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In tonal music, continuous acoustic waveforms are mapped onto discrete, hierarchically arranged, internal representations of pitch. To
examine the neural dynamics underlying this transformation, we presented male and female human listeners with tones embedded
within a Western tonal context while recording their cortical activity using magnetoencephalography. Machine learning classifiers were
then trained to decode different tones from their underlying neural activation patterns at each peristimulus time sample, providing a
dynamic measure of their dissimilarity in cortex. Comparing the time-varying dissimilarity between tones with the predictions of
acoustic and perceptual models, we observed a temporal evolution in the brain’s representational structure. Whereas initial dissimilar-
ities mirrored their fundamental-frequency separation, dissimilarities beyond 200 ms reflected the perceptual status of each tone within
the tonal hierarchy of Western music. These effects occurred regardless of stimulus regularities within the context or whether listeners
were engaged in a task requiring explicit pitch analysis. Lastly, patterns of cortical activity that discriminated between tones became
increasingly stable in time as the information coded by those patterns transitioned from low-to-high level properties. Current results
reveal the dynamics with which the complex perceptual structure of Western tonal music emerges in cortex at the timescale of an
individual tone.

Key words: magnetoencephalography; multivariate pattern analysis; music perception; neural decoding; pitch perception; representa-
tional dynamics
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Little is understood about how the brain transforms an acoustic waveform into the complex perceptual structure of musical pitch.
Applying neural decoding techniques to the cortical activity of human subjects engaged in music listening, we measured the
dynamics of information processing in the brain on a moment-to-moment basis as subjects heard each tone. In the first 200 ms
after onset, transient patterns of neural activity coded the fundamental frequency of tones. Subsequently, a period emerged during
which more temporally stable activation patterns coded the perceptual status of each tone within the “tonal hierarchy” of Western
music. Our results provide a crucial link between the complex perceptual structure of tonal music and the underlying neural
dynamics from which it emerges. j

ignificance Statement

tion from the external environment interacts with internally
stored domain-specific knowledge. Tonal music, with its formal
abstract pitch structure, provides an ideal domain for examining
such an interaction (Lerdahl, 1992). In tonal systems the world
over, pitch is arranged hierarchically. Depending on the prevail-

Introduction
We continuously and effortlessly extract meaning from the sonic
world around us. This meaning emerges when sensory informa-
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ing musical key, certain pitch classes occur more frequently, oc-
cupy positions of melodic, harmonic, and rhythmic prominence
(Vos and Troost, 1989), and have greater perceived stability
(Krumhansl and Shepard, 1979; Krumhansl and Kessler, 1982).
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Figure 1. The STH of perceived stability. Ratings of stability assigned to each pitch class
within the Western key of C major, as reported by Krumhansl and Kessler (1982). The first scale
degree C is maximally stable and heads the hierarchy. Following are the fifth and third scale

degrees (G and E, respectively), the other scale tones (D, F, G, A, B), and finally the nonscale or
“out-of-key” tones (C#, D#, F#, G#, A#).

This profile of stability has been experimentally quantified for
Western tonal music as the standard tonal hierarchy (STH) and
forms a cornerstone of music perception (Fig. 1).

Despite its role as the principle schema underlying the orga-
nization of tonal music, the neural substrates supporting the STH
remain poorly understood. After core auditory areas extract basic
frequency information from the acoustic signal, a representation
of complex pitch is thought to emerge in secondary auditory
regions (Zatorre etal., 1994; Griffiths et al., 1998; Wessinger et al.,
2001; Hall et al., 2002; Patterson et al., 2002). How does this
isolated sensory representation then acquire the perceived at-
tributes of musical pitch? To do so, the surrounding musical
context must be integrated, recruiting cortical populations that
reflect prior knowledge of tonal structure. Both lesion and neu-
roimaging studies have identified regions implicated in the pro-
cessing of both melodic (Lee et al., 2011) and harmonic (Klein
and Zatorre, 2011; Fedorenko et al., 2012; Foo et al., 2016) struc-
ture, while electrophysiological research has identified cortical
response components sensitive to the hierarchical status of evok-
ing tones (Brattico et al., 2006; Krohn et al., 2007). More recently,
Sankaran et al. (2018) showed that tones differing only in their
hierarchical status evoked separable patterns of neural activity,
suggesting that measurable activity in cortex may code specific
information detailing the structure of the tonal hierarchy. De-
spite these advances, empirical work is yet to fully map the neural
representational space of musical pitch and explicitly test the
predictions of perceptual and music-theoretic models. The current
study therefore evaluated two major questions: first, do cortical pop-
ulations encode musical pitch in a manner that precipitates the or-
ganization of the STH? And second, what are the representational
dynamics underlying the emergence of such a perceptual represen-
tation from lower-level afferent information?

