �2LVAcb � �3LVCN � �4LVPu

� �5LVHpc � �6LVAm � �7LVTh � �4HLM��� � � (7)

Results
We acquired structural and electrophysiological data from 25
participants. Participants’ performance was tested during a co-
vert attention paradigm, where Chinese symbols served as targets
and distractors (Fig. 1). During a learning phase, before the actual
task, the stimuli were associated with different values (positive,
negative, or neutral). In the testing phase, a central cue probed an
upcoming contrast variation of the target, which appeared either
at 1450 or 2350 ms, predicting its position in 95% of the trials.
Participants were instructed to indicate, with button press, the
direction of the contrast change, which could either increase or
decrease with equal probability. MEG data, eye-tracking and be-
havioral responses were acquired during the testing phase. Time–
frequency representations of power were calculated from MEG
trials after preprocessing and artifacts rejection. Power modula-
tion (MI) indices were computed by contrasting power in trials
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where participants were validly cued to the right (attend right
trials) with trials where participants were validly cued to the left
(attend left trials) (Eq. 1, Materials and Methods).

As presented in the previously reported results (Marshall et
al., 2018), we confirmed that participants displayed a clear mod-
ulation of alpha band activity in parieto-occipital sensors (MI(�):
when covertly orienting attention to the cued side, alpha power
decreased in the contralateral hemisphere while it increased rel-
atively in the ipsilateral hemisphere (Fig. 2A). The magnitude of
alpha power modulation, as reflected by MI(�), progressively
increased until the target changed contrast (Fig. 2B). To best
quantify the modulation, we focused our analysis on the 750 ms
interval immediately preceding the onset of the contrast change.
Next, right and left ROIs were identified as clusters of symmetric
pairs of sensors showing the highest alpha lateralization values
(see Materials and Methods) (i.e., sensors displaying highest in-
terhemispheric difference in alpha modulation).

Starting from the assumption that, to a certain extent, an in-
tersubject variability in the ability to modulate alpha power-in
absolute value-must exist in the right compared with the left
hemisphere (and vice versa), we sought to quantify individual
hemispheric biases in the ability to modulate alpha activity. To
this purpose, hemispheric lateralized modulation of alpha power
[HLM(�) values were then computed for each participant by
summing the average MI(�) in the right and left hemisphere
ROIs (Eq. 2), Materials and Methods]. As a result of this compu-
tation, positive HLM(�) values would demonstrate that a given
subject was better at modulating their right, compared with left,
hemisphere alpha power, whereas a negative index would reflect
higher ability to modulate alpha power on their left, compared
with right, hemisphere. The histogram in Figure 2B depicts the
distribution of hemispheric biases related to attentional modula-
tion of alpha power. HLM(�) indices ranged from 	�0.1 to 0.1
(i.e., a 20% variation) but they were normally distributed around
zero across participants (Shapiro–Wilk, W � 0.958, p � 0.392).

Volumetric asymmetry of basal ganglia in relation to
hemispheric lateralized alpha modulation
The next step was to determine whether the biases in the ability to
modulate left versus right hemisphere alpha HLM(�) was related
to individual hemispheric lateralization of subcortical structures.
A semiautomated segmentation tool implemented in FMRIB’s
Software Library (FSL), was used to estimate volumes for the left
and right subcortical and limbic structures, namely: GP, Acb,
CN, Pu, Hpc, Am, and Th. We then calculated the hemispheric
LVs for each set of structures (see Materials and Methods, Eq. 4).
Positive (or negative) LVs values for a given participant indicated
whether a specific substructure s was larger in the right compared
with the left hemisphere (and vice versa). Further analysis re-
vealed that, over subjects, the Acb and Th were significantly left
lateralized (z � �3.78, p � 1.56 � 10�4 and z � �3.59, p �
3.28 � 10�4, respectively; two-sided Wilcoxon signed-rank test),
whereas the CN was right lateralized (z � 2.97, p � 0.003). For
the other substructures, no significant lateralizations were
identified.

