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Imagine you were asked to investigate the workings of an engine, but to do so without ever opening the hood. Now imagine the engine
fueled the human mind. This is the challenge faced by cognitive neuroscientists worldwide aiming to understand the neural bases of our
psychological functions. Luckily, human ingenuity comes to the rescue. Around the same time as the Society for Neuroscience was being
established in the 1960s, the first tools for measuring the human brain at work were becoming available. Noninvasive human brain
imaging and neurophysiology have continued developing at a relentless pace ever since. In this 50 year anniversary, we reflect on how
these methods have been changing our understanding of how brain supports mind.
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Introduction
The human mind — what could hold more mystery and fascina-
tion? For millennia, humans have puzzled and pondered over its
origins and workings; but only over the last 50 years or so, have
scientists had the experimental tools to go under the hood to
measure its organ at work. For a timeline of key methodological
developments, see Figure 1.

The foundations for our understanding of how mental func-
tions are organized in the human brain come from neuropsycho-
logical studies based on observations of behavioral impairments
and dissociations following naturally occurring brain lesions
(e.g., Broca, 1861; Harlow, 1868; Wernicke, 1874; Loeb, 1885).
None should deny the importance of human lesion studies in
identifying the functional elements of the human mind as well as
their interrelations and causal reliance upon specialized brain
areas (e.g., Scoville and Milner, 1957). Yet, the method’s limita-
tions for investigating the workings of the brain are clear.

A mechanistic understanding requires looking inside and
measuring activity unfolding in the human brain. Two comple-
mentary approaches were pursued in parallel, based on recording
brain activity directly using neurophysiology and on imaging

metabolic consequences of brain activity through hemodynamic
markers. In each case, the scientific roots stretch back to the late
1800s, but the practical methods for investigating the brain mecha-
nisms supporting mental functions noninvasively only started to
become available in the 1960s, with the development of event-
related potentials (ERPs) enabling cognitive neurophysiology (Wal-
ter et al., 1964; Sutton et al., 1965) and of methods to image cerebral
blood flow kicking off brain imaging (Lassen et al., 1963). Figure 2
shows some of the earliest examples of each. Thus, the founding of
the Society for Neuroscience also coincided with the rise of cognitive
neuroscience as we know it today (see also Fig. 1).

Since then, noninvasive human neurophysiology and brain
imaging have played major roles in changing and refining our
conceptualization of how mind sits in brain. They have moved us
away from the earlier view that psychological functions are local-
ized to brain areas that can be combined in series, and instead
ushered us toward a network-based organization in which archi-
tecture and dynamics play critical roles in prioritizing, routing,
and integrating information. Undoubtedly, our current under-
standing is incomplete, but shaking off the naive, common-sense
assumptions and accepting that the fabric of mind may be non-
intuitive are an essential first step.

In what follows, we reflect on some of the breakthroughs and
insights gained from 50 years of watching the brain at work using
noninvasive brain measurements in healthy human volunteers.
Inevitably, some relevant tools and developments for studying
the human mind fall outside the chosen scope. These include the
complementary interference-based stimulation methods for
probing causal links between brain activity and behavior (e.g.,
Barker et al., 1985; Thut and Miniussi, 2009; Herrmann et al.,
2013), as well as invasive intracranial human EEG measurements
and brain stimulation that can be performed in the context of
clinical interventions and monitoring (e.g., Jasper and Penfield,
1949; Lachaux et al., 2003; Chang et al., 2010).
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Brain imaging
Over the last five decades, brain imaging has become the domi-
nant approach for measuring human brain activity. Arguably, its
increasing power and granularity to dissect the structural and
functional organization of the human brain are major contribu-
tors to the success and reach of neuroscience in our society today.
The rise and influence of functional brain imaging, especially of
the more affordable MRI-based methods introduced in the early
1990s, have been meteoric.

The research impact of brain imaging soon outstripped that of
human neurophysiology, which had heretofore been more ad-
vanced in its application to understanding human cognition.
One interesting question is why imaging gained precedence. An
obvious advantage is the intrinsic appeal of an image that maps
the loci of activity in the brain compared with the complex wave-
forms of voltage traces offered by neurophysiology. Another wise
move on the part of imagers was co-opting the expertise of ex-
perimental psychologists to work alongside those developing the
methods to design studies to isolate psychological functions so
that their neural correlates could be inferred (e.g., Petersen et al.,
1988; Posner et al., 1988). Initial experimental designs used
subtraction-based approaches building on mental-chronometry
methods (Donders, 1869; Posner, 1978); two conditions equated
for all but the critical cognitive operation of interest were com-
pared to estimate the duration, or in the case of brain imaging, the
activation, related to that operation. Although it is easy to criti-
cize the approach in hindsight, and to question the validity of the
implicit assumption of pure insertion that cognitive operations
add linearly, it provided a foothold into the slippery landscape of
psychological functions and paved the way for other, more pow-
erful types of designs. But the clinching factor driving the success
of imaging studies may be the increasing sophistication of data-
analysis methods. Brain-imaging data brought many difficulties
that required analytical ingenuity to overcome, such as how to
reconstruct images, align them across measurements, account for
individual differences in structural and functional anatomy, de-
rive functions to link neural events to their protracted hemody-
namic signals, and apportion variability in brain signals to
experimental variables. Such challenges attracted significant an-
alytic talent into the field, which resulted in new and ever better
ways to interrogate functional brain signals.