To address these questions, we recorded cortical activity using
MEG as musically trained subjects listened to different pitch
classes within a tonal context. We applied multivariate pattern
analysis (MVPA) (Haxby et al., 2014) to decode the identity of
tones from their corresponding MEG activity, and the accuracy
with which classifiers discriminated between the response pat-
terns elicited by two tones provided a proxy for their dissimilarity
in the cortex. Moreover, MVPA was applied using a sliding time
window, enabling us to track the dynamics of the evolving
cortical representation. Comparing these time-varying neural
dissimilarities with the predictions of several models of pitch, we
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quantified the underlying information held in cortical popula-
tion codes at any given moment along various sensory and per-
ceptual stimulus dimensions.

Materials and Methods

Participants. Eighteen subjects (7 male) with a minimum of 5 years of
formal music training (mean = 11.9 years; SD = 3.8 years) were re-
cruited through the Sydney Conservatorium of Music and Macquarie
University to partake in the study. All subjects reported having no known
hearing loss or brain abnormalities and did not possess absolute pitch.
The study was approved beforehand by the Human Research Ethics
Committee at Macquarie University (reference #5201300804), and all
methods were performed in accordance with the stated guidelines. In-
formed consent was obtained before testing, after all experimental details
and potential risks were explained.

Apparatus. Data were collected with a whole-head MEG system
(model PQ1160R-N2, KIT) consisting of 160 coaxial first-order gradi-
ometers with a 50 mm baseline (Kado et al., 1999; Uehara et al., 2003).
Before recording, each participant’s head shape was measured with a pen
digitizer (Polhemus, Fastrack), and the positions of five marker coils on
the surface of the scalp were registered. During recording, MEG data
were bandpass filtered online from 0.1 to 200 Hz using first-order RC
filters and digitized at 1000 Hz. Participants were in a supine position
situated within a magnetically shielded room containing the MEG sen-
sors. During experimental trials, participants were instructed to gaze ata
fixation cross. Both the fixation cross and experimental instructions were
projected by an LCD back projection system (InFocus) to a screen lo-
cated above the participant at a viewing distance of 113 cm. Sound stim-
uli were delivered via Etymonic ER-30 insert headphones at 44.1 kHz.

Stimuli. Trials consisted of a tonal context followed by 1 of 12 different
tones (hereafter referred to as probe tones). All stimuli were piano tones
sampled at 44.1 kHz using a virtual instrument plugin in Max/MSP
(Cycling ’74). Probe tones and chords were 650 ms in duration (95 bpm).
Before testing, all probe tones were passed through a time-varying loud-
ness model (Glasberg and Moore, 2002) and normalized for differences
in perceived loudness. To achieve this, the maximum short-term loud-
ness (STL,,,,,) of each tone was computed. We used STL, ., as a measure
of perceived loudness as it operates at timescales comparable to individ-
ual note processing (Thwaites et al., 2016). We then normalized the
loudness of all tones to their average STL, ... Modifications in level re-
sulting from this procedure did not exceed 3 phons. Probe tones spanned
the chromatic range between F#3 (185 Hz) and F4 (349 Hz), such that
their average semitone distance to the preceding context was minimized.
The tonal context consisted of four major chords written in four-part
harmony outlining an I-IV-V-I harmonic progression in the key of C
major. To prevent sensory processing of the context from contaminating
evoked responses to probe tones, a silent period of one beat (i.e., 650 ms)
separated the two.