To corroborate that the observed anatomical lateralizations
were representative of the population and not merely a fluke in
the dataset, we applied the same analysis to a pool of 612 inde-
pendent, anonymized anatomical MRI scans internally available
at the Donders Institute. We hence estimated left and right vol-
umes for the same subcortical structures considered in our study,
and derived respective LV indices (Eq. 4). Importantly, the same
direction of lateralization in all the substructures was found in the

Donders dataset and the one reported in our sample. Specifically,
Th and the Acb were significantly left lateralized (z � �14.0, p �
1.4 � 10�44 and z� �17.04, p � 4.1 � 10�65, respectively),
whereas the CN was right lateralized (z � 13.0, p � 1.2 � 10�38).
In addition, the GP was found to be right lateralized (z � 4.0, p �
5.9 � 10�5, an effect only observed as trend in our dataset), as
well as the Hpc (z � 4.95, p � 7.3 � 10�7), whereas the Pu was
left lateralized (z � �3.27, p � 0.001).

These surprising significant lateralization biases in a large
dataset are highly interesting, given they suggest differential lat-
eralizations of subcortical structures on a population level. More-
over, they support the conclusions drawn in the context of the
study.

Given the volumetric variability in the set of substructures
considered for the segmentation protocol, we performed a cross-
correlation analysis between the different substructures, includ-
ing left and right volumes, to query about a potential bias in the
segmentation algorithm. No significant effects were found (pos-
itive or negative correlations, all p 
 0.688; highest negative cor-
relation r � �.084) indicating that, if a given structure is larger
for a given subject, this does not imply a bias in the segmentation
protocol (e.g., to the expense of neighboring, allegedly smaller
areas).

To investigate whether individual subcortical asymmetries
(LVs, as defined in Eq. 4) predicted differences in hemispheric
lateralized modulation of alpha power HLM(�), we imple-
mented a GLM, where LV indices were included as multiple
explanatory variables for the response variable [individual
HLM(�)].

As described in Materials and Methods section, we pursued a
model building strategy that would enable us to test the key hy-
pothesis concerning the role of the BG and the thalamus.

We analyzed all linear mixed-effects models derived from all
possible combinations of at least 2 regressors (LV indices). Fol-
lowing this evaluation, we identified the five-regressor model as
the best (with AIC� �71.23 and BIC � �62.70). This model
included as regressors LVGP (p � 4 � 10�4), LVAcb,(p � 0.036)
LVPu (p � 0.028), LVHpc (p � 0.144), and LVTh (p � 0.022).

The selected five-regressor model provided a better estima-
tion of HLM(�) given the set of predictors, when compared with
the full model (including all the seven substructures), which had
AIC of �67.5 and BIC � �56.5 (Eq. 5).

Despite having defined the five regressors model as the opti-
mal set for predicting HLM(�), we proceeded our analysis with
the full model, describing the predictive value of the whole set of
lateralized subcortical volumes. The underlying aim was to be
more conservative, address potentially confounding effects of
neighboring regions, and to include the full set of BG structures
for a complete overview of their effects. We therefore report re-
lated results below. Of importance here is to note that, in the
five-regressor winning model, based on the output of our model
comparison, the results concerning our structures of interest still
held: LVGP and LVTh significantly predicted HLM(�) values.

The full model was associated with a significant regression:
when considering the grand average of all conditions, a linear
combination of all the subcortical LVs was able to explain
HLM(�) values (F(7,17) � 3.37, p � 0.019, adjusted R 2 � 0.409).
When assessing each predictor individually, only the beta coeffi-
cients for LVGP and LVTh were found to be significantly higher
than zero (partial correlation: p � 0.004 and p � 0.028) (Fig. 4A).
Hence, when controlling for the other explanatory variables in
the model, only GP and TH asymmetry (LVGP, LVTH) signifi-
cantly contributed to explain biases in hemispheric lateralized
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alpha band modulation (� � 1.768 and
� � 1.924, respectively). The independent
contribution of GP and TH lateralization is
visible inFigure4,BandC, showingthepartial
regressionplots forLVGP andLVTH inrelation
to the HLM(�) values. We conclude that
hemispheric biases in GP and TH volume are
predictive of the individual abilities to modu-
late left versus right hemisphere alpha. Pre-
cisely, subjects presenting a larger GP volume
in the left hemisphere compared with the
right, also displayed a higher ability to modu-
late alpha power (in absolute value) in the left
visual hemisphere compared with the right
(and vice versa); the same association holding
for the Th in relation to HLM(�) values.