The introduction and free dissemination of statistical meth-
ods with which to analyze time series of signal fluctuations on a
voxel-by-voxel basis as a function of experimental variables (e.g.,

Friston et al., 1994; Smith et al., 2004) enabled researchers to map
out responses of different brain areas to specific psychological
functions, but also to capture covariations in activity across brain
areas (functional and effective connectivity). Functional mea-
surements taken across brain areas revealed cooperation and in-
fluences among areas during a task (e.g., Büchel and Friston,
1997). They also revealed the intrinsic network organization of
the brain, with high levels of covariation in areas that are closely
functionally related even at rest, when participants have no spe-
cific task to perform (Biswal et al., 1995; Raichle et al., 2001; Fox
et al., 2005; Damoiseaux et al., 2006). Furthermore, the ability to
specify the changing experimental parameters on a trial-by-trial
basis provided important mechanistic information about which
brain changes impact behavioral performance in a given domain
(e.g., Pessoa et al., 2002; Weissman et al., 2006). It also enabled
researchers to apply computational modeling to reveal whether
and which brain areas are sensitive to latent parameters hypoth-
esized to guide performance (Friston and Dolan, 2010). Multi-
variate methods building on these foundations were further able
to characterize patterns of activations across populations of vox-
els (e.g., Kamitani and Tong, 2005; Haynes and Rees, 2006), thus
indexing the informational content of the processing within an
area or network (Kriegeskorte et al., 2006). For example, whereas
signals in individual voxels of a typical fMRI study lack the sen-
sitivity to distinguish among different object shapes being
viewed, these can be readily decoded from the pattern of activa-
tion strengths across sets of voxels (Haxby et al., 2001; Stokes et
al., 2009).

Advances
Detailing all the advances brain imaging has brought to the un-
derstanding human cognition would be beyond any reasonable
review article. We therefore confine ourselves to highlighting
some of the conceptual breakthroughs in our own field of in-
quiry, selective attention, acknowledging that our choices are bi-
ased by our own experience and interests. We will follow a similar
approach in subsequent sections highlighting advances based on
neurophysiological recording approaches.

PET scanning (Corbetta et al., 1993; Nobre et al., 1997) and
later fMRI (Gitelman et al., 1999; Kastner et al., 1999; Corbetta et
al., 2000; Hopfinger et al., 2000) vindicated the notion that a
large-scale network of brain areas supports the control of visual
spatial attention (Mesulam, 1981, 1990). The results played a
major role in leaving behind phrenological views and promoting

Figure 1. Timeline of key methodological developments in the history of going under the mind’s hood. Timings are approximate, appreciating that many of the listed developments spanned
several years, or involved relatively gradual transitions rather than abrupt events with a clearly marked onset and offset. Selected representative references for the listed events (ordered by their
associated number in the schematic) are as follows: (1) Donders, 1869. (2) Broca, 1861; Wernicke, 1874. (3) Caton, 1875. (4) Mosso, 1881. (5) Roy and Sherrington, 1890. (6) Fulton, 1928. (7) Berger,
1929. (8) Adrian and Matthews, 1934. (9) Davis, 1939; Dawson, 1954; Galambos and Sheatz, 1962. (10) Landau et al., 1955. (11) Ingvar and Risberg, 1965. (12) Walter et al., 1964; Sutton et al., 1965.
(13) Bloch, 1946; Purcell et al., 1946; Lauterbur, 1973; Mansfield, 1977. (14) Cohen, 1972. (15) Frackowiak et al., 1980; Raichle et al., 1983. (16) Pfurtscheller and Aranibar, 1979; Pfurtscheller and
Lopes da Silva, 1999; Tallon-Baudry and Bertrand, 1999. (17) Ogawa et al., 1990, 1992; Kwong et al., 1992; Bandettini et al., 1992. (18) Friston et al., 1994; Smith et al., 2004; Oostenveld et al., 2011.
(19) Biswal et al., 1995; Raichle et al., 2001; Fox et al., 2005. (20) Haxby et al., 2001; Kamitani and Tong, 2005; Kriegeskorte et al., 2006. (21) Boto et al., 2018.
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the importance of understanding network-level computations
both in regard to attention and more generally in the control of
cognition. The network of brain areas involved in controlling
attention overlapped significantly with that controlling oculo-
motor functions (Nobre et al., 1997, 2000; Corbetta et al., 1998),
helping highlight the close link between cognitive functions and

their sensorimotor building blocks and prompting further inves-
tigation of the details of the functional links (e.g., Engbert, 2006;
Awh et al., 2006; Ikkai and Curtis, 2011; van Ede et al., 2019a).
The increasing spatial resolution of imaging methods combined
with retinotopic mapping have helped delineate various parietal
and premotor/prefrontal areas that may be relevant to attention