Experimental design. MEG activity was recorded from subjects as they
listened to the above trials. Probe tones were presented in random order
without repeats across trials. To ensure participants were attending to
stimuli (Loui et al., 2005), participants judged whether the probe tone on
each trial was “in-key” or “out-of-key,” registering their response only
after stimulus offset by pressing one of two buttons. Participants used
their left and right thumbs to register the two respective responses, and
the mapping of in-key/out-of-key to left/right button was switched every
two blocks to control for the potential effects of motor activity. No trial-
by-trial feedback was provided during the MEG recording. On average,
subjects responded correctly on 78% of the trials (SD = 16.3%). All trials,
including those with incorrect responses, were included in the analysis of
MEG recordings (Vanrullen, 2011). Intertrial intervals were randomized
between 0.5 and 1 s. Before testing, subjects completed a training session
consisting of 20 trials with an identical behavioral task to that of the main
experiment. Feedback was provided after each training trial, and the
experimenter ensured that subjects could perform the task (using a
threshold of =75% correct) before proceeding to the MEG recording
session. Each participant’s MEG data were collected in a single hour-long
session. The total experiment comprised 672 trials, yielding 56 observa-
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tions of each of the 12 probe tones. Testing was divided into 8 blocks,
each comprised of 84 trials and separated by 1 min breaks.

Analysis

MEG preprocessing. All preprocessing and subsequent analyses of MEG
data were performed in MATLAB (The MathWorks). Neural epochs
were extracted from 100 ms before to 1000 ms after onset of probe tones.
Data were downsampled to 100 Hz with a low-pass Chebyshev Type 1
filter. Next, principal components analysis (PCA) was applied to the
dataset of each participant using all MEG sensor channels as features.
Principle components that cumulatively explained 99% of the variance
were retained. On average, PCA reduced the dimensionality of datasets
from 160 channels to 28 principle components (SD = 5.4). PCA has been
found to be an efficient preprocessing step for optimizing data for MEG
decoding analyses (Grootswagers et al., 2017). In a single step, PCA re-
duces the dimensionality of the data and obviates the need for additional
artifact rejection or denoising procedures, as classifiers can learn to sup-
press nuisance variables isolated by PCA (e.g., eye-blinks and environ-
mental noise).

MVPA. To measure the neural dissimilarity between two given probe
tones, binary classifiers attempted to decode the identity of tones from
the participant’s recorded brain activity (Haxby et al., 2014). Before clas-
sification, we averaged responses of two exemplars within each class to
boost the signal-to-noise ratio of classification. We used a naive Bayes
implementation of linear discriminate analysis (Duda et al., 2012) to
perform classification for each pairwise combination of tones. General-
ization of the classifier was evaluated using k-fold cross-validation with a
9:1 training to test ratio. The reported accuracy was the average across all
10 cross-validation folds. A sliding window was used to train and test
each classifier, resulting in a time-varying measure of decoding accuracy.
The length of the sliding window was 5 samples (corresponding to 50 ms
of neural activity). As such, tones were decoded not only from their
spatial activation patterns at each moment, but also the local temporal
structure of responses within a given window. Classifier performance at
each time point was evaluated in terms of balanced accuracy (Grootswa-
gers et al., 2017), whereby accuracy was first determined individually for
each class and then averaged across both.