Hemispheric asymmetry of GP
correlates selectively with power
modulation in the alpha band
To better interpret the GLM results, we assessed whether the
linear relationship arising from the model was restricted to the
alpha band: to this end, a nonparametric approach was imple-
mented to further explore the LVGP and LVTH in relation to
HLM(�). This method allows circumvention of the multiple
comparison problem over frequency and time points by evaluat-
ing the full low-frequency spectrum (2–30 Hz) from �1500 to 0
ms (Maris and Oostenveld, 2007). We therefore conducted a
cluster-based permutation test using a dependent samples regres-
sion t-statistic to evaluate the effect (linear association between
LVGP/TH indices and HLM over all frequencies) at the sample
level. A p-value of 0.05 was chosen for thresholding the t-statistic
of the permutation distribution and a critical value correspond-
ing to alpha � 0.025 (two tailed) was considered for the cluster-
level regression test statistic. As depicted in Figure 5A, we
observed a significant cluster (p � 0.008) extending for 1000 ms
window before contrast change (i.e., when covert attention was
deployed to the cued stimulus), which confirmed a positive linear
association (positive t-value) between LVGP asymmetry and
HLM of power constrained to the alpha frequency range. When

applying the same analysis to the Th asymmetry in relation to
HLM, no significant clusters of sensors were identified.

Hemisphere specific relations between alpha modulation and
GP asymmetry
Given the specific association found between LVGP and HLM(�)
arising from the previous analysis, we decided to further investi-
gate the hemisphere-specific influence of GP volumetric asym-
metry on alpha modulation indices. For this purpose, we sought
to compare average left and right hemisphere MI(�)s of partici-
pants according to the direction of GP lateralization. This was
done by means of median split of the LVGP distribution, hence
resulting in two subgroups, that either had a bias toward a larger
left than right GP volume or vice versa (see Materials and Meth-
ods). Figure 6 displays a topographical representation of MI(�)
values per subgroup (Fig. 6A), together with individual raw data
points, superimposed on bars representing average values per
ROIs per each subgroup (Fig. 6B) and distribution of individual
HLM(�) values (Fig. 6C). Consistent with the GLM results, par-
ticipants with a larger right than left GP, also displayed a higher
modulation of alpha band (in absolute value) in the right hemi-
sphere compared with the left. Given that the assumption of nor-
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mality required to perform a mixed-effect ANOVA, was not met
for the distribution of MI(�) indices in the two subgroups, we
implemented a nonparametric cluster-based permutation test to
compare the MI(�) between the two aforementioned subgroups
(averaged across specific time and frequency band of interest),
using an independent sample t test score, and then comparing it
with the resulting permutation distribution. This allowed us to
explore whether there was a hemispheric-specific difference in
the two subgroups in the extent of absolute alpha modulation.
The test indicated a significant cluster of sensors over right pos-
terior channels (p � 0.027), hence including the previously de-
fined right ROI and denoting a significant difference in the right
hemisphere absolute alpha modulation MI(�) between the two
subgroups. These results might suggest that the linear association
arising from the GLM (Fig. 4A,B) in relation to the association
between LVGP and HLM(�), was largely driven by right hemi-
sphere alpha modulation. The analogous analysis was conducted
on the median split of the distribution of LVTH indices. In this
case we did not find interhemispheric dominance in alpha mod-
ulation indices related to lateralization of the thalamus in the
right compared with left hemisphere.