Figure 2. The first glimpses of cognition at work. Early results from (A) imaging and (B) recording human brain activity. A, Patterns of cerebral blood flow measured using a scintillation detector
placed next to a participant’s head after injection of a radioactive isotope to detect its passage through the cortex. On the color scale: Green represents the mean flow rate. Shades of blue represent
up to 20% decreases from mean. Shades from yellow to red represent up to 20% above mean flow rates. Images are maps from individual participants. (1) At rest, the brain showed high levels of
activity in frontal cortex. (2) While following a moving object with the eyes, blood flow increased relative to the resting baseline in visual association cortex and in the region of the frontal and
supplementary eye fields. (3) While listening to spoken words, activity increased in auditory cortex. (4) While moving the mouth and repeatedly counting to 20, activity increased in the mouth area
of motor cortex, supplementary motor area, and auditory cortex. Adapted with permission from Lassen et al. (1978). Copyright © (1978) Scientific American, a division of Nature America, Inc. All
rights reserved. B, Averaged event-related responses elicited by sound stimuli in each of 5 participants (1–5) when sound stimuli were fully predictable (certain; solid line) versus when the modality of
the same sound stimuli was uncertain (dashed line). In the uncertain condition, sound stimuli occurred on one-third of trials, and visual stimuli occurred on two-thirds of trials. The most dramatic differences
occurred in the late positive deflection with a peak latency of �300 ms. Positive voltage values are plotted downward. Adapted from Sutton et al., 1965. Reprinted with permission from AAAS.
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control, and promoted further investigations of their causal in-
volvement using transcranial stimulation methods (e.g., Silver et
al., 2005; Konen and Kastner, 2008; Szczepanski and Kastner,
2013; Scolari et al., 2015). Studies investigating the consequences
of attention modulation showed that many sensory and high-
level brain areas were affected by visual-spatial and other forms of
attention (Corbetta et al., 1990; Kastner et al., 1998). Rather than
locating the site for attention modulation, the findings suggested
that attention might affect multiple types and levels of processing.
Modulation was also observed in subcortical areas, including
thalamic nuclei thought to play early relay functions in visual
processing (O’Connor et al., 2002), thus prompting invasive
single-unit studies to reassess modulation of thalamic regions
by attention (McAlonan et al., 2006, 2008; Wurtz et al., 2011).
Imaging studies analyzing functional interactions among brain
regions, and subsequent studies combining brain stimulation
with imaging, confirmed the top-down influence of parietal and
frontal regions on sensory processing (Buchel and Friston, 1997;
Moore and Fallah, 2004; Ruff et al., 2006).

MRI studies using multivariate analyses (Haxby et al., 2001;
Kamitani and Tong, 2005; Haynes and Rees, 2006; Kriegeskorte
et al., 2006) also revealed preactivation of sensory content of
task-relevant targets during the anticipatory period (Stokes et al.,
2009), in line with findings from single units in monkeys (Chelazzi
et al., 1993) and with the influential biased-competition theory of
visual attention (Desimone and Duncan, 1995). Interestingly,
studies using multivariate approaches further revealed that antic-
ipatory delay activity need not merely reflect a veridical represen-
tation of the target template, but instead upregulates the most
useful information to guide subsequent performance (Serences et
al., 2009), which can consist of systematic distortions of the orig-
inal template (Scolari and Serences, 2010).

Overall, brain imaging has helped shape our textbook under-
standing of attention in the human brain (Nobre and Kastner,
2014) and provide a bridge to the studies investigating systems-
level and cellular mechanisms in animal models (e.g., Reynolds
and Chelazzi, 2004; Reynolds and Heeger, 2009; Fries, 2015; Jon-
ikaitis and Moore, 2019).

Limitations
The progress made in imaging technology and analysis is unde-
niable, yet brain imaging on its own is insufficient for under-
standing the neural basis of adaptive cognition. In some cases, it
can even be misleading. Activation maps hide nuances and limi-
tations. They feel immediate and conjure intuitive interpreta-
tions, but they are based on indirect markers of neuronal activity.
Although the link between brain activity and circulation medi-
ated by metabolic demands is well established (Roy and Sher-
rington, 1890), the precise linking functions are still being
investigated (Raichle and Mintun, 2006). Imaging signals may be
systematically biased in ways we are yet to appreciate.

In addition to being indirect, hemodynamic measurements
are orders of magnitude slower than their neuronal-activity
counterparts. Their timescale, in seconds, is ill suited to investi-
gate psychological processes, many of which unfold over tens to
hundreds of milliseconds. The coarse temporal resolution makes
it difficult to interpret changes in activation patterns. For exam-
ple, greater activation in a region could reflect either stronger or
lengthier engagement of neuronal populations. More problem-
atically, taking modulations of brain activity in an area at face
value can misguide interpretation. If we heed the lesson that neu-
ral processes occur within functionally interconnected networks
of brain areas, it becomes counterproductive to infer the func-

tional specialization of one individual brain area without high
temporal resolution. Through the temporally blurred lens of
brain imaging, it can be difficult to distinguish activations result-
ing from computations within a given area from those initiated in
other areas that are fed forward from upstream regions or fed
back from downstream regions through network connectivity.
Thus, ironically perhaps, brain imaging is most often used to
reveal something it cannot, the functional specialization of a
given brain area. Imaging studies routinely draw such infer-
ences; but without corroborating evidence from complemen-
tary methods with high temporal resolution, it is problematic
to attribute the origin of a neural effect to the site of hemody-
namic modulation.

For example, in imaging studies, attention-related modula-
tion of visual processing in striate cortex (Kastner et al., 1998;
Tootell et al., 1998; Brefczynski and DeYoe, 1999) and lateral
geniculate nucleus (O’Connor et al., 2002) could be interpreted
as reflecting modulation at very early stages in the feedforward
“sweep” of visual processing. However, human neurophysiolog-
ical studies using similar task designs mostly showed effects of
spatial attention starting only later in time, therefore sparing the
initial visual potential related to the first feedforward sweep of
striate activity (e.g., Clark and Hillyard, 1996; Martínez et al.,
1999). These findings suggest that modulation of striate cortex
and thalamus in fMRI studies could instead result from reentrant
feedback carrying attention-modulated signals from down-
stream areas (Lamme and Roelfsema, 2000). Resolving such in-
consistencies requires careful studies combining both brain
imaging and neurophysiological methods in the same task and
applying invasive methods with higher combined spatial and
temporal resolution.