Representational similarity analysis (RSA). The application of the
above MVPA procedure to every pairwise combination of probe tones
resulted in a 12 X 12 diagonally symmetric representational dissimilarity
matrix (RDM) for every subject and time sample. These neural RDMs
were compared with various model RDMs that evaluated the predictions
of several perceptual and sensory models of pitch. Model RDMs were as
follows: (1) An RDM based on the STH was constructed in which each
cell coded the difference in perceived stability between two tones using
the ratings first reported by Krumhansl and Kessler (1982). We consid-
ered the predictions of other perceptual models (Lerdahl, 1988, 2004;
Chew, 2000); however, these resulted in RDMs that shared an identical
rank-order structure to that of the STH RDM (i.e., the predicted dissim-
ilarities between tones were the same as the STH) and were therefore
omitted from the current analysis. (2) To test the hypothesis that MEG
dissimilarities reflected the log-difference in each tone’s fundamental
frequency ( f,), we constructed a pitch height (PH) RDM, in which each
cell corresponded to the semitone interval separating the two tones in
question. (3) To assess whether neural dissimilarities between tones re-
flected their fine-grained spectral differences, a spectral distance RDM
was constructed in which each cell coded the Euclidean distance between
the 128-channel stimulus spectrograms of tones. Spectrograms were ex-
tracted by passing the raw audio through a biologically inspired model of
the auditory periphery (Chi et al., 2005). The model consisted of three
main stages: a cochlear filter bank comprised of 128 log-spaced asymmet-
ric filters, a hair cell stage consisting of a low-pass filter and nonlinear
compression function, and a lateral inhibitory network modeled as a
first-order derivative along the tonotopic axis followed by a half-wave
rectifier. (4) Although the tonal context and probe tones were separated
by 650 ms (see Experimental design), models of auditory short-term
memory involve time constants of up to 4 s (Huron and Parncutt, 1993;
Leman, 2000). Thus, it was possible that neural dissimilarities between
tones were driven by sensory memory of the context. To test this possi-
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bility, we constructed a spectral overlap (SO) RDM. First, a spectrogram
was generated for the tonal context using the same model as that used for
probe tones. Next, to account for the temporal decay of distal events, we
exponentially weighed each frame of the context spectrogram such that
recent frames had the strongest bearing on the spectral decomposition,
using a time constant equal to 1 beat (tau = 0.65 s). We then calculated
the Euclidean distance between context and all probe tone spectrograms.
The differences in these spectral distances for each pairwise combination
of probe tones were used to code each cell of the SO RDM. (5) Finally, to
assess the potential impact of the in-key versus out-of-key identification
task on neural dissimilarities, we coded a “task category” RDM (see Fig.
4A), whereby tone pairs belonging to the same decision category (either
both in-key or both out-of-key) were coded with 0, whereas those differ-
ing in categorical membership were coded with 1. Using the framework
of RSA (Kriegeskorte et al., 2008), we studied the brain’s emerging rep-
resentation by comparing each model RDM with the empirical time-
varying neural RDM (see Statistical analysis).

Control experiment

Participants. Eleven participants were recruited to participate in a sub-
sequent control experiment. The eligibility criteria and recruitment
methods were identical to those used previously. One participant did not
complete the testing session, rendering the dataset unusable. The 10
remaining participants had a mean of 10.0 years of musical training
(SD = 3.7 years).

Experimental design. Trials consisted, as before, of a four-chord con-
text followed by 1 of 12 possible probe tones, and the experiment was
again structured into an hour-long session comprised of 8 blocks with 84
trials in each. Two manipulations were introduced into the control con-
dition. First, to assess the impact of the behavioral task on neural decod-
ing, participants were now uninformed of the experiment’s purpose as it
relates to pitch and instructed to perform a timbre-identification task
instead, thus requiring no explicit analysis of pitch. In 12 trials per block
(~15%), probe tones occurred with the timbre of a flute instead of piano.
Upon hearing flute probe tones, subjects registered a button-press re-
sponse. Such trials were randomly dispersed but constrained to occur
exactly once on every pitch class per block, thereby preserving equal
numbers of remaining piano tone exemplars within each pitch class.
Second, to evaluate the influence of the distribution of pitch in the con-
text on the neural processing of probe tones, two different versions of the
context were presented in blocked design. In odd-numbered blocks,
trials featured the original context chords voiced in 4-part harmony
(cntx4). In even-numbered blocks, however, chords were voiced in
3-part harmony (cntx3) by removing the pitches [C4, C4, B3, C4] from
the four chords, respectively (see Fig. 5D). In pilot testing, we found that
this alteration sufficiently modified the statistical distribution of pitch
without altering the percept of tonality. Waveforms corresponding to the
two different contexts were then normalized for perceived loudness using
the procedure previously used on probe tones (see Stimuli). All other aspects
of the stimulus and design were identical to those used previously.

