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Minimizing Precision-Weighted Sensory Prediction Errors
via Memory Formation and Switching in Motor Adaptation
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Humans predict the sensory consequences of motor commands by learning internal models of the body and of environment perturba-
tions. When facing a sensory prediction error, should we attribute this error to a change in our body, and update the body internal model,
or to a change in the environment? In the latter case, should we update an existing perturbation model or create a new model? Here, we
propose that a decision-making process compares the models’ prediction errors, weighted by their precisions, to select and update either
the body model or an existing perturbation model. When no model can predict a perturbation, a new perturbation model is created and
selected. When a model is selected, both the prediction’s mean estimate and uncertainty are updated to minimize future prediction errors
and to increase the precision of the predictions. Results from computer simulations, which we verified in an arm visuomotor adaptation
experiment with subjects of both sexes, account for short aftereffects and large savings after adaptation to large, but not small, pertur-
bations. Results also clarify previous data in the absence of errors (error-clamp): motor memories show an initial lack of decay after a
large perturbation, but gradual decay after a small perturbation. Finally, qualitative individual differences in adaptation were explained
by subjects selecting and updating either the body model or a perturbation model. Our results suggest that motor adaptation belongs to
a general class of learning according to which memories are created when no existing memories can predict sensory data accurately and
precisely.
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When movements are followed by unexpected outcomes, such as following the introduction of a visuomotor or a force field
perturbation, or the sudden removal of such perturbations, it is unclear whether the CNS updates existing memories or creates
new memories. Here, we propose a novel model of adaptation, and investigate, via computer simulations and behavioral experi-
ments, how the amplitude and schedule of the perturbation, as well as the characteristics of the learner, lead to the selection and
update of existing memories or the creation of new memories. Our results provide insights into a number of puzzling and
contradictory motor adaptation data, as well as into qualitative individual differences in adaptation. j

ignificance Statement

Kording, 2008; Kluzik et al., 2008). Internal models are updated
to minimize sensory prediction errors, i.e., errors between sen-

Introduction
It is now well accepted that the CNS predicts the consequences of

motor commands by learning internal models of tools or external
perturbations (Wolpert and Kawato, 1998; Krakauer et al., 1999;
J. Y. Lee and Schweighofer, 2009; Kambara et al., 2011) and of the
body (Cothros et al., 2006; Kording et al., 2007; Berniker and
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sory outcomes and predictions (Mazzoni and Krakauer, 2006;
Taylor and Ivry, 2011; K. Lee et al., 2018). It is thought that if the
prediction error is small for a given model, then this model will be
selected to determine subsequent motor commands, and will be
further updated if needed (Wolpert and Flanagan, 2001).

It is not well understood, however, how the CNS decides to up-
date existing models or to create new internal models (Shadmehr
and Mussa-Ivaldi, 2012). When movements are followed by unex-
pected errors, such as due to a visuomotor or a force field perturba-
tion, should the CNS create an entirely new internal model, update
an existing perturbation model, or update the model of the body?

Here, to address this question, we propose a new computa-
tional model of motor adaptation, along the lines of a recent
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model for visual memory (Gershman et al., 2014). The model
extends and combines previous models of motor learning known
as mixture of experts models (Jordan and Jacobs, 1990; Ghahra-
mani and Wolpert, 1997; Wolpert and Kawato, 1998) and previ-
ous models of adaptation based on the Kalman filter (Korenberg
and Ghahramani, 2002; Berniker and Kording, 2011). The model
contains three types of internal models: (1) “expert” perturbation
models that have been previously adapted (Kawato and Wolpert,
1998; J. Y. Lee and Schweighofer, 2009; Lonini et al., 2009), (2)
“novice” models with nonspecific predictions and large uncer-
tainties, and (3) a dedicated “baseline” or body model (Berniker
and Kording, 2008, 2011). When facing an unexpected sensory
outcome, a Bayesian decision-making process compares the
models’ prediction errors, weighted by their precisions, to deter-
mine whether to create a new expert model by updating a novice
model, or to select and update the baseline model or an existing
perturbation model. When a model is selected, both the predic-
tion’s mean estimate and uncertainty (the inverse of precision)
are updated to minimize future prediction errors and to increase
the precision of the predictions.

Ifa perturbation is small relative to baseline model’s precision,
this model will be selected and updated. The learner will show
long aftereffects during de-adaptation, little or no savings during
re-adaptation, and gradual decay during trials in which the target
errors are artificially clamped to zero (“error-clamp”). If a larger
perturbation is similar to a perturbation encountered in the past,
an existing expert model will be selected, leading to the recall of its
protected memory. If not, a new memory will be created by se-
lecting a novice model and updating it into an expert. The learner
can then rapidly switch between the expert model and the body
model, resulting in short aftereffects, large savings, and lack of
decay for multiple trials during error clamp. In this process, noise
in the prediction errors can yield rapid switches in hand direc-
tions during error-clamp.

We tested these predictions in an arm visuomotor adaptation
experiment in which we manipulated the perturbation ampli-
tudes and levels of noise. We then inserted trigger trials (each, a
single perturbation trial) in the error-clamp block to probe for
individual differences in adaptation: if the learners had previ-
ously formed a perturbation model, the trigger trial will suddenly
reduce the prediction error for this model, yielding in its selec-
tion. These learners were predicted to have short washout and
large savings in previous adaptation blocks. In contrast, if the
learners had only updated their baseline model, the trigger trial
will have minimal effect. These learners were predicted to have
prolonged washouts and no savings in previous adaptation
blocks.

Materials and Methods

Computational model

The overall architecture of the model is shown in Figure 1A. As in previ-
ous models of visuomotor adaptation (Izawa and Shadmehr, 2011), the
motor command represents the hand movement direction. On trial £, the
learner generates the motor command u, to reach the target t,. Here, we
assume that the target is located at the angle 0, the forward direction, for
simplicity but without loss of generality. Visual feedback of the hand h, is
determined differently in non-error-clamp trials (i.e., baseline, pertur-
bation, and washout trials) and in error-clamp trials, in which feedback is
independent of actual performance:

u, + p, + nt,
ht:{t pet

non error clamp trials}
ec >

(1)

g, error clamp trials

where p, is the perturbation at time # and nf~ N(0,0;) and
ne ~ N(0, 02,) are noise sources added to the perturbation or to the
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error-clamp, respectively. n! and 1} were introduced to represent trial-
by-trial fluctuations in feedback and to manipulate the noise level in the
environment.

In its general form, the model contains N internal models, including
one baseline model, each associated with a weight given by the model
posterior probability. The estimate of the perturbation p, is given by the
prediction from the model with the largest weight, in a winner-take-all
manner. Thus, the overall prediction at time ¢ is given by the following:

p, = pl, with i = argmax; (wh), (2)

where Wi is the weight of model i, with

N
EwiZ 1.