Studies relying on invasive intracranial recordings in humans
illustrate the occurrence of late, reentrant modulation in early
sensory regions, which might yield misleading patterns of hemo-
dynamic activations. In a feature-based attention task, partici-
pants viewed randomly interleaved red or green words in the
center of the screen, and had to follow the narrative of the words
in one (attended) color while ignoring words in the other stream
(Nobre et al., 1998). Recordings from the posterior fusiform
gyrus showed characteristic responses to word stimuli �200 ms
(Nobre et al., 1994). These were unaffected by the attention ma-
nipulation, but strong attention-related modulations occurred
much later (after 350 ms), possibly reflecting feedback from dif-
ferent degrees of semantic and contextual integration from at-
tended versus ignored words. Interestingly, in contrast to the
intracranial neurophysiological studies showing that early re-
sponses in this region are unaffected by lexical or semantic factors
(Nobre et al., 1994; Nobre and McCarthy, 1995), fMRI studies
have suggested this brain area is sensitive to lexical and contextual
semantic factors (e.g., Price and Devlin, 2003; Hauk et al., 2008).
An alternative possibility is that imaging-related modulations
come from downstream regions as a result of attention or later
stages of semantic or contextual analysis.

Intracranial recordings during a contextual-cueing task offer
another example of late attention-related modulation in early
visual areas (Olson et al., 2001). Identifying a designated target
stimulus in a visual-search array is facilitated by repetition of the
configuration of distractors (Chun and Jiang, 1998). Implicit
long-term memory for the configuration of distractors is pro-
posed to guide spatial attention to the target location to enhance
performance (Chun, 2000). Intracranial recordings from visual
areas showed late modulation by memory for distractor configu-
rations. The first potentials are unaffected, suggesting modula-
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tion as a result of reentrant feedback from later processing stages.
Without such qualifications, fMRI findings that activations are
modulated in early visual areas (Pollmann and Manginelli, 2010)
might be incorrectly interpreted as suggesting that contextual
memory influences the earliest stages of visual cortical processing
in these tasks.

Human neurophysiology
Despite its earlier take-off as a method to probe the workings of
cognitive functions, noninvasive human neurophysiology later
took the backseat position. Recent technical and analytical ad-
vances, however, are unleashing the method’s full power to in-
vestigate information processing and dynamics within human
brain networks. Human neurophysiology is once again stepping
back into the driver’s seat, as researchers increasingly recognize
the importance of complementing brain imaging with direct,
time-resolved measures of human brain activity to understand
brain mechanisms of cognition.

ERPs
Modern human cognitive neurophysiology took off in the 1960s
when methods for averaging EEG traces (Garceau and Davis,
1934; Davis, 1939; Dawson, 1954; Galambos and Sheatz, 1962)
made it possible to extract the small yet consistent voltage signals
reflecting neural processing systematically related to sensory or
cognitive events from the larger ongoing raw voltage fluctua-
tions. Using this method, researchers identified ERPs that were
sensitive to cognitive factors during task performance. Pioneer-
ing examples were the contingent-negative variation, a large neg-
ative voltage buildup following a stimulus that signaled an
upcoming behavioral target (Walter et al., 1964), and the late
positive component, which varied with the degree of uncertainty
about the identity of a target (Sutton et al., 1965) (see Fig. 2B).

The ERP method was the first to enable the scientific and
noninvasive investigation of cognitive functions in the human
brain. The spatial resolution of ERPs is limited by the spatial and
temporal summation of voltage signals in the brain and by the
ill-posed problem of deriving the intracranial sources from their
projection onto the scalp surface (Helmholtz, 1853). Neverthe-
less, the potentials provide a rich signal of controlled observable
variability (Donchin et al., 1978), which can be defined by their
latency, amplitude, voltage topography over the scalp, and func-
tional modulation by experimental variables (Allison et al., 1986;
Rugg and Coles, 1995). By recording ERPs, it became possible to
measure whether and when the human brain was sensitive to a
particular type of information or manipulation, and to compare
the patterns of responses elicited by different stimuli or under
different conditions.

Advances
The use of ERPs brought many conceptual advances to attention
research (Luck et al., 2000; Nobre and Silvert, 2008; Woodman,
2010; Eimer, 2014), and it is noteworthy that ERP reports of
attention modulation of sensory processing preceded those using
invasive cellular recordings in nonhuman primates (Moran and
Desimone, 1985) and noninvasive human brain imaging (Cor-
betta et al., 1990; Tootell et al., 1995). For example, modulation of
sensory potentials during spatial selective-attention tasks (Hilly-
ard et al., 1973; van Voorhis and Hillyard, 1977) broke the im-
passe on the longstanding debate between “early” and “late”
attention, relating to the exact processing stage at which attention
operates to prioritize relevant from irrelevant information, either
at the level of simple features during perception (early) or only

after full stimulus processing through semantic analysis (late).
Functional dissociations between modulation of different sen-
sory potentials indicated the existence of multiple modulatory
sites (Mangun and Hillyard, 1991; Luck et al., 1994, 1995), negat-
ing the stubborn idea of only one bottleneck for information
processing and, accordingly, only one site for attention modula-
tion in the human brain (Broadbent, 1958). Studies using word
stimuli further showed that modulation could include lexical and
semantic content (McCarthy and Nobre, 1993; Bentin et al.,
1995), challenging views about the automatic nature of such
stages of processing (Deutsch and Deutsch, 1963). ERP studies
also clearly showed early sensory modulatory effects of object-
based (Valdes-Sosa et al., 1998), feature-based (Hansen and
Hillyard, 1983; Leonards et al., 2003; Hopf et al., 2004), and tem-
poral (Doherty et al., 2005) attention, thus helping the field break
away from the notion of a privileged type of unit for attention
selection (see Nobre and Silvert, 2008; Nobre and Kastner, 2014;
Nobre, 2018).