Involvement of GP and Th in relation to
stimulus–value associations
Crucially, we aimed at assessing whether the level of VO in a given
trial influenced the association between the structural and func-

tional lateralization indices arisen from the GLM. We first calcu-
lated HLM(�) (Eq. 2, Materials and Methods) values for each
participant separately for the three VO levels, namely two, one
and zero value saliency occurrences (see Materials and Methods).
We then examined Pearson correlations between HLM(�) and
LV values for both GP and Th, which showed a positive signifi-
cant � in the model, across the three levels considered (Figs. 7, 8).
LVGP significantly correlated with HLM(�) only in trials where
both target and distractors had value salience (two VO) (r � 0.68,
p � 1.75 � 10�4; Fig. 7A). This denotes that, in trials with two
value-salient items presented, participants exhibiting a right lat-
eralized GP volume also displayed a stronger alpha modulation in
the right compared with the left hemisphere and vice versa. LVGP

did not significantly correlate with HLM(�) when only one or
none of the stimuli presented were associated with a salient value
(p � 0.144 and p � 0.314, respectively; Fig. 7A).

To statistically quantify the influence of the stimulus-value
association on the relationship between LVGP and HLM(�), we
compared robust correlations in the three conditions according
to the bootstrap method described in (Wilcox, 2016c) for depen-
dent overlapping correlations (see Materials and Methods). The
correlation between LVGP and HLM(�) in trials with two occur-
rences of value salience, significantly differed both from the con-
dition characterized by one (95% confidence interval, CI, [0.106,
0.672]) and zero (95% CI [0.125, 0.897]) occurrences. This con-
firmed that the association between lateralized GP volume and
alpha modulation bias significantly increased as a function of the
number of value-salient occurrences in the task (Fig. 7B). Boot-
strap distributions of the pairwise difference in correlation coef-
ficients is shown in Figure 7C. We performed the same analysis to
assess whether value saliency occurrences mediated also the asso-
ciation between LVTH and HLM(�). When considering the cor-
relation indices in the three conditions separately, no significant
linear relationship was found between the two indices (Fig. 8A).
Also in this case, when comparing robust correlations between
the three conditions, according to the same method above, no
significant difference was found (Fig. 8B,C). This suggested that
the relationship between thalamus volumetric lateralization and
alpha modulation arising from the model in Equation 5 was not
driven by the number of value-salient occurrences in the task.

Behavioral analysis
Stronger alpha lateralization is associated with better behavioral
performance in the task
At the behavioral level, we expected to corroborate existing liter-
ature linking alpha oscillations to behavioral performance in spa-
tial attention tasks. To disentangle possible confounds derived
from the value component of the task, we first considered only
neutral trials (holding 0 V.O.). We then performed a trial-based
analysis, by first grouping, for each subject, fast and slow trials,
with respect to the reaction times distribution median. This was
done separately for left-cued and right-cued (valid) trials. For
each subject, we then computed alpha modulation indices MI(�)
of derived fast and slow trials, according to Equation1 (see Ma-
terials and Methods). Next, we averaged MI(�)s in slow and fast
trials across subjects. Figure 9A shows the topographical repre-
sentation of MI(�) values for the two trial groups (fast vs slow
trials). Figure 9B shows individual and mean values for MI(�)
over left and right ROIs in the two subgroups, whereas values in
Figure 9C are displayed individual and averaged LI(�)s per sub-
group. To statistically assess the difference in alpha lateralization
between the two subgroups, we compared LI(�)s (according to

Figure 6. Alpha modulation indices for left and right hemispheres associated with two
subgroups of the sample. A, Topographical plot of MI(�) values for the two participants groups,
clustered according to directionality of GP lateralization (right vs left lateralized GP). Left and
right sensors of interest are marked as dots and correspond to the same ROIs as in Figure 2. B,
Individual data points superimposed on bar graph showing individual scores and MI(�) aver-
aged over ROIs in the two subgroups. As indicated in the cluster-based permutation results, a
difference is particularly observable for right hemisphere alpha modulation between the two
groups, being higher in participants exhibiting a right lateralized GP. C, Individual data points
showing HLM(�) scores for all participants. The horizontal blue line superimposed on the data
indicates average HLM(�) index for each subgroup.
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Eq. 3) between fast and slow trials, by means of dependent-
samples t test. This revealed that, on average, subjects displayed a
stronger alpha lateralization in fast trials, compared with slow
trials (t(24) � 2.27, p � 0.032), when no saliency processing was
required (0 VO trials).