To reach the target, we assume subjects generate a motor command u,
that compensates the estimated perturbation p,:

u = - ﬁt + n?> (3)

where 1 ~ N(0, 07) is a motor noise term. Receiving the efferent copy of
the motor command, each internal forward model independently pre-
dicts the sensory feedback from its own perturbation estimate:

hi=u, + pi. (4)
The sensory prediction error for each model is given by the following:
ei=h,— hi. (5)

The weights (which correspond to the “responsibility signals” in previous
models such as the MOSAIC models; Wolpert and Kawato, 1998;
Haruno et al.,, 2001; Doya et al., 2002; Bertin et al., 2007), are given by the
posterior probability of the models:

i i2 N i o
i p o E p o 6)
w, = =€ 2§ ~€ 23,
©\ewS P S w8

where p’ is a constant prior weight representing prior belief that each
model being true in the absence of feedback, and S} is the uncertainty
(variance) of a model i around its mean estimate p|. We note that the
inverse of the uncertainty, called the precision, weighs the effect of the
sensory prediction errors in the computation of the weights. Selection of
amodel i will therefore depend on (1) how well the model can reduce the
prediction error &/ and (2) how precise is the model, as given by the
inverse of its uncertainty, and (3) its prior weight. Note that a crucial
difference with the MOSAIC model is that the uncertainties S, and
therefore the inverse precisions, are time-varying quantities, as de-
scribed below.

The mean predictions and uncertainties of the different models are
updated according to the standard Kalman filter equations (Bishop and
Welch, 2001), as earlier proposed by others (Korenberg and Ghahra-
mani, 2002; Berniker and Kording, 2008, 2011; Burge et al., 2008; Wei
and Kording, 2010; van der Vliet et al., 2018). However, in the present
model, the type of update for each model depends whether it is selected
ornot (Egs. 2 and 6). When a model is selected, it is updated according to
the measurement update equations of the Kalman filter:

for i = argmax; (w)):
b= d pi+ K
$i=(1-K)S,
with the Kalman gain given by’

Ki = Si—l/(gi—l +0,)

(7)

where 0 < @' < 1 are decay rate parameters and o7, is a measurement
noise variance parameter.

When a model is not selected, it is updated according to the time
update equations of the Kalman filter:
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Figure 1. A, Overview of the mixture of experts’ framework for motor adaptation. We assumed that the CNS maintains a baseline model with relatively low uncertainty and a number of
perturbation models. Each model /updates the mean p’ of the perturbation estimate, from which it computes the model’s sensory prediction error &/ and the uncertainty S (the inverse of precision)
of the perturbation estimate. For each model, a weight w? is computed based on the accuracy of its prediction (via &) and the precision of the predictions (via Si). The weights have two roles: to
determine the motor output (u) via a gating mechanism, in the form of a winner-take-all (WTA) in ourimplementation, and to control the updates of the models (data not shown; h, hand movement
direction). B, lllustrations of the two distinct types of visuomotor adaptation depending on the amplitude of the perturbation: two-model learner versus one-model learner. Left, Before the
perturbation: the narrowly distributed baseline model is an existing expert; its prediction of perturbations is precisely centered near 0°. On the other hand, the broadly distributed novice model is
unspecific. Top right, A two-model learner: when a perturbation is sufficiently large such that it is outside the domain of the baseline model, the novice model s selected and updated to form a new
expert perturbation model while the baseline model is protected from update. Bottom right, A one-model learner: when a perturbation is within the domain of the baseline model, this model is
selected and updated, while the novice model is protected (see Materials and Methods). Note that the figure was generated with modified model parameters for visualization purpose. Faded lines

indicate the change in model updates during adaptation.

forj # i

15: = aiﬁi—l
{Siz a?§ 4o (8)

where o7 is a state noise variance parameter.

All three types of models (novice, expert, and baseline) are selected and
updated with equations 7 and 8, but are different as follows: (1) A novice
model is a model that has never been selected and has therefore a large
initial uncertainty S its posterior distribution is approximately flat and
centered on zero (Fig. 1B). (2) An expert model is a previous novice
model that has been selected and updated: its mean prediction p! is close
to the perturbation amplitude and its uncertainty $' has been reduced, up
to a minimum value S,,;, (corresponding to the highest possible preci-
sion). A model is said to be created when it is selected and changes from
its non-informative novice state with an approximately flat posterior to a
more peaky posterior centered near the perturbation (Fig. 1B). (3) The
baseline model prediction is centered ~zero (i.e., no perturbation) and
its uncertainty is initialized to the smallest possible uncertainty, equal to
the minimum value $,,,;,.. In addition, the baseline model has a large prior
compared with the novice and expert models. Note the binary treatment
of errors for learning, similar to the Berniker and Kording (2008)’s mod-
el: the errors attributed to the body update the baseline model (corre-

sponding to their body model); the errors attributed to external origins
update the perturbation model (corresponding to their world model).

Overall simulation design
The simulations (except for the last set, in which we compare savings
following gradual and abrupt adaptation) and all experimental condi-
tions comprised a baseline block, a sequence of abrupt adaptation and
washout blocks, and an error-clamp block (Fig. 2A), as follows: a baseline
block (20 trials), learning block (LB)1 and washout block (WB)1 (60 and
40 trials, respectively), LB2 and WB2 (50 and 20 trials, respectively), LB3
and WB3 (30 and 40 trials, respectively), and LB4 (50 trials), followed by
an error-clamp block (120 trials; Fig. 2B). The numbers of trials in the
learning and unlearning blocks were purposely varied and determined
during piloting to prevent predictable periodicity in the experiment.
We first tested the effect of perturbation amplitudes on subsequent
behavior in unlearning and relearning blocks with a large perturbation
amplitude (—20°% Fig. 2B, Condition la) versus a small perturbation
amplitude (—10° Fig. 2B, Condition 3). Second, we tested the effect of
different perturbation noise levels in error-clamp following adaptation
to a large perturbation (—20°). The schedule for these simulations was
the same as for the previous conditions, but with a small noise level
(Gaussian, 0° mean, SD = 0.5°% Fig. 2B, Condition 1a) versus a large noise
level (SD = 4.0° Fig. 2B, Condition 2a) added to the perturbation. Third,
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we tested the effect of two separate trigger trials
during error-clamp following adaptation to a
—20° perturbation. The trigger trials, each a o
single —20° perturbation trial, were inserted at Q
one-halfand three-quarters of error-clamp, re- y,
spectively (Fig. 2B, Conditions 1b and 2b). We /
note that these trigger trials are similar to “re- vilh
instatement trials” in the classical conditioning

literature (Bouton and Peck, 1989). Fourth, we

tested for qualitative individual differences in

adaptation, washout, savings, and error- B

clamp. For this, we applied Condition 2b, but
made a change to a single parameter in the
model, the baseline model uncertainty (and as-
sociated minimum uncertainty S,,,;,; see Simu-
lation parameters). Note that, in theory,
individual differences could also be achieved
via changes in the prior parameters (as the pri-
ors also act to modify the weights of Eq. 6). The
study of the differences (or similarity) in model
selection due to individual differences in base-
line model uncertainty and differences in prior
is left for future work.