Limitations
However, the traditional approach to analyzing ERPs dismisses
many fundamental sources of variability that are essential for
deriving a better, mechanistic understanding of human brain
function. Averaging EEG traces into an ERP waveform eliminates
trial-by trial variability, thereby greatly reducing the sensitivity to
identify the stages of processing that impact behavioral perfor-
mance. Averaging raw (time-domain) signals also collapses the
spectral richness in the EEG signal, recognized from its earliest
recordings (Berger, 1929). Frequency-specific patterns in the
EEG, whether they reflect truly oscillatory phenomena or
shorter-lived signatures of network-related activity (van Ede et
al., 2018a), may carry specific functional significance, which still
requires direct testing. Finally, averaging also eliminates much of
the temporal specificity hailed as the hallmark of neurophysio-
logical methods. Temporal summation of processes triggered by
events that overlap in time can make it problematic or impossible
to individuate them. Temporal variability in the processes trig-
gered by the same event over multiple trials can also lead to dis-
tortions in the overall averaged signal and promote misleading
interpretations. For example, a lower-amplitude average poten-
tial can result from changes in the strength of a process or its
temporal variability across trials.

Contemporary human neurophysiology
Noninvasive human neurophysiology is experiencing a revival.
Interestingly, many of the advances reinvigorating the method
have their origin in the very brain-imaging methods that initially
overshadowed it in the first place.

The constant quest for improved spatial resolution accentu-
ated by brain imaging also resulted in substantial hardware
refinements for noninvasive human neurophysiology. The intro-
duction of MEG has greatly sharpened the spatial resolution of
human recording methods (Cohen, 1972; Hari and Salmelin,
1997), and successful efforts are underway to measure magnetic
fields generated in the brain with greater flexibility and even
greater spatial granularity and signal-to-noise ratio (Boto et al.,
2018).

But as with imaging, the clinching factor in improving neuro-
physiology studies has been the innovation in the concepts and
tools used for signal analysis. Many of these are related to, and
inspired by, analytical advances introduced for brain-imaging
methods. For example, by drawing on advances in imaging,
methods for localizing the brain sources of extracranial M/EEG

Nobre and van Ede • Under the Mind’s Hood J. Neurosci., January 2, 2020 • 40(1):89 –100 • 93



signals in a more distributed, brainwide fashion (e.g., beamform-
ing) (van Veen and Buckley, 1988) have supplemented more tra-
ditional dipole-based models (Hämäläinen and Hari, 2002). In
tandem, statistical approaches for evaluating the full data space,
such as cluster-based permutation approaches (Maris and Oost-
enveld, 2007), have been adapted and applied to neurophysiolog-
ical signals. Through such approaches, we have also come to
appreciate more fully the richness of neurophysiological data as a
key strength of the method. This richness provides a better means
to assess “physiological plausibility,” and provides relevant com-
plementary information to p values (van Ede and Maris, 2016).

Furthermore, by breaking away from the averaging functions
that provided the foundation for initial ERP breakthroughs and
embracing the variability in the raw signal, it has become possible
to measure signals in their full spectral richness, on a trial-by-trial
basis, and to individuate informational content about temporally
overlapping events, with high temporal fidelity, and taking tem-
poral variability into account.

Regaining spectral richness
A key rationale of the ERP approach is that, by repeating the same
condition across many trials, we average away the “background”
states that obscure the response within the single trials, to reveal
the waveform that is common across trials (Fig. 3A, left column).
The approach assumes that the raw, ongoing activity carries no
relevant information-processing content and that it is essentially
a nuisance factor to be eliminated.

However, even the earliest EEG recordings clearly suggested
the presence of endogenous brain states that are functionally rel-
evant. At rest, the brain was observed to display prevalent pat-
terns of rhythmic activity, such as in the alpha (�10 Hz) and beta
(�20 Hz) frequencies, which varied systematically with the func-
tional state and neurological condition of the individual (Berger,
1929). Berger’s initial observations, and the later realization of
resting-state networks using brain imaging (Raichle et al., 2001;
Fox et al., 2005; Damoiseaux et al., 2006), suggest that human
cognition and behavior are not a reaction to external stimulation,
but an interaction between external stimulation and internal
brain states. Capturing and characterizing these internal states,
and understanding their relation to the processing of external
inputs, could therefore be fundamental for understanding psy-
chological functions.

From the beginning, these rhythms were shown to vary with
mental acts. For example, in addition to the strong effects of
closing versus opening the eyes on inducing and suppressing the
alpha rhythm, engaging in an attention-consuming act, like per-
forming a difficult mental arithmetic calculation, also strongly
diminished the alpha rhythm (Berger, 1929; Adrian and Mat-
thews, 1934). Thus, the ERP method dismissed as “noise” inter-
nal functional brain states carrying characteristic spectral
signatures. It is now widely recognized that such brain states can
provide complementary windows into neural and cognitive com-
putations (e.g., Hari and Salmelin, 1997; Klimesch, 1999; Pfurt-
scheller and Lopes da Silva, 1999; Siegel et al., 2012).