To be able to generalize the effect to the whole task, we per-
formed the same trial-based analysis described above on all the
conditions regardless of their VO levels. The analysis showed
that, overall, subjects produced a significantly stronger alpha lat-
eralization in fast trials, compared with slow trials, regardless of
trial type (t(24) � 2.63, p � 0.014).

Behavioral performance is not dependent on saliency occurrences
in the task
At the behavioral level, we sought to investigate whether subjects
displayed a spatial bias in task performance, regardless of the

value saliency levels. To this end we performed a paired t test to
assess whether participants’ performance differed between left
and right cued trials, in both reaction times (RTs) and accuracy
measures. No behavioral spatial bias was found either in RTs
(p � 0.341) in accuracy (p � 0.572) values. Second, we investi-
gated whether VO levels modulated participants’ behavioral
performance.

We then compared mean RT and accuracy for the three VO
levels (see Materials and Methods). There were no statistically
significant differences between the three groups, as determined
by one-way ANOVA, in mean RT (F(2,72) � 0.004, p � 0.995)
(Fig. 10A) or in mean accuracy (F(2,72)� 0.003, p � 0.996) (Fig.
10C). We then tested whether a behavioral spatial bias occurred
across value saliency occurrences (i.e., whether subjects displayed
a difference in RT or accuracy asymmetry across VOs). We com-
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puted measures of BAACC and BART (Eq. 6, Materials and Meth-
ods). Analogously to the method used to compute HLM(�), we
created asymmetry indices for every subject by contrasting be-
havioral measures for attend right with attend left trials. As such,
a positive BART would indicate that subjects were faster when
cued to the left compared with the right hemisphere, and vice
versa. Similarly, positive BAACC indices reflected higher accuracy
when cued to the right compared with the left hemisphere. With
the method aforementioned, we performed a one-way ANOVA
to assess whether a significant difference in behavioral bias oc-
curred across the three VO conditions. Neither BART nor BAACC

values significantly differed across VOs (F(2,72) � 0.191, p � 0.826
and F(2,72) � 0.669, p � 0.515, respectively) (Fig. 10B,D).

The resultant lack of a relationship between spatial bias
in task performance and degree of saliency processing re-
quired (VOs) is likely explained by the orthogonalization of
attentional orienting and stimulus-value associations in the
task.

With the aim of determining a potential link between lateral-
ized indices of behavioral performance and the anatomical (LVs)

and functional HLM(�) lateralization indices of interest, we used
three separate GLMs to assess whether a linear combination of
BART and BAACC values could explain LVGP, LVTH and/or
HLM(�) indices. Neither LVGP nor LVTH could be explained by
the behavioral lateralized measures (F(1,23) � 0.18, p � 0.834,
adjusted R 2 � �.07 and F(1,23) � 0.16, p � 0.849, adjusted R 2 �
�.07). The same result held for the prediction of HLM(�), yield-
ing also in this case no significant regression coefficients (F(1,23) �
1.17, p � 0.33, adjusted R 2 � �.01).

Last, we investigated whether individual behavioral spatial bi-
ases could be accounted for by a combination of the other mea-
sures examined. To this end, we considered all subcortical LVs

and HLM(�) indices and specified them as regressors in a general
linear model (Eq. 7, Materials and Methods), to determine
whether they could explain biases in RT and accuracy (BART and
BAACC). No significant regression was found that could account
for BART indices (F(8,16) � 0.85, p � 0.570, adjusted R 2 � �0.05)
nor for BAACC indices (F(8,16) � 1.07, p � 0.429, adjusted R 2 �
�.023, respectively; Fig. 11A,B).
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Discussion
The aim of this study was to investigate the involvement of sub-
cortical structures in modulating spatial attention to stimuli as-
sociated with contextual salience. We observed that volumetric
lateralization of subcortical areas explained individual differ-
ences in the ability to modulate interhemispheric alpha power.
Specifically, participants exhibiting a right lateralized GP also had
a better ability to modulate posterior alpha oscillations in the
right compared with left hemisphere and vice versa. The same
association held for the relationship between Th hemispheric
asymmetry and alpha modulation. Importantly, only the corre-
lation between GP and alpha hemispheric lateralized modulation
increased as a function of value saliency occurrences in the task.
To the best of our knowledge, this is the first finding relating
individual volumetric differences in BG and thalamus to the
modulation of posterior alpha oscillations.