In the experiment, we clustered subjects in
the large amplitude groups based on their re-
sponse to the trigger trials, and studied savings
and washout in previous trials for the two
clusters.

Finally, we tested the effects of gradual ver-
sus abrupt perturbation on savings, using par-
adigms akin to those used by Roemmich and
Bastian (2015). We tested for savings in a sec-
ond abrupt adaptation block of 100 trials that is
preceded by either a gradual (100 trials),
abrupt (100 trials), or short adaptation (20 tri-
als) block.

Note that for simplicity, we only imple-
mented a model that accounts for adaptation
to a single perturbation. Initially the model there-
fore only contained a novice model and a baseline
model (Fig. 1 A, B). Such a minimal model is suf-
ficient to account for our data. The model and
analysis code, as well as the data, are available at
https://sites.usc.edu/cnrl/resources/.

Condition 1a/ 1b
p~N(-20°, 0.5°)

Condition 2a/ 2b
p~N(-20°, 4.0°)

Condition 3
p~N(-10°, 0.5°)

Figure 2.

Simulation parameters

In all simulations, hand direction was modeled between 0 and 1, and then
scaled by 20° to match experimental data. We determined a single set of
parameters that could account for all experimental results qualitatively
(except for individual differences, see end of this section): the SDs of both
perturbation noise g, and error-clamp noise o, (Eq. 1) were 0.2 for the
large-noise condition and 0.025 for the small-noise condition. The mo-
tor noise SD o, was set at 0.17 to qualitatively reproduce the experimen-
tal error clamp data in the different amplitude and noise conditions. The
state noise o, was 0.05 for both perturbation and body model, and the
measurement noise o, was set at 5.0 and 0.8 for the perturbation and
body model, respectively, to qualitatively reproduce experimental learn-
ing rates. The prior of the baseline model p' was 0.95 and that of the
novice model p? was 0.05. Initial mean perturbation values were set at 0.
The initial uncertainty for the novice model was 100 times greater than
for the expert model, with 4 and 0.04, respectively. We also introduced a
minimum value S,,;,, which was needed to maintain numeric stability. In
simulations aimed at studying between-subject qualitative differences in
adaptation and de-adaptation, we increased the initial uncertainty for the
baseline model (and corresponding minimum uncertainty) to 0.16. Fi-
nally, the retention parameters were given different values for the pertur-
bation model (a = 0.9997) and for the baseline model (a = 0.96; for
justification of these parameters, see Discussion, Limitations).

Baseline
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Experiment design. A, The diagrams show three different types of trials in the visuomotor rotation experiment:
baseline, perturbation, and error-clamp. The black arrows indicate the hand direction (h) (occluded to subjects) and the red arrows
represent the cursor direction (v). The bell-shaped red curves around the cursor indicate that Gaussian noise was added to the
perturbation. Left, Baseline and washout: no rotation in addition to Gaussian noise was added. Middle, Visuomotor rotation: the
cursor direction was rotated by a perturbation angle with regard to the actual hand direction. Right, Visual error-clamp: the cursor
feedback was always shown at a 0° plus some Gaussian noise, regardless of the actual hand direction (two-different hand direc-
tions are shown as an example). B, The five experimental conditions. Subjects in all conditions experienced the same perturbation
schedules except for the perturbation magnitude and the perturbation noise level. The black lines in the adaptation and the
washout blocks represent the rotation angle (negative of its real value for visualization purpose). The red lines in the error-clamp
block (gray background) indicate that error-clamp feedback was provided. The two red vertical lines in the error-clamp represent
single perturbation trials (trigger trials) given in Conditions 1b and 2b, which were identical to Conditions Ta and 1b, respectively,
except for these trigger trials. Note that the same experimental parameters were used in simulations of all five conditions.

Experimental design and statistical analysis

Experimental design. Fifty-four subjects (22.5 = 3.8 SD years old, 20
males and 34 females) participated in this visuomotor rotation study,
which was approved by the institutional review board at the Univer-
sity of Southern California, after signing an informed consent. The
visuomotor perturbation rotated the cursor position counterclock-
wise by a given angle with respect to the starting position. We ran-
domly assigned subjects into one of five different conditions (Fig. 2B).
The experimental design was closely aligned to the design of the sim-
ulations. In particular, in all conditions, the experiment schedule
consisted of adaptation, washout, and error-clamp blocks with the
same order and number of trials as in the simulations (see Overall
simulation design; Fig. 2B).

Conditions la, 2a, and 3 differed in either rotation angles (Condition
la vs Condition 3) or in Gaussian noise levels added to perturbation
(Condition 1a vs Condition 2a), as follows: Condition la (n = 11): large
perturbation (—20°) and small noise level (SD = 0.5°); Condition 2a
(n = 11): large perturbation (—20°) and large noise level (SD = 4.0°);
Condition 3 (n = 11): small perturbation (—10°) and small noise level
(SD = 0.5°). Conditions 1b (n = 11) and 2b (n = 10) were identical to
Conditions la and 2a, respectively, except for two “trigger trials” inserted
at one-half and three-quarters of the error-clamp, respectively. Trigger
trials were simply single rotation trials, with the same amplitude as rota-
tion trials in the adaptation blocks (i.e., —20° rotation). All subjects in
each condition received exactly the same rotation sequence.
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Detailed experimental methods. Subjects sat in front of a device that
matched hand space with visual space via a mirror, and were instructed to
hold a stylus pen moving on a digitizer tablet (Wacom Intuos 7). Head
and trunk movements were limited via a chin-rest. The experiment took
place in a dark room, and the mirror obscured the view of the forearm
and hand. A cursor (red dot, 1.2 mm radius) representing the tip of the
pen was displayed on the mirror. Before the start of each trial, subjects
were instructed to position the cursor inside a home circle of a 3 mm
radius (~36 cm away from the subject’s torso). We used a polar coordi-
nate system centered on the home circle, with 0° defined as the forward
direction and positive direction as clockwise deviation. Subjects were
instructed to perform an outward shooting movement toward a circular
target of 3° radius. The target appeared at a pseudorandom location at
each trial, within 5° around the center of a 120° arc, which was 10 cm
away from the starting position and centered on the 0° direction. Subjects
were told to initiate a shooting movement as soon as a target appeared
and to stop the movement after crossing the arc. A red dot representing a
cursor disappeared when the pen tip moved farther than 3 cm from the
starting position. When the pen tip crossed the arc, the red dot was
displayed on the crossed-point and remained there for 1 s. Subjects were
encouraged to keep movement duration (time between the moment the
cursor disappears and the moment the cursor crosses the arc) relatively
constant and short. The messages “Too Slow” or “Too Fast” were dis-
played when the duration was >300 or <100 ms, respectively. After each
shooting movement, subjects performed an inward movement to the
home circle, during which only the radial location of the cursor was
available.