The reclaiming of the spectral dimension took off with the
application of time-resolved spectral analyses that allowed re-
searchers to analyze spectral modulations in an ERP-like fashion
(Fig. 3A, right column) (Pfurtscheller and Aranibar, 1979; Pfurt-
scheller and Lopes da Silva, 1999) and construct comprehensive
time-frequency plots (e.g., Tallon-Baudry and Bertrand, 1999).
Complementing these developments, methods have been devel-
oped to derive the spectral characteristics of brain activity empir-
ically (Huang et al., 1998, 2016). These methods sidestep some of

the problematic consequences that occur when brain signals vi-
olate assumptions that are inherent in conventional Fourier-
based methods.

In human attention research, a prominent example of the
utility of spectral analyses comes from studies linking ongoing
alpha oscillations to selective attention and perception. Rather
than dismissing alpha oscillations as a background state, Foxe et
al. (1998) and Worden et al. (2000) demonstrated that anticipa-
tory states of attention are associated with a relative attenuation
of alpha oscillations in brain areas that code for the anticipated
stimulus. We and others have subsequently shown that such al-
pha attenuation also tunes in to relevant moments in time (Ro-
henkohl and Nobre, 2011; van Ede et al., 2011; Zanto et al., 2011;
Heideman et al., 2018) and that such states enhance sensory pro-
cessing (e.g., Hanslmayr et al., 2007; van Dijk et al., 2008; Romei
et al., 2010; Gould et al., 2011; van Ede et al., 2018b) and upregu-
late firing rates in the underlying populations (Haegens et al.,
2011). On these bases, relative alpha attenuation in task-relevant
sensory brain areas has been proposed to serve a key “gating
mechanism” of the human brain (e.g., Jensen and Mazaheri,
2010; Foxe and Snyder, 2011), including for gating perceptual
representations within working memory (Wallis et al., 2015; van
Ede, 2018).

The analyses of spectral states have also helped extract and
characterize “resting-state” networks from human neurophysio-
logical recordings, by quantifying common amplitude fluctua-
tions across brain regions (Mantini et al., 2007; Brookes et al.,
2011; Hipp et al., 2012). This has enabled a bridge to canonical
networks observed in imaging (Raichle et al., 2001; Fox et al.,
2005; Damoiseaux et al., 2006) while also enabling the study of
the dynamics of these networks at cognitively relevant time scales
(de Pasquale et al., 2010; Baker et al., 2014; Florin and Baillet,
2015; Vidaurre et al., 2018). Though it is still early days, this has
already yielded new perspectives on the transient nature of net-
work activations, which inevitably remains hidden in imaging
methods, and on the role of such network dynamics in perception
and attention (e.g., Weisz et al., 2014; Astle et al., 2015).

These examples showcase how the incorporation of the spec-
tral dimension is having a major impact on the field. It has af-
forded a new complementary dimension within the same signal
we have always collected. The rich nature of this dimension
makes it possible to characterize neural states in time and fre-
quency, and to bridge physiological and imaging studies of hu-
man brain activity.

Tracking informational content
Machine learning has also found its way to human neurophysi-
ology. Building on earlier applications of multivariate decoding
analyses in brain imaging (Haxby et al., 2001; Kamitani and
Tong, 2005; Haynes and Rees, 2006; Kriegeskorte et al., 2006),
decoding is becoming mainstream in neurophysiological studies
of human cognition (e.g., King and Dehaene, 2014; Cichy et al.,
2015; Stokes et al., 2015). Unlike conventional analyses of ERPs
and spectral modulations that capture response magnitudes,
which may relate to changes in processing in many ways, decod-
ing analyses can capture the content-specific information con-
tained in the signal, providing more direct insights into the
quality of representation (Kriegeskorte et al., 2006). Using such
analyses with human neurophysiology allows the tracking of in-
formational content through time and reveals the dynamic na-
ture of neural coding (Stokes et al., 2013; King and Dehaene,
2014). Initial studies showed that information content in M/EEG
measurements may be present earlier than in conventional
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ERP/Fs (Ramkumar et al., 2013), and a wave of recent studies has
started to shed new light on attentional dynamics in perception
and memory (e.g., LaRocque et al., 2013; Garcia et al., 2013; Marti
et al., 2015; Myers et al., 2015; Foster et al., 2017; Wolff et al.,
2017; van Ede et al., 2019b). For example, while it has long been
known that anticipation amplifies early visual responses (e.g., the
visual P1 and N1 ERP components) (Mangun and Hillyard, 1987,
1991; Luck et al., 1994), up until recently, it had remained unclear
whether anticipation also enhances the quality of information
linked to stimulus identity within these early brain responses. We
recently demonstrated precisely this (van Ede et al., 2018b). In-
terestingly, the attention-related gain in information was uncor-
related with the amplification of the visual potential in the same
time window, suggesting that response amplitude and response
information provide complementary windows into attentional
operations (for an example of a similar notion in fMRI, see also
Kok et al., 2012).

Individuating representations
Decoding analyses also provide a powerful tool to overcome an-
other limitation of conventional analyses of response amplitudes.
When multiple items occur together or in rapid succession, the
amplitude of the neural response will reflect the aggregate re-
sponse to the sum of the stimuli (Fig. 3B, left column, bottom).
From this summed response, it is notoriously hard to partition
the response into the components associated with the individual
stimuli. This becomes even more problematic when deciphering
the origin of a cognitive modulation that rides on the aggregate
response.