Analysis. Preprocessing followed an identical procedure to that used
earlier with two exceptions. First, neural data corresponding to trials in
which flute tones occurred were discarded from the analysis, yielding 48
remaining trials per pitch class. Second, we anticipated a poorer classifi-
cation signal-to-noise ratio relative to the earlier analysis due to the lower
number of subjects and trials. To combat this issue, continuous MEG
timeseries were downsampled to 50 Hz before performing PCA (whereas
100 Hz was used previously). This lower temporal resolution was still
sufficient as an examination of temporal dynamics was not paramount to
the aims of the control experiment. MVPA parameters were also identical
to the previous analysis, with the exception that a “leave-one-out” cross-
validation scheme was adopted to maximize use of the data, and trial-
averaging before classification was omitted when decoding separately
across the two different contexts. To determine whether the statistical
distribution of pitch in the preceding context explained the structure of
dissimilarities between probe tones, we first coded candidate RDMs in
which cells indexed pairwise differences in the statistical likelihood of
tones within the context. Separate candidate RDMs were coded for cntx4
and cntx3, and we created two versions: one in which cells coded the
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Temporal decoding of tones from MEG responses. The time domain in all plots are aligned such that 0 indicates onset of tones. A, Average classification accuracy for decoding all pairwise

combinations of the 12 tones. B, Average classification accuracy when decoding tone pairs binned into three groups based on their PH separation: large (8 11 semitones; blue), medium (5-7
semitones; green) and small (1-4 semitones; red). C, Classification of tone pairs grouped based on their difference in the hierarchy of perceived stability: large (green), medium (orange), and
little-to-no difference (purple). Colored boxes in the schematic legend represent the hierarchical position of tones being decoded for each curve, with blue and red boxes representing stable and
unstable tones, respectively. B, €, Results are averaged across all appropriate pairwise combinations of tones. Colored markers underneath curves represent time points when decoding performance
differs significantly from chance levels (p << 0.05; Wilcoxon sign-rank tests, FDR-corrected). Black markers represent time points during which two decoding curves, specified by the bottom right
colored boxes, are significantly different from one another. Shaded regions represent SEs across all participants (N = 18).