Statistical analysis. To quantify the rates and amount of adaptation,
and account for individual differences, we fitted exponential mixed-
effect models to the (re-)adaptation and de-adaptation data, similar to
Ramkumar et al. (2016) and Schweighofer et al. (2018) for other types of
motor learning data. The rates of learning were estimated by the time
constants in the exponential model. In addition, we included grouping
(binary) variables in the models to perform statistical tests for differences
in time constants in different blocks, in different conditions, and in dif-
ferent subgroups of subjects.

To test for savings in re-adaptation in the large perturbation amplitude
Condition la and the small amplitude Condition 3, we first compared
the time constants in the first learning block to the time constants of the
next three learning blocks. For this repeated-measure comparison, the
hand direction h; ; of a participant i at trial j, was modeled by the follow-
ing exponential mixed-effect model:

tA
hij=(a; = B)) exp(— m) +Bit+ € (9.1)

where t; is the trial within each learning block (trial 0 at the beginning of
each block), €; ; is a residual term, G is a within-subject grouping binary
variable, with G = 0 for the first learning block and G = 1 for LB2-LB4,
a; and f3; are the mixed-effect coefficients representing baseline and as-
ymptotic adaptation levels, and 7; is the mixed-effect time constant of
adaptation for the first block. The mixed-effect parameter T; reflects the
difference in time constants between the first block and the following
blocks (with T; < 0 indicating savings).

To test for differences in savings between the large amplitude Condi-
tion la and the small amplitude Condition 3, we compared the time
constants in re-adaptation Blocks 2, 3, and 4 between the two groups with
the following model:

hi,j = ((a; + A,G) — B) exp(— ﬁ) +B+AG+ €
(9.2)

where the between-subject grouping binary variable, with G = 0 for the
Blocks 2, 3, and 4 of the small amplitude Condition 3 and G = 1 for the
corresponding blocks in the large amplitude Condition la. A similar
model was fit to the three washout blocks to compare the time constants
of washout in the large and small amplitude conditions.
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The MATLAB function nlmefit was used for fitting the mixed-effect
exponential models. Because the direct estimation of 7, + TG created
numerical instability, we estimated instead exp i, + A,G so that the
time constants were always positive. The same models were fit to exper-
imental and simulated data; however, in simulated data, we only re-
ported the fixed effects as an indication of the qualitative behaviors (and
not statistical differences between blocks and conditions, because these
differences were due to parameter choice).

Statistical differences between time constants in the different blocks or
conditions were tested by the p values associated with the fixed-effect
parameter A (obtained after computing z-scores for this parameter). To
minimize the number of parameters and increase the chance of conver-
gence, a diagonal covariance structure was used for the random effects. In
addition, we added the last trial of the previous block to the fitted data to
increase numerical stability. Overall model fit was deemed successful if
(1) the fixed-effect time constant was significant, (2) the asymptotic
adaptation level was significant, and (3) the variance of the random-
effect time constant was not zero (yielding different estimated time
constants for all subjects). Conditions 1 and 2 were always met, but
Condition 3 was often not met when fitting the models to individual
blocks. To solve this issue, we removed the random-effect baseline from
the model when fitting individual block data. In addition, the residuals
were observed for outliers and for overall model fit. We report the fixed-
effect time constants with their 95% confidence intervals [calculated via
the “delta method” (Ver Hoef, 2012) because of the exponential trans-
form]. The time constants for each adaptation and washout block re-
ported in Figures 4 and 7 were computed by fitting the model of Equation
9.1 (without a grouping variable) to each block.

To test for possible qualitative individual differences for all 21 subjects
in the large amplitude Conditions 1b and 2b, we first clustered the sub-
jects based on their responses to trigger trials. Specifically, we computed
the mean hand directions in the five trials before and after each trigger
trial. We then plotted the mean hand direction after the trigger trial as a
function of the mean hand direction before the trigger trial. Three dis-
tinct behaviors were predicted from the computational model. If the
hand direction is already near the adapted (“high”) state, the trigger trial
will have little effect, and hand direction will stay high. If the hand direc-
tion is near baseline, there are two possibilities: either the trigger trial will
have little effect, and the hand direction will stay near baseline (“low”
state), or the trigger trial will recall the perturbation model, and the hand
direction will suddenly change to the adapted (high) state. Participants in
the high versus low states after trigger trials were classified into “respond-
ers” and “non-responders”, respectively, using an unsupervised k-means
algorithm with two clusters based on their post-trigger trial responses
(using the MATLAB function kmeans). Following this clustering of par-
ticipants into two subgroups, we then analyzed difference in savings and
washout using the mixed-effect exponential model as in Equation 9.2,
but with the between-subject grouping variable G = 0 for the non-
responder subgroup and G = 1 for the responder subgroup. Significance
threshold was set at p = 0.05.

Results

Theoretical predictions

The model makes three clear predictions, which were tested in
simulations and behaviorally, about (1) the role of perturbation
amplitudes on adaptation, de-adaptation, and re-adaptation
(Fig. 1B); (2) the role of noise on model selection during error-
clamp; and (3) the effect of re-introducing the perturbation with
a single trigger trial in the clamp.

First, if the initial perturbation is sufficiently large given the
precision of the baseline model, a new memory will be created by
selection and update of the novice model (Egs. 2 and 6; Figs. 1B,
3, examples of simulation results for Conditions 1 and 2). This is
because the large perturbation largely increases the sensory pre-
diction error for the baseline model, yielding a small likelihood
(see exponential term in Eq. 6) for this model. As a result, the
weight of the baseline model will be smaller than that of the
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itis too large for the panels. Third column, Absolute values of prediction errors of each model. Fourth column, The weights for both models.

novice model, which will be selected (Eq. 6). With sufficient tri-
als, the novice model will gradually become an expert: its predic-
tion of the perturbation will become both more accurate
(resulting in a small prediction error; Eq. 7, first) and more pre-
cise (small uncertainty; Eq. 7, second). In contrast, the baseline
model will stay protected from update (Fig. 1B). At the onset of
the following de-adaptation block, the baseline model will be
selected, because it now has the smallest sensory prediction error
(Fig. 3). Because of the passage of time, the expert model’s mean
prediction will decay to some extent and its uncertainty will in-
crease during de-adaptation (Eq. 8, second; Fig. 3, second col-
umn). However, at the onset of a subsequent re-adaptation block,
its sensory prediction error will still be relatively small, leading to
its re-selection (Fig. 3, second and third columns). The learner
will therefore switch rapidly between the perturbation and the
baseline models, allowing rapid changes of behavior upon envi-
ronmental changes, expressed as short aftereffects in washout
and large savings in relearning. We call this learner a “two-model
learner” (Fig. 1B).