Decoding analyses provide ways around this because they in-
dividuate items based on their unique representational informa-
tion, thereby enabling the tracking of multiple representations in
time concurrently (Fig. 3B, right column, bottom). We recently
used this approach to study how anticipation facilitates the pro-
cessing of visual targets when these compete with temporally
adjacent visual distractors (van Ede et al., 2018b). By decoding
stimulus-identity information from the EEG, we were able to
individuate both target and distractor codes despite their tempo-

ral proximity, and to track the sensory processing of each over
time. This revealed that anticipation enhances the quality of the
target representation and delays interference from the distractor
on the target processing, providing a protective temporal window
for high-fidelity target processing. Similar approaches have
started to reveal new insights into other dynamic phenomena,
such as the attentional blink (Marti and Dehaene, 2017), the
matching of mnemonic templates to visual inputs (Myers et al.,
2015), multitasking (Marti et al., 2015), and the concerted selec-
tion of visual and motor representations from working memory
(van Ede et al., 2019b).

Complementing decoding analyses that capitalize on infor-
mational content, individuation can also be achieved through
frequency tagging (e.g., Brown and Norcia, 1997; Tononi et al.,
1998), an approach that dates back to early days of cognitive
neurophysiology (Lansing, 1964), while still subject to contem-
porary developments (Zhigalov et al., 2019). Here, items are pre-
sented (tagged) at distinct, separable, frequencies. By titrating the
analysis according to the tagged frequencies, it becomes possible
to isolate the neural response to the distinct items, and to track
the amplitudes of these item-specific responses over time. Such
an approach has been used, for example, to track the concurrent
focusing of attention at spatially segregated locations (Müller and
Hübner, 2002; Müller et al., 2003) or to track the neural dynamics
of feature-based attention on spatially overlapping stimuli
(Baldauf and Desimone, 2014).

Regaining single-trial dynamics
Recent years have also seen an increased emphasis on the impor-
tance of single-trial dynamics. While combining data yields clean
and robust signals, it risks two potential fallacies: (1) assuming
trialwise variability is noise and (2) treating the average as a pro-
totypical reflection of the underlying dynamics.

Regarding trialwise variability, we have learned that, even
within a single experimental condition, neural variability can
predict variability in task performance (e.g., van Dijk et al., 2008;
Mazaheri et al., 2009; Jones et al., 2010; van Ede et al., 2012; Cravo
et al., 2013; Myers et al., 2014). Rather than noise, such fluctua-

Figure 3. Schematics of innovations in contemporary neurophysiology. A, Raw M/EEG traces (blue) and their spectral amplitudes (red) provide complementary windows into cognitive
modulations of neural activity. Spectral analyses enabled researchers to regain “background” states, by enabling the states to be analyzed just like ERP components (i.e., relative to cognitive events
and with the increased sensitivity brought by trial averaging). For a relevant example, see Pfurtscheller and Lopes da Silva (1999). B, When multiple stimuli are presented in close temporal proximity,
analyses of response magnitudes (ERP and spectral) are complicated by response summation (left column). Decoding analyses that focus on the unique information of the distinct events enable
response individuation (right column). For a relevant example, see van Ede et al. (2018b). C, Sustained patterns in trial-average dynamics of, for example, spectral amplitude (as depicted) may reflect
the aggregation of many transient burst events at the level of single trials (left column). For a relevant example, see Lundqvist et al. (2016). Accordingly, modulations in average amplitude may
reflect a number of distinct changes in the underlying single-trial dynamics (right column). For a relevant example, see Shin et al. (2017).
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tions may reflect spontaneous fluctuations in cognitive state (see
also Nienborg and Cumming, 2009). Capturing this variability
can give relevant insights into the relation between brain states
and cognition, complementing insights derived from analyzing
systematic differences across experimental conditions. In addi-
tion to variability in the strength of responses, variability may also
occur in the temporal cascade of processing. Such variability can
smear and dampen ERP amplitudes and may lead to “false dy-
namics” in cross-temporal decoding analyses (King and De-
haene, 2014) that assume consistent timing of neural processing
across trials (Vidaurre et al., 2019). New temporally uncon-
strained decoding models are on the rise to capture this temporal
variability, and these models too can account for variability in
behavioral performance (Vidaurre et al., 2019). Such approaches
promise to reveal important principles about the time course of
neural computations relevant to cognition, helping to arbitrate
between proposals suggesting successive stable states of neural
processing (e.g., Pascual-Marqui et al., 1995; Khanna et al., 2015)
versus a continuous unfolding of dynamic neural activity best
captured as a trajectory through state space (e.g., Buonomano
and Maass, 2009).

There is also increased appreciation that the trial-averaged
response may provide a highly misleading model of the underly-
ing response, or the underlying patterns of activity. For example,
the classic “ramp-like” activity in the trial average may reflect the
averaging of many “step-like” patterns with jittered timings
across trials (Latimer et al., 2015; Stokes and Spaak, 2016). Like-
wise, sustained patterns in average time-frequency maps of spec-
tral amplitude may reflect the aggregation of many short-lived,
isolated “burst events” at the single-trial level, which happen to
ring in a particular frequency band (Feingold et al., 2015; Lund-
qvist et al., 2016; Shin et al., 2017) (Fig. 3C, left column).

While the physiological interpretation of such putative burst
events is still open to debate (van Ede et al., 2018a), their possi-
bility has prompted researchers to dissect how cognitive factors
affect their putative constituent parameters at a single-trial level,
such as changes in amplitude, rate, timing, and duration of burst
events (Fig. 3C, right column). In principle, the increased gran-
ularity and quantification of these event parameters may provide
closer correspondence with the underlying physiology and help
chart links between neurophysiological events and cognition. In
attention research, for example, attenuation of beta activity in
anticipation of a tactile target (as in Jones et al., 2010; van Ede et
al., 2011, 2012) has been linked specifically to a decrease in the
rate of punctate beta bursts, which also predicts perceptual per-
formance (Shin et al., 2017).