Subcortical areas and alpha synchronization
Our first finding is consistent with a growing body of literature
demonstrating a subcortical involvement in high level cognitive
functions, such as conscious perception (Slagter et al., 2017),
working memory performance (Frank et al., 2001), cognitive
control (O’Reilly et al., 2010; Ceaser and Barch, 2015; Piray et al.,
2016), and attentional control (Yantis et al., 2012; Tommasi et al.,
2015b). We showed that volumetric asymmetry of subcortical
areas predicts individual biases in the ability to efficiently allocate
attention, as indexed by interhemispheric modulation of alpha
power. This is strong support in favor of a subcortical involve-
ment in attentional processing, given the well established role of
alpha oscillations in the allocation of spatial visuospatial atten-
tion (Jensen and Mazaheri, 2010). Consistent with the functional
association between BG and cognitive control in the context of

Figure 9. Alpha modulation indices for left and right hemispheres associated with fast ver-
sus slow trials, neutral condition only. A, Topographical plot of MI(�) values for the two trial
groups, clustered according to median split of reaction times (fast versus slow trials). Left and
right sensors of interest are marked as dots and correspond to the same ROIs as in Figure 2. B,
Individual data points superimposed on bar graph showing individual scores and MI(�) aver-
aged over ROIs in the two subgroups. C, Individual data points showing LI(�) scores for all
participants (difference in MI(�) values between right and left ROIs above). The horizontal blue
line superimposed on the data indicates average LI(�) index for each subgroup.

Figure 10. Mean and lateralized RTs and accuracy values across the three value saliency
occurrences in the task. Mean RT (A) and accuracy (C) values averaged across participants in the
three value-salient occurrences conditions in the task. No significant difference was found be-
tween groups by means of one-way repeated-measures ANOVA, indicating that different levels
of value saliency pairings did not influence behavioral performance. No significant difference
emerged also when comparing average lateralized values of RT (B) and accuracy (D) across the
same conditions, and by means of same statistical analysis, indicating that the behavioral
spatial bias was not affected by the different levels of value saliency pairings. Respective indi-
vidual scores are superimposed on bars in all plots.
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reward (Fallon and Cools, 2014; Fallon et al., 2017), we provide
novel insights into the involvement of subcortical regions in the
modulation of posterior alpha oscillations.

Pulsed inhibition
A well recognized function of the BG is to inhibit or promote
cortical activity via GABAergic signaling, through the globus pal-
lidus pars interna (GPi), one of its major output structures (Lan-
ciego et al., 2012; Goldberg et al., 2013). The BG might exercise its
influence by applying control over activity in the prefrontal cor-
tex or it might directly coordinate posterior regions (as reflected
by its relationship to alpha power modulation during reward
processing). Our results suggest that individual differences in GP
volume lateralization may correspond to interhemispheric vari-
ability in GABAergic signaling and thus reflect the subcortical
potential to inhibit cortex. This input is likely responsible for
producing the mechanisms of “pulsed inhibition” in the visual
cortex (Jensen and Mazaheri, 2010), reflected by interhemi-
spheric modulation of alpha power, allowing the selective pro-
cessing of stimuli.

Implicitly, we assumed that the volume of the GP indirectly
reflects its ability to exert its top-down control over posterior
areas, its size possibly representing a determinant for the number
of GABAergic neurons involved in the control mechanism.