On the contrary, if the initial perturbation is sufficiently small
or gradual, or if the baseline model has a large uncertainty, the
precision-weighted sensory prediction error of the baseline
model will be small, and its weight will be larger than that of the
novice model. The baseline model will therefore be selected and
updated both in the first block (Figs. 1B; Fig. 3, last row, example
of simulation results for Condition 3) and in the subsequent
washout and relearning blocks of the same amplitude, making
transitions slow and gradual, resulting in long aftereffects and no
savings (Fig. 3). The novice model will remain unchanged in this

condition, with large uncertainty. We call this learner a “one-
model learner”.

Second, the model predicts that once alearner has formed two
models, stochastic switching can occur between the two models
in error-clamp, resulting in “lags” of various duration before
sudden decay. If the expert model accurately predicts the pertur-
bation in the last trials of adaptation before the clamp, the sensory
prediction error of the model will be near zero early in the clamp.
This is because the difference between the hand direction (say,
20°) and the clamped visual feedback (0° plus some noise) is
approximately equal to the preceding perturbation (—20°). The
perturbation model will therefore continue to be selected. The
durations of the lags are stochastic, however. This is because noise
affecting the sensory prediction error (because of non-central
motor noise, i.e., motor noise not carried by the efferent copy,
sensory noise, or experimentally induced perturbation noise) can
lead to a sudden reduction of the sensory prediction error of the
baseline model, and therefore selection of this model, which re-
sults in an abrupt switch of the hand direction toward baseline
(Fig. 3, first and last columns, rows 1-4). Therefore, higher levels
of noise will lead, on average, to earlier switching toward baseline
than low levels of noise. This is illustrated in the simulations
examples of Conditions 2a and 2b (large perturbation noise) ver-
sus Conditions la and 1b (small perturbation noise) in Figure 3.
Note that noise can also yield “upward switches” from the base-
line to the perturbation model (Fig. 3, illustration of in Condition
2a, third row, first column), although these are less frequent
events than downward switches because of the passive memory
decay of the perturbation model and the greater prior of the
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direction for experimental data in Condition 1a (top) and Condition 3 (bottom). Shaded areas around the mean curves (black lines) represent one SE. LB, perturbation on; WB, perturbation off. B,
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performed on these synthetic data.

baseline model. In contrast, if a learner has only updated one
model (the baseline model), the hand direction will only decay
gradually during error-clamp (Fig. 3, Condition 3, last row, first
column).

Third, because learners can potentially be one- or two-model
learners for the same perturbation amplitude, single trigger trials
during error-clamp can lead to large qualitative differences in
behavior when the performance has returned near baseline. If a
learner has formed an expert model (and is therefore a two-
model learner), and the hand direction has previously returned
near baseline in the clamp, then a trigger trial will yield a sudden
reduction of the sensory prediction error of the expert model, its
selection, and a switch of hand direction toward the adapted state; in
addition, the hand direction may stay in the adapted state for several
trials following trigger trials (Fig. 3, Conditions 1b and 2b). In con-
trast, for one-model learners, a trigger trial will only cause a transient
change because of a small update of the baseline model.

Savings and aftereffects following large and small
perturbation: experimental and simulation results

Figure 4A shows experimental subject-averaged adaptation data for large
perturbation Condition la (—20°/0.5°% top row) and for the small per-

turbation Condition 3 (—10°/0.5% bottom row). As shown in Figure 4B,
in which we superimposed the (normalized) hand direction for the first
20 trials of each learning block, subjects in Condition la show large
savings in the relearning blocks (LB2, LB3, and LB4) compared with
subjects in Condition 3. Specifically, an exponential mixed-effect model
analysis (see Materials and Methods) shows that subjects in Condition 1a
had a significant smaller mean time constant in the relearning blocks
than the time constant in the initial learning block [LB1 time constant =
7.96 trials, 95% CI: (5.47, 10.46) trials; p < 0.0001; LB2, LB3 and LB4
mean time constant = 1.68 trials, 95% CI: (1.06, 2.31) trials; p < 0.0001
for difference; Fig. 4C]. On the other hand, subjects in the small pertur-
bation Condition 3 only showed a trend for a change in time constants
across learning blocks, indicating only a small degree of savings [LBI,
time constant = 9.31 trials, 95% CI: (6.24, 12.38) trials; p < 0.0001; LB2,
LB3, LB4, mean time constant = 6.42 trials, 95% CI: (4.04, 8.80) trials on
average; p = 0.050 for difference]. Note that there was no difference in
the time constant of adaptation in the initial block LB1 in the two con-
ditions (p = 0.98). In addition, the mean time constant in relearning
blocks (LB2-LB4) of Condition la was significantly smaller than the
mean time constant for these blocks in Condition 3 (relearning p <
0.0001). Similarly the mean time constant in washout blocks (WB1-
WB3) in Condition la was significantly smaller than that of Condition 3
[Condition 3, mean time constant = 4.88 trials, 95% CI: (3.51, 6.24)
trials; p < 0.0001; Condition la, mean time constant = 2.08 trials, 95%
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CL: (1.36, 2.81) trials; p < 0.0001 for differ-
ence]. Note that these results partially replicate
those of Morehead et al. (2015), with the main
difference that we used 20° and 10° for the large
and small perturbation with a single target,
whereas they used 45° and 15° with two targets.

Simulations results (Fig. 4D-F) qualitatively
account for these data, with large savings and
shorter washouts in the large perturbation am-
plitude condition compared with the lack of
savings and longer washout in the small pertur-
bation amplitude condition. The large pertur-
bation condition produced a time constant of
10.5 trials for the first learning block (LBI1),
followed by a small mean time constant of 1.55
trials for the subsequent learning blocks (LB2—
LB4; Fig. 4F ). The washout blocks produced a
mean time constant of 1.51 trials across the
three washout blocks (WBI1-WB3). These
short time constants were a direct consequence
of model switches upon the perturbation
change. On the other hand, the small perturba-
tion condition produced a time constants of
10.0 trials for the first learning block (LB1),
followed by a mean time constant of 10.2 trials
for the subsequent learning blocks (LB2-LB4),
and again a mean time constant of 10.0 trials
again for the three washout blocks (WBI1-
WB3). These long time constants were a
consequence of the baseline model being con-
tinuously updated each time the environment
changed.

Decay in error-clamp: experimental
and simulation results

In Figure 5, we show both condition-
averaged and individual subjects’ hand
directions in error-clamp. Although aver-
aged data suggest a continuous and grad-
ual decay, between-subject variability was
large. For instance, for subjects in Condi-
tion la (large perturbation and small
noise; Fig. 5A), the average between-
subject SD of hand direction in learning
and unlearning blocks was 3.9°, whereas
that in the error-clamp block it was 8.9°.
Larger intersubject variability in error-
clamp indicates that dynamics of unlearn-
ing in error-clamp may not follow a
simple, passive decay. Instead, examina-
tion of individual data shows various pat-
terns in error-clamp, with most subjects
showing a lag, as predicted by our simula-
tions (compare Fig. 3). For example, Sub-
jects 1, 5, and 10 in Condition la showed
little or no decay, with hand direction
>10° for the whole duration of the clamp.
In contrast, Subjects 2, 7, and 8 showed a
sudden drop after varying lags following
the onset of error-clamp. Finally, Sub-
jects 4, 6, 9, and 11 showed rather grad-
ual decay.