difference in pitch class probability for a given pair of probe tones,
whereas another coded their f, probability difference instead. We then
computed difference RDMs (ARDMs) by subtracting RDMs corre-
sponding to cntx3 from that of cntx4. Finally, we examined correlations
between the resulting neural and candidate ARDMs (see Fig. 5H).
Adaptation to regularities across experiment. To assess whether the
structure of neural RDMs reflected gradual adaptation of MEG responses
to stimulus regularities over the course of the entire eight-block experi-
ment, we performed MVPA repeatedly on four-block windows of adja-
cent data, proceeding in single-block steps from the first to last block. We
correlated each of the resulting neural RDMs (see Fig. 6A) to three dif-
ferent candidate RDMs (see Fig. 6B): SO, f, probability, and pitch class
probability. Each candidate RDM was coded as previously, using a uni-
form temporal weighting of the context distribution in each case.
Temporal generalization of classifiers. To evaluate the dynamics of
activation patterns distinguishing different probe tones, we examined
the temporal generalization of classification. Classifiers trained at indi-
vidual time points were tested at every other time point, resulting in a
square temporal generalization matrix (see Fig. 7A). A classifier trained at
a given time ¢ whose performance generalizes to another time ' implies
that the neural code separating tones at f recurred at ¢'. In this fashion,
insight can be gained into the underlying dynamics of neural information
processing (King and Dehaene, 2014). Classification parameters were
identical to those used previously, with the exception that the window
size was reduced to a single time sample. Temporal generalization matri-
ces were averaged across all pairwise combinations of tones. To quantify
the extent of generalization, we calculated the spread of decoding for each
train time (i.e., each horizontal slice of the temporal generalization ma-
trix) at which any significant decoding occurred. Spread was operation-
alized as the full-width of the slices at 75% of peak decoding. Varying the
percentage at which this width was calculated did not alter trends.
Statistical analysis. Significance of classification was performed at the
group level (N = 18) at each time sample and was evaluated using two-
sided Wilcoxon sign-rank tests (p < 0.05). Multiple comparisons were
corrected by controlling the false discovery rate (FDR) (Benjamini and
Yekutieli, 2001; Nichols, 2012) with o = 0.05. All correlations between
RDMs were assessed by computing their rank-order Kendall’s T,, a
measure that allows for the comparison of continuous and categorical
matrices (Nili et al., 2014). Time-varying RDM correlations were FDR-
corrected, whereas time-averaged RDM correlations were Bonferroni-
Holm-corrected (Aickin and Gensler, 1996). We used the noise ceiling as
a benchmark for testing candidate RDM performance. The noise ceiling
uses the intersubject variance in RDMs to estimate the magnitude of the
expected correlation between a “true” model RDM and the empirical
RDM, given inherent measurement noise (Nili et al., 2014). To compare
the predictive capacity of two different models, paired Wilcoxon sign-
rank tests were performed on time-averaged correlations. Such compar-
isons were only made between candidate RDMs that offered significant
predictive power at any time point in the neural epoch. To visualize the
structure of cortical RDMs, multidimensional scaling (MDS) was ap-

plied using Kruskal’s normalized stress 1 criterion (Kruskal and Wish,
1978). The correlation between individual subject RDMs (see Fig. 3B) was
calculated by averaging the Kendall’s T, correlation across all pairwise com-
binations of subjects’ RDMs, and significance was assessed using FDR-
corrected permutation tests (Nichols, 2012). Significance of adaptation over
the course of the experiment was assessed by applying a one-way ANOVA to
the neural-candidate RDM correlations across early to late windows of neu-
ral data (see Fig. 6C) and evaluating the main effect of time.

Results

Results are derived from cortical MEG recordings during the
presentation of 12 different “probe tones” that spanned the set of
all pitch classes within an octave following a C major tonal con-
text (see Materials and Methods). Classifiers attempted to decode
the identity of two given probe tones from their neural activity at
each time sample, and the resulting decoding accuracy provided a
time-varying estimate of the dissimilarity in their cortical popu-
lation codes. Applying this procedure to every pairwise combina-
tion of the 12 different probe tones, we characterized the dynamic
representational structure of musical pitch in cortex.

Neural response patterns initially code the f0 of tones but
later code their perceived stability

We first examined the general dynamics of stimulus-specific in-
formation in cortex, assessing the average decoding performance
across all pairwise combinations of tones (Fig. 2A). As expected,
accuracy was at chance (50%) before the onset of tones (t = 0) as
stimulus-related information was yet to activate cortex. Neural
distinctions between tones first emerged 100 ms after onset,
reached a maximal value at 250 ms, and remained above chance
for the remainder of the epoch.