Future outlook
Over the last 50 years, we have learned a lot about what is hap-
pening under the mind’s hood. The tools are improving all the
time. Yet, we are far from done understanding this mysterious
motor. If our explorations have taught us one lesson, it is to
remain openminded. Sometimes we tend to place too much value
in our local interpretations and be overly dismissive of alternative
or additional possibilities. This slows progress. In the context of
this review, we have highlighted some past examples, such as the
phrenological importance of specific brain areas, the primacy of
brain responses triggered by external events, the disregard for
spectral signals, and the disregard for variability of the strength
and timing of neural events. We may think we are smarter now,
but most likely we are blind to some current traps. For example,
are the canonical resting-state networks of today too rigid of a
concept, akin to a new version of the old phrenological unit and

similarly prone to mask the true level of flexibility and interaction
in the brain? Who knows, but why put on blinkers when the
adventure is getting so interesting?

In building the future toolkit, we must remember that mind
and brain make behavior. To investigate the link, we need to start
applying the same level of ingenuity to develop the means with
which to investigate the complexity and richness of behavior as
we have applied to understanding the brain. Incredibly, typical
studies of human cognition involve behavioral measures con-
fined to simple individual responses, such as the accuracy and
timing of a button press or of an eye movement. It is time that we
upgrade to measures of trajectories, force, hesitations, postural
relations, activity across muscles; and that we let our participants
stand up, move around, and interact in real or virtual environ-
ments. Methods for capturing various aspects of immersive be-
havior are being developed, often within the contexts of the tech
and entertainment industry, simulation training, or clinical reha-
bilitation. Neuroscientists interested in human cognition and
behavior need to step up their game and contribute to the refine-
ment of these methods as well. Doing so will also prompt inno-
vations in how we measure brain activity. Exciting developments
in methods for measuring brain activity in natural environments
and during normal active behavior are afoot (e.g., De Vos et al.,
2014; Boto et al., 2018).

In a similar spirit, we must not treat the brain as an isolated
organ, but remember it is part of a much larger ecosystem: the
body. As a consequence, many signals in the periphery provide
complementary windows into the neural basis of cognitive pro-
cesses, even when these processes are conventionally considered
to be “covert” (e.g., Hafed and Clark, 2002; Engbert and Kliegl,
2003; van Ede and Maris, 2013; Corneil and Munoz, 2014). Two
striking examples of this come from our own recent work on
attentional operations in working memory, revealing microsac-
cadic gaze biases (van Ede et al., 2019a) and pupil dilations
(Zokaei et al., 2019) during purely internal attentional focusing.
Nor should we forget the reverse direction of influence: many
inputs to the brain come from other organs of the body, and these
inputs too may interact with neural processes linked to cognition
(e.g., Park et al., 2014; Azzalini et al., 2019).

The final frontier will be to forge a much closer relationship
between human cognitive neuroscience and the rest of neurosci-
ence research. No matter how far along noninvasive methods for
watching the brain at work have come, complementary ap-
proaches are required for testing the causal contribution of
activity in brain networks to human cognition, such as
interference-based stimulation methods or neuropsychological
testing of individuals with lesions or damage to brain areas or
networks. In addition, a deep understanding of the human mind,
brain, and behavior will require integration with findings from
methods at the systems, cellular, and molecular levels, which pro-
vide finer spatial and temporal resolution for measuring signals
as well as for manipulating or interfering with brain signals. In-
tegrating across levels of organization is much more difficult than
working with any one level, but this should not deter us. After all,
it is where it all comes together.
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Wolff MJ, Jochim J, Akyürek EG, Stokes MG (2017) Dynamic hidden states under-
lying working-memory-guided behavior. Nat Neurosci 20:864–871.

Woodman GF (2010) A brief introduction to the use of event-related po-
tentials in studies of perception and attention. Attent Percept Psychophys
72:2031–2046.

Worden MS, Foxe JJ, Wang N, Simpson GV (2000) Anticipatory biasing of
visuospatial attention indexed by retinotopically specific-band electroen-
cephalography increases over occipital cortex. J Neurosci 20:RC63.

Wurtz RH, McAlonan K, Cavanaugh J, Berman RA (2011) Thalamic path-
ways for active vision. Trends Cogn Sci 15:177–184.

Zanto TP, Pan P, Liu H, Bollinger J, Nobre AC, Gazzaley A (2011) Age-related
changes in orienting attention in time. J Neurosci 31:12461–12470.

Zhigalov A, Herring JD, Herpers J, Bergmann TO, Jensen O (2019) Probing
cortical excitability using rapid frequency tagging. Neuroimage 195:
59–66.

Zokaei N, Board AG, Manohar SG, Nobre AC (2019) Adjusting the aperture
of the mind’s eye: modulation of the pupillary response by the content of
visual working memory. Available at SSRN: https://ssrn.com/abstract�
3354603.

100 • J. Neurosci., January 2, 2020 • 40(1):89 –100 Nobre and van Ede • Under the Mind’s Hood

https://ssrn.com/abstract=3354603
https://ssrn.com/abstract=3354603

	Under the Mind’s Hood: What We Have Learned by Watching the Brain at Work
	Introduction
	References