In contrast, in the condition with
larger perturbation noise level (Condition
2a; Fig. 5B), the average hand direction
appears to show faster return to baseline
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A density plot of hand directions in
error-clamp for all subjects in Condition
la (Fig. 5D, left, red curve) shows two
peaks centered near 0 and 20 degrees.
Thus, overall, the hand direction of sub-
jects in Condition la remained near the
perturbation angle of 20° for a relatively
large number of trials, and then switched
abruptly to near 0°, with few trials be-
tween these two angles. In contrast, the
density plot of hand directions for sub-
jects of Condition 2a (Fig. 5D, left, blue
curve) shows a single peak centered near
0° with a fat right tail. Thus, overall, the
hand direction of subjects in this condition
also showed sudden switches between the
perturbation angle and baseline, but such
switches occurred earlier than Condition 1a
with low noise, with occasional spontane-
ous returning back to near 20°.

Condition 3 (small perturbation and
small noise; Fig. 5C) shows an overall
trend of gradual decay. The distribution
of hand directions suggests that decay was
gradual and slow: whereas the density plot
in the large perturbation Conditions la
and 2a shows at least one peak near 0°, the
distribution of hand direction in Condi-
tion 3 has a single peak at 6° (Fig. 5D, left,
green curve). This suggests that there was
no abrupt change, and most subjects did
not decay completely to 0°.

For comparison, Figure 5D (right)
shows the corresponding distributions of
hand directions from multiple indepen-
dent simulation runs of each condition.
Compared with data, simulation results
show relatively narrower distributions,
but they overall replicate the general pat-
terns of density of hand directions in the
experimental data, including shapes of
distributions and location of peaks in the
three conditions, except that the center of
the small perturbation (Condition 3)
shifted closer to 0° because of a decay pa-
rameter setting in simulations to replicate
all the experimental data consistently.

Trigger trials and individual differences
in adaptation: experimental and
simulation and results

To investigate whether a learner had
formed two models, i.e., a baseline and a
perturbation model, we introduced two
trigger trials during error-clamp both in
experiments and in simulations of large
perturbation Conditions 1b and 2b (Fig. 6).

in error-clamp trials compared with the condition with lower Condition-averaged hand direction in error-clamp showed
noise level (Condition la; Fig. 5A), as predicted by the model.  instantaneous responses to the trigger trials (i.e., sudden jumps in
Here again not all subjects followed a simple gradual decay. In  hand direction), both in Conditions 1b and 2b (Fig. 6 A, B, left).
particular, Subjects 23, 27, 28, 30, and 31 exhibited sudden drops, = The response appears to be sustained for a number of error-
with Subjects 23, 27, and 29, and 31 switching back to near 20°  clamp trials thereafter. However, the averaged hand direction
spontaneously, resulting in oscillatory patterns. indicates that the responses to trigger trials were, on average in-
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were determined by the initial uncertainty of the baseline model (see the text for details).

complete in magnitude, i.e., <20°. This is because not all individ-
uals responded to the trigger trials; indeed, three patterns can be
observed in the individual responses (Fig. 6A, B, right). First,
when the hand direction was near 0° when a trigger trial was
presented, a majority of subjects (for instance, Subjects 16 and 19
of Condition 1b) showed immediate jumps in response to the
trigger trial to angle values near the adapted state. In contrast, and
as expected when the hand direction was near 20° at the time of
trigger trial, there was no effect (for instance, Subject 15 of Con-
dition 1b). These first two patterns were predicted by the model;
compare results for these subjects with the model’s response to
trigger trials in Figure 3 (first column, second and fourth rows).
However, a third pattern is also apparent: several subjects with
hand direction near 0° at the time of trigger trial did not respond
to this trial (for instance, Subjects 13 and 14 of Condition 1b).
Figure 6C (right) shows simulation results in a large ampli-
tude condition that account for these patterns of response to
trigger trials. Two subgroups of subjects were simulated: a sub-
group with the default baseline uncertainty (and with the associ-
ated minimum uncertainty) of 0.04; and a subgroup with a
broader baseline uncertainty of 0.16. The subgroup with the nar-
rower baseline uncertainty developed a new perturbation model

during adaptation (two-model learners), and responded to trig-
ger trials in clamp, as shown in Figure 3. As a result, the two-
model learners showed large savings (similar to that of the large
perturbation in Fig. 4), with a time constant of 10.7 trials for the
LBI, followed by a small mean time constant of 1.46 trials for the
subsequent learning blocks (LB2-LB4; Fig. 7F). The washout
blocks produced a mean time constant of 1.43 trials across the
three washout blocks (WB1-WB3). In contrast, the subgroup
with the broader baseline model uncertainty did not develop a
new perturbation model. These one-model learners produced a
time constant 4.0 trials for LB1, followed by a mean time constant
of 4.48 trials for LB2-LB4, and a mean time constant of 4.07 trials
for the three washout blocks.

We hypothesized that subjects who responded to trigger trials
had previously formed a new perturbation model, that is, were
two-model learners. In contrast, subjects who did not respond to
trigger trials only had previously only updated their baseline
model, that is, were one-model learners.

To test this hypothesis, we clustered subjects in Conditions 1b
and 2b into responders and non-responders based on the average
hand direction of five trials following trigger trials using k-means
clustering (Fig. 6C, left). The average hand direction of the 5 trials
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following the trigger trials in Cluster 1 was 17.7 = 0.7° (SE). In
contrast, the average hand direction of the five trials following the
trigger trials in Cluster 2 was 3.4 * 1.0° (SE). This clustering
resulted in 15 responders and 6 non-responders. Responders
were defined as subjects who had at least one response out of the
two trigger trials that belongs to Cluster 1 in Figure 6C. Based on
these simulations results, and on the savings results of large and
small perturbation shown in Figure 4, we then conjectured that
the non-responders would show little or no savings in relearning
blocks, as well as gradual aftereffects in washout blocks.