We next examined the dissimilarity between tones whose
acoustic or perceptual properties generate explicit predictions
regarding their representational distance. First, as tones differed
from one another in the periodicity of their waveforms, we rea-
soned that their distinctions in cortex may be commensurate
with their log-f, separation, which we term PH. Decoding perfor-
mance was therefore examined for pairwise combinations of
tones grouped based on whether their PH difference was small
(1-4 semitones), medium (5-7 semitones), or large (8 —11 semi-
tones). Indeed, we found that the magnitude of PH separation
between tones produced differences in decoding performance
from ~100 to 250 ms after onset (Fig. 2B). Cortical distinctions
between tones with large and medium PH differences (blue and
green curves, respectively) significantly exceeded those between
tones that had small PH separation (red curve).
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Second, tones differed in their perceived stability given the
preceding musical context. We therefore hypothesized that dis-
tinctions in their cortical encoding may honor these perceptual
differences, embodied by the STH. If this were true, MEG decod-
ing performance would be greatest for tones located at opposite
ends of the hierarchy and poorest for tones that are hierarchically
equal. Support for this hypothesis was observed at an epoch that
commenced ~200 ms after onset and persisted throughout the
duration of the epoch (Fig. 2C). Neural responses to the most
stable tone [C] were highly distinct from those of the unstable
tones [F#, G#, D#, A#, C#] (green curve) and less discriminable
from those of the second and third most stable tones [G and E,
respectively] (orange curve). Additionally, consistent with the
STH, classifiers performed poorly when attempting to distin-
guish the neural activity of unstable tones from one another (pur-
ple curve). These results suggest that the extent to which the
cortical activity elicited by two tones differ corresponds to the
difference in their position within the STH.

Together, these results suggest that early cortical distinctions
between tones reflect their absolute pitch (log-f,) differences,
whereas later distinctions reflect their perceived stability given
the preceding musical context, as modeled by the STH. We next
tested this hypothesis explicitly within the framework of RSA
(Kriegeskorte et al., 2008). For each subject, we indexed the set of
decoding accuracies obtained by classifying all pairwise combi-
nations of tones in a time-varying RDM (Fig. 3A). Each cell of the
diagonally symmetric RDM indicates the cortical dissimilarity
between the tones indexed by the respective row and column. We
found that RDMs were highly correlated across individual sub-
jects from 100 ms onwards (Fig. 3B), verifying that the represen-
tational structure was consistent across listeners over the same
temporal extent in which average stimulus distinctions were ap-
parent (Fig. 2A).

Next, we evaluated the predictive capacity of several models
that attempt to explain the observed structure of time-varying
cortical RDMs. Each model was coded as a candidate RDM whose
structure makes explicit predictions regarding the expected dis-
similarities between tones (Fig. 3C). One candidate RDM was
based on the STH, where distances between tones corresponded
to their difference in perceived stability, as reported by Krumhansl
and Kessler (1982). Another candidate RDM coded for differences
in PH to evaluate whether distinctions between tones were driven
by their log-f, separation. We additionally tested two purely sen-
sory models: one based on the spectral distance between tone
pairs, and another based on the differences in their SO with the

later (190 ms onwards) regions of neural
processing, respectively. Additionally, di-
rectly comparing the predictive power of
the two models, we found that PH per-
formed significantly better than STH in
the earlier period (Z = 2.74; p = 0.003),
whereas STH significantly outperformed
PH during the latter period (Z = 3.35; p = 3.99 X 10 ~*). Impor-
tantly, both PH and STH correlations closely tracked the noise
ceiling (Nili et al., 2014), indicating that these models offered an
optimal degree of predictive power given the level of noise inher-
ent in the MEG data (see Materials and Methods). The temporal
order of model correlations is consistent with dominant concep-
tions of hierarchical auditory processing, which posit the extrac-
tion of complex pitch before the integration and analysis of broader
tonal-harmonic structure (Koelsch, 2011). Interestingly, from 190
to 250 ms, PH and STH models were both significantly correlated
with cortical RDMs, suggesting an intermediary period during
which the cortex holds a combined representation of both the
tone’s f, and tonal status within the STH.