GP in relation to attentional selection and cognitive control
Interestingly, our results emphasize the specific contribution of
the GP in supporting stimulus-driven allocation of attention in a
value-based context. The GPi is considered to mediate the output
of the BG (Lanciego et al., 2012; Goldberg et al., 2013), and pre-
vious literature has implicated this structure in voluntary move-
ment regulation: its functions have indeed been predominantly
investigated in clinical and animal models in association with
motor functions and action control (Filion and Tremblay, 1991;
Jahfari et al., 2011), describing, for instance, reduction of hypo-
kinetic and rigidity symptoms following pallidotomy in humans
(Schuurman et al., 1997; Dostrovsky et al., 2002). Nevertheless,
recent results from single unit recordings in humans provided
indications that electrophysiological activity in the GPi reflects
processing of stimuli associated with different reward contingen-
cies (Howell et al., 2016). This is corroborated by evidence of
alterations of cognitive, in addition to motor, abilities, following
pallidotomy in Parkinson’s disease (PD) patients (Lombardi et
al., 2000); In addition, electrical stimulation of the GPi to treat
PD has been reported to be associated with several cognitive im-
pairments, such as subtle declines in attention and concentration,
although to a lesser extent when compared with subthalamic
stimulation (Combs et al., 2015). This aspect has been further
addressed in clinical studies showing a link between PD, associ-
ated with abnormal pallidal activity (Dostrovsky et al., 2002;
Rosenberg-Katz et al., 2016), and altered reward processing as
well as updating (Aarts et al., 2012; Chong et al., 2015). Structural
GP abnormalities have also been linked to impaired suppression
of distractors in ADHD (Aylward et al., 1996; Qiu et al., 2009) and
psychotic symptoms in schizophrenia (Hokama et al., 1995;
Spinks et al., 2005; Mamah et al., 2007), which has been related to
aberrant salience attribution and reward learning (Early et al.,
1987; Okada et al., 2016). As an important output component of
the reward circuit (Haber, 2011), the GPi might serve to indi-
rectly influence the cortical information flow by biasing selective
processing of value-related stimuli. Our data expands on this
notion by suggesting a further pallidal influence on the modula-
tion of visual alpha oscillations. Importantly, given that the asso-

ciation between LVGP and HLM(�) increases as a function of the
saliency, we here postulate a specific role for the GP in value-
related shifts of attention. Conversely, it is still unclear to what
extent this modulation is dependent on value-related stimuli
rather than covert visual attention: additional studies would be
valuable to further disentangle the role of these two features and
generalize the findings.

Right lateralization of the association between GP and
alpha modulation
Notably, the association between GP lateralization and inter-
hemispheric alpha power (Fig. 6) was largely related to right
hemisphere differences in absolute alpha modulation between
subjects exhibiting a right, compared with left, lateralized GP
volume. This finding possibly reflects the right hemisphere dom-
inance allegedly characterizing spatial attention processes (Shul-
man et al., 2010), corroborated by the right lateralized feature of
the ventral attentional network, which has been described as spe-
cifically involved in the processing of behaviorally salient stimuli
(Corbetta and Shulman, 2002).

Differential role of GP and Th in relation to posterior
alpha modulation
Our results show that GP and Th lateralizations were related to
the interhemispheric bias in alpha modulation during selective
allocation of attention. However, only GP lateralization was re-
lated to the value saliency pairings in the task. The different con-
tribution from GP and Th in relation to saliency occurrences
might likely reflect different roles of the two areas in the top-
down control of attentional processing. The GP provides a mod-
ulatory signal related to the processing of stimuli that draw
attention due to their strong saliency associations. The perceptual
competition resulting from attending to a salient target while
required to suppress an equally salient distractor, might be re-
solved by a network involving the GP. Increased midbrain activ-
ity has indeed been shown to accompany attentional suppression
of a highly rewarding distractor carrying a strong perceptual
competition with the target (Gong et al., 2017), suggesting that
dopaminergic networks might flexibly modulate attentional se-
lection in reward-related contexts.

With regard to thalamic regulation of interhemispheric al-
pha power, it is important to mention that our interpretation
is limited by the current pragmatic difficulty in reliably disen-
tangling different thalamic nuclei’s volume, by means of the
automatic segmentation algorithm. By considering the full
thalamic volume, one is subject to intrinsic confounds derived
from the fact that thalamic nuclei might exert differential
modulatory effects on cortical activity. It is not to be excluded
that a saliency specific processing might still occur within spe-
cific nuclei in the structure.