Figure 7, A and B, shows the subject-averaged adaptation data
for the 15 responders (top row) and 6 non-responders (bottom
row). We then performed an exponential mixed-effect model
analysis similar to that in Figure 4 with the data from all 21
subjects, coding for responders and non-responders with a
grouping variable. Figure 7C shows the fixed-effect time con-
stants for each block of both learning and washout blocks for
both responders and non-responders. Responders showed large
savings, i.e., significant decrease of mean time constant in the
relearning blocks (LB2-LB4), compared with the initial learning
block [LBI time constant = 6.75 trials, 95% CI: (5.26, 8.25) trials
for LB1; p < 0.0001; LB2-LB4 mean time constant = 2.21 trials,
95% CI: (1.64, 2.79) trials; p < 0.0001 for difference]. On the
other hand, non-responders showed no change in time constants
in learning and relearning blocks, indicating no savings [LB1
time constant = 6.97 trials, 95% CI: (3.08, 10.87) trials; p <
0.0001; LB2-LB4 mean time constant 8.86 trials, 95% CI: (4.10,
13.63) trials; p = 0.34 for difference]. Note that there was no
difference in time constants in the initial block LB1 between re-
sponders and non-responders (p = 0.77). In addition, the mean
time constant in relearning blocks (LB2-LB4) of responders was
significantly smaller than that for non-responders (relearning
p = 0.00088). The responders showed short after-effects, whereas
the non-responders showed larger after-effects: the mean time
constant in washout blocks (WB1-WB3) of responders was sig-
nificantly smaller than that of non-responders [non-responders,
time constant = 6.50 trials, 95% CI: (3.29, 9.71) trials; p <
0.0001; responders, time constant = 3.51 trials, 95% CI: (1.48,
5.55) trials; p = 0.037 for difference]. Note that these results for
responders and non-responders parallel those for the large per-
turbation Condition la and the small perturbation Condition 3
in Figure 4, respectively. Thus, in our paradigm, 20° appears to be
a large perturbation for most subjects, leading to the develop-
ment of a new perturbation model. For a few other subjects,
however, the same 20° perturbation appears to only warrant the
update of the baseline model.

Reaction time analysis

Following previous modeling work in motor learning and adap-
tation (Wolpert and Kawato, 1998; Berniker and Kording, 2008),
and in visual memory (Gershman et al., 2014), we have proposed
a scheme for the formation of internal “perturbation” models
from novice models. However, in visuomotor adaptation, a num-
ber of recent studies have found that participants can strategically
re-aim their hand direction to minimize errors (Taylor et al.,
2014; Haith et al., 2015). Thus, it can be asked whether our per-
turbation models are true internal models or whether they are
deliberate/controlled processes that underlie such strategic re-
aiming. In this later scheme, the two-model learners would up-
date a baseline model for small perturbation and re-aims for large
perturbations. Re-aiming has been associated with increase in
reaction times (Haith et al., 2015; McDougle and Taylor, 2019).
Accordingly, large perturbations would be associated with larger
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reaction times than small perturbations. In addition, such a
scheme would predict increases in reaction times between the
pre-trigger trials (when no aiming occurs) and post-trigger trials
(when re-aiming occurs). In contrast, selection and update of a
true perturbation internal model would show similar reaction
times to the baseline model before and after the trigger.

We therefore examined fluctuations in reaction time between
the experimental conditions, the adaptation and de-adaptation
blocks, and the five trials between before and after trigger trials.
For each subject, we averaged the reaction times within blocks,
and then compared the mean reaction times between conditions
with t test or between blocks with either repeated-measures
ANOVAs or pair t tests. Reaction times >2 s were discarded.

Mean reaction times for the four adaptation blocks in the large
perturbation of Condition 1a were 605 = 48 (S) ms, 568 = 39 ms,
561 = 38 ms, and 568 * 32 ms in the order of LB1 to LB4. In the
small perturbation Condition 3, reaction times were 579 * 45,
560 * 42, 542 *+ 44, and 498 * 28 ms, in the same order. An
overall repeated-measure ANOVA with Blocks 1-4 as the re-
peated effect and condition as the between-group effect showed
that reaction times decreased over blocks (p = 0.003), but were
not different between the large perturbation Condition la and
the small perturbation Condition 3 (p = 0.34), with no interac-
tions (p = 0.62). In the large perturbation Condition 1a, reaction
times were not different across blocks (p = 0.22, repeated-
measure ANOVA). In the small perturbation Condition 3, how-
ever, there was an effect of blocks (p = 0.007); reaction times
were smaller in adaptation blocks 3 and 4 than in adaptation
Block 1 in this condition (both p < 0.05; paired f test).

Across both trigger trials in Conditions 1b and 2b and across
subjects, there was no difference between RTs in the five trials
before and after the trigger trials (before 506 = 17 ms; after 473 =
18 ms; p = 0.13; pair ¢ test). We then analyzed changes in reaction
times for effective triggers (that is, triggers that brought the hand
direction from a low state of <10 degrees to a high state) for the
responder subgroup (see above). In this case, the reaction times
increased by 57 ms on average (5 trials before trigger 531 % 33 ms;
5 trials after trigger 588 = 40 ms; p = 0.037; pair ¢ test). Note
however, that although such effective triggers occurred in 14 par-
ticipants, this increase in reaction time was only present in 9
participants; the other 5 participants showed decrease in reaction
times following trigger trials.

Savings and aftereffects following gradual and abrupt
perturbations: simulation results

Here we present simulations that account for “one-trial” savings
in the data from Roemmich and Bastian (2015). Specifically,
these authors showed that, whereas a gradual perturbation fol-
lowed by a washout period does not lead to savings in a subse-
quent abrupt re-adaptation phase, an abrupt perturbation
followed by a washout period leads to large savings in a subse-
quent abrupt re-adaptation phase. A short abrupt perturbation
followed by a washout period also leads to savings in a subse-
quent abrupt re-adaptation phase. Figure 8 shows that our
model, without any changes, reproduces these results for the
three initial blocks (gradual, abrupt perturbation, and short
abrupt perturbation).

Discussion

Using a combined computational and behavioral approach, we
showed that qualitative differences in creating, updating, and
recalling memories in visuomotor adaptation are linked and ex-
plained by a single computational model of motor adaptation
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by a washout period (Klassen et al., 2005; 0
Krakauer et al., 2005; Morehead et al,,
2015), even with very few trials of adapta-
tion (Huberdeau et al., 2015). In contrast,
no savings occurred when a gradual adap-
tation was followed by a washout period
(Herzfeld et al., 2014; Roemmich and Bas-
tian, 2015). Our model explains these dif-
ferences via creation of a new internal
model for large perturbations and via up-
date of the baseline model for small and gradual perturbations.
Note, however, that we did observe some degree of savings in the
small perturbation condition as well (albeit significantly less than
in the large perturbation condition). A model that includes a
meta-learning mechanism, such as proposed by Herzfeld et al.
(2014), could account for these results. Alternatively, such sav-
ings could also be due to the small perturbation being already
large enough for creating and updating a perturbation model for
some participants. This may be the case, because, in the second
learning block, the two smallest time constants in the small per-
turbation Condition 3 (4.15 and 4.9 s) were similar to the two
largest time constants of the responder subgroup in the large
perturbation Conditions 1b and 2b (4.8 and 4.9 s).