In our sample, the correlation between thalamic lateralization
and attention-related alpha modulation was regardless of the sa-
liency component in the current task. Despite the considerations
above, our interpretation of the findings builds upon previous
extensive evidence describing how thalamic activity, particularly
arising from its largest nucleus, the pulvinar, modulates the alpha
rhythm in extended visual areas (Lopes da Silva et al., 1980; Wilke
et al., 2009; Saalmann et al., 2012; Zhou et al., 2016; Green et al.,
2017). The pulvinar was first shown to contribute to the genera-
tion of the posterior alpha rhythm in dogs (Lopes da Silva et al.,
1980) and also to regulate synchronized activity between visual
cortical areas to support the allocation of attention in human and
nonhuman primates (Petersen et al., 1987; Kastner et al., 2004;
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Saalmann et al., 2012; Green et al., 2017). Our findings, therefore,
add to the growing body of evidence suggesting that thalamo-
cortical interactions play a fundamental role in shaping cognitive
processing (Saalmann and Kastner, 2011; Leszczyński and Stau-
digl, 2016; Sherman, 2016; Green et al., 2017; Halassa and Kast-
ner, 2017; Fiebelkorn and Kastner, 2019).

Pallido-cortical pathways
Through which route does the GP influence visual alpha oscilla-
tions? A possibility is that the GP modulates prefrontal activity,
which in turn engages and affects dorsal attentional networks
(Cummings, 1993; Pauls et al., 2014). The dorsal attention net-
work, with the intraparietal sulcus (IPS) and frontal eye fields
(FEFs) as its major hubs, has been suggested to mediate top-down
allocation of attention. Both the IPS and FEFs have been indeed
causally implicated in the control over posterior alpha oscilla-
tions in relation to attentional shifts (Corbetta and Shulman,
2002; Capotosto et al., 2012; Ptak, 2012; Vossel et al., 2014; Mar-
shall et al., 2015a). Based on our results, we propose the existence
of a network that allows salience driven signals from the BG to
influence the prefrontal cortex in biasing the competition among
posterior regions. The idea of a BG-cortico loop involved in stim-
ulus driven reorienting of attention has been already introduced
(Alexander et al., 1986; Shulman et al., 2009) and is consistent
with the notion of a salience network, which integrates behavior-
ally relevant input to bias and guide cognitive control (Seeley et
al., 2007; Metzger et al., 2010; Chen et al., 2015; Peters et al.,
2016). Within this framework, the BG, through their main out-
put via the GPi, are thought to influence the connectivity between
frontoparietal regions by updating goal-directed behavior, to
adapt to changes in the environment (van Schouwenburg et al.,
2010b).

The influence of GP on posterior alpha oscillations could fur-
ther be mediated through indirect projections via the thalamus.
The major target of GPi projections is the motor thalamus, in-
cluding ventrolateral and ventral anterior thalamic nuclei, which
innervates motor and premotor cortex (Herrero et al., 2002;
Sommer, 2003; Goldberg et al., 2013). However, cortical projec-
tions from thalamic nuclei receiving input from the BG might be
more diverse and target also prefrontal areas (McFarland and
Haber, 2002), which would enable an indirect modulation of
frontoparietal networks by the GPi via the thalamus. Addition-
ally, intrathalamic connectivity (Crabtree et al., 1998; Crabtree
and Isaac, 2002) as well as complex interactions between the tha-
lamic reticular nucleus and thalamic nuclei (Guillery et al., 1998;
Halassa and Acsády, 2016) may provide multiple alternative
pathways to convey influence of the GPi on cortical areas and
modulate behavior (Haber and Calzavara, 2009).

The proposed models provide a theoretical framework in fa-
vor of a flexible subcortical modulation of top-down regulation
of attentional allocation, which for the GP appears to be specifi-
cally involved in tasks involving value saliency processing. Nev-
ertheless, the aforementioned possible modulatory routes should
not be considered as mutually exclusive: a more comprehensive
model of attentional control should instead account for multiple
cortical and subcortical pathways operating in parallel, which
would allow optimization of the organism’s interaction with the
environment.

Data availability
The preprocessed MEG and MRI anonymized datasets that sup-
port the findings of this study are available as downloadable on-
line data collection in the Donders Data Repository (https://

data.donders.ru.nl) with persistent identifier 11633/di.dccn.
DSC_3016045.01_337 upon reasonable request to the corre-
sponding author.
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