Our study also reconciles previous controversial results on
error-clamps. In the large perturbation conditions, performance
during clamp was often sustained near the perturbation level and
abruptly terminated after lags of varying durations. The lag du-
ration was, on average, shorter in conditions with large perturba-
tion noise. Such lags were found in previous studies (Scheidt et
al., 2000; Vaswani and Shadmehr, 2013; Vaswani et al., 2015). In
stark contrast, it has been argued that, in these previous studies,
the lags were due to an artifact and that the decay was due to
passive forgetting (Brennan and Smith, 2015). Our data is con-
sistent with such a gradual decay in the small perturbation con-
dition and for a number of subjects in the large perturbation
conditions.

The distinction between two- and one-model learners in the
model accounts for these qualitative difference in savings and
error-clamp data. If a learner becomes a two-model learner, then
savings, lags, and switching occur. Noise in the prediction errors
and memory decay determine the lag durations in error-clamp; if
the prediction error of the perturbation model becomes suffi-
ciently large because of a sudden large noise input, model switch-
ing ensues. The adapted performance can be re-instated via
trigger trials, via a sudden decrease in the perturbation model’s

Figure 8.

(2015), their Figure 4.
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Trial

Trial Trial

Simulated savings following gradual (top), abrupt (middle), and short-abrupt (bottom) initial perturbations. 4,
Single simulation runs illustrating hand directions (left) and model updates (middle) in the three conditions. The lines show the
mean estimates, and the shaded areas the uncertainties. B, Average of 50 simulations, in which the initial and second perturba-
tions are aligned at Trial 0. Note how savings are very strong following a long abrupt perturbation, still important following a
short-abrupt perturbation, but there are no savings following the gradual perturbation. Compare with Roemmich and Bastian

prediction error, and thus reselection of this model in these re-
sponders. Some subjects did not respond to trigger trials, how-
ever. Because these subjects exhibited gradual washout and little
savings, we predict that they remained one-model learners and
solely updated their baseline models.

Limitations of the model

Our model accounts for the data presented, but not for a number
of other phenomena in adaptation. First, we did not dissociate
the “strategic” versus implicit components of adaptation
(Fernandez-Ruiz et al., 2011; Taylor et al., 2014; Schween and
Hegele, 2017). Despite having found no differences in reaction
times between the large and small amplitude conditions, most,
but not all, subjects in the responder subgroup showed an in-
crease in reaction times following effective triggers. This suggests
that these subjects strategically re-aimed their movements, at
least to some degree. Such strategic adaptation could explain
why, in our simulations, a smaller decay rate was needed in the
expert model than that in the baseline model to account for the
long lags in error-clamp. This is because strategic learning ap-
pears to be “temporally stable”, whereas implicit learning consists
of both temporally stable and “temporally labile” components
(Miyamoto et al., 2014). We note however that such distinction
between strategic and implicit components does not contradict
the need to create and select multiple memories for multiple- or
even for a single-adaptation task, as we have proposed. Second,
and related, we did not model multiple processes with different
timescales involved in motor adaptation (Smith et al., 2006;
Kording et al., 2007; J. Y. Lee and Schweighofer, 2009; S. Kim et
al.,, 2015; J. Y. Lee et al., 2016). As a result, the model cannot
reproduce effects that require both fast and slow processes, such
as spontaneous rebounds in error clamp. Addition of a fast pro-
cess in the model could account for this phenomenon. Third, we
largely simplified the simulations by only considering a baseline
model and a single novice model. An extension of the model to
multiple adaptation could be envisioned in which the number of
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memories is not specified in advance (Gershman and Blei, 2012).
Finally, we assumed that selection was via a winner-take-all
scheme, which well accounted for switching data in the error
clamp and following trigger trials. However, a continuous
weighting scheme may better explain multiple adaptation data
(Ghahramani and Wolpert, 1997), as well as anterograde inter-
ference data. Yet, another possible scheme is that the baseline
model is always updated (Berniker and Kording, 2011), with the
perturbation model selected or not depending on the perturba-
tion. This would account for adaptation to task-irrelevant
clamped feedback data, up to large perturbation angles (More-
head et al., 2017; H.E. Kim et al., 2018). Future work is needed,
however, as these last two possible architectures would not well
account for switching behavior in error clamp.

Implications of our results for studying neural mechanisms
There is strong evidence that the cerebellum is involved in motor
adaptation via update of forward models based on sensory pre-
diction errors (Martin et al., 1996; Miall et al., 2007; Tseng et al.,
2007; Izawa et al., 2012; Schlerf et al., 2012; Popa et al., 2013). A
possibility is that prediction errors are generated by comparison
of sensory signals and predictions from the cerebellum. A second
possibility is that prediction errors are computed in the parietal
cortex (Inoue and Kitazawa, 2018) by the microcircuitry of the
cortical column (Bastos et al., 2012). The prediction errors could
then be sent to the to the areas of the cerebellum involved in
adaptation (Sasaki et al., 1977; Rabe et al., 2009). Yet, a third
possibility is that both the parietal cortex and the cerebellum
update memories from prediction errors, but at different time
scales (S. Kim et al., 2015). A computational imaging study (fMRI
or lesion mapping) of adaptation that uses model-derived pre-
diction errors as regressors of BOLD activity may help to shed
light on these possibilities.

What could be the neural correlates of the body and pertur-
bation models? A possibility, which can be tested in an imaging
study, is that the phylogenetically newer lateral parts and the
anterior arm area part (lobules IV-VI) are involved in adaptation
to large and small perturbations, respectively (Imamizu et al.,
2003; but see Werner et al., 2014). In addition, recent data (Inoue
and Kitazawa, 2018) are consistent with parietal area 5 neurons
encoding errors for the baseline model and parietal area 7 neu-
rons encoding errors for perturbation models (Shadmehr, 2018).
This possibility is in line with a fMRI study showing that the IPL
part of area 7, by its influence on the cerebellum, is involved in
internal model switching from prediction errors, as previously
proposed in MOSAIC (Imamizu and Kawato, 2008).

A distinction with MOSAIC, however, is that in our model
both the mean and the uncertainty of the perturbation estimates
are updated, with expertise being due to both accurate and pre-
cise predictions. To shed light on the neural correlates of preci-
sion, model-derived precision-weighted prediction errors could
be used as regressors of BOLD activity in a computational-fMRI
study (for such an experiment in audiovisual learning, see Iglesias
etal., 2013).

Conclusion

We proposed a new model of motor adaptation, which uses mul-
tiple precision-weighted prediction errors for memory creation,
selection, and update. The model, akin to a model for visual
memories proposed by Gershman et al. (2014), provides insights
into a number of puzzling and contradictory experimental data
on savings and error-clamp, and accounts for large qualitative
individual differences. More generally, recent experiments and
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theories suggest that coding of precision-weighted prediction er-
rors is used in multiple types of human memory (Friston, 2005;
Henson and Gagnepain, 2010; Greve et al., 2017). Thus, our sim-
ulations and behavioral data of motor adaptation are in line with
the general view of human learning according to which new
memories are created when no existing memories can account for
discontinuities in sensory data.
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