To better visualize the results of RSA, neural-model RDM
correlations were averaged into three time bins (Fig. 3E): the first
corresponded to a period before stimulus-specific information
was present in cortical activity (—100 to 100 ms); the second
corresponded to the period during which cortical structure was
most strongly correlated with PH differences (100 to 200 ms);
and the third corresponded to the remainder of the neural epoch,
during which cortical structure reflected the STH (200—-1000
ms). Time-averaged neural RDMs corresponding to each of the
three bins are displayed in Figure 3F-H (top). To more intuitively
visualize their dissimilarity structure, we applied MDS to each
RDM, obtaining a 2D solution in each case (Fig. 3F-H, bottom).
The MDS solution in Figure 3G clearly demonstrates the organi-
zation of pitch from low to high as the space is traversed from top
left to bottom right, respectively. Similarly, the spatial organiza-
tion of the MDS solution in Figure 3H illustrates many key prop-
erties of the STH. Traversing the space from right to left reveals
the structure of the hierarchy, with the most stable pitch class (C)
situated on the right side, closest to the next most stable classes (G
and E) but distant from the cluster of unstable classes (F#, G#, D#,
A#, C#) in the bottom left corner. Prior behavioral research has
underscored the perceptual primacy of this hierarchical arrange-
ment. Our findings now provide evidence of its origins in the cortex
and reveal the temporal dynamics with which it emerges from the
acoustic signal via an intermediate representation of PH.

Emergence of tonal hierarchy in cortex cannot be explained
by activity generated from task-related judgments

During the experiment, subjects were instructed to identify whether
probe tones were in-key or out-of-key given the preceding context
(see Materials and Methods). As this decision variable was closely
related to the perceptual dimension being decoded (the STH),
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neural decoding may have been driven by activity corresponding
to the maintenance of a decision in working memory during the
span of the neural epoch. To address this issue, we tested an
additional candidate RDM that coded the binary dissimilarity
structure of the behavioral task (Fig. 4A). Specifically, tone pairs
belonging to the same decision category (either both in-key or
both out-of-key) were coded with 0, whereas those differing in
this categorical membership were coded with 1. This candidate
RDM did not correlate significantly with neural RDMs at any
time during the epoch (Fig. 4B), indicating that decision-related
variance could not account for the neural representational struc-
ture between tones.

Even though the categorical membership of tones as in-key or
out-of-key was not directly evidenced in the structure of neural
RDMs, it remained possible that the steering of listeners’ atten-
tion to a perceptual dimension requiring pitch analysis influ-
enced the geometry of neural RDMs in complex ways not

captured by simple linear modeling. Therefore, in a control con-
dition conducted on a separate cohort of musically trained sub-
jects, we determined whether the STH can still predict neural
dissimilarities between tones even under conditions where atten-
tion is directed to a dimension outside of pitch. As before, sub-
jects were presented with probe tones following a context during
MEG recordings; however, they were now uninformed of the
experiment’s purpose as it relates to pitch, and performed a
timbre-identification task instead (for details, see Materials and
Methods). Although evidence suggests that the cortical process-
ing of tonal schema is modulated by attention (Loui et al., 2005),
we hypothesized the involvement of an automatic component,
whereby listeners implicitly encode the structure of the STH even
in the absence of a task requiring them to do so.

Consistent with the above hypothesis, we found that represen-
tational dynamics in the control experiment closely mimicked
those found originally (Fig. 5A). Specifically, in an early temporal
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region from 150 to 250 ms, PH was significantly correlated with
neural RDMs and outperformed the STH model (Z = 1.73; p =
0.04), whereas a subsequent broader period (250600 ms) emerged
during which the STH predicted neural dissimilarities and signifi-
cantly outperformed the PH model (Z = 2.55; p = 0.005). Ac-
cordingly, the time-averaged neural RDMs from these two
respective periods (Fig. 5B, C) closely resemble those found ear-
lier (Fig. 3G,H). These results verify that the cortical representa-
tion of musical pitch emerges independent of activity generated
from task-related judgments.

Cortical emergence of tonal hierarchy cannot be explained by
stimulus regularities within the experiment

Our central hypothesis, that neural dissimilarities reflect the
tonal hierarchy, is presumed to arise from an internal schema
acquired through exposure to the structure of tonal music across
the lifetime. However, as probe tones were repeatedly presented
within a fixed context, neural responses may have been driven by
the structural regularities existing within the experiment itself,
reflecting adaptation or statistical tracking of the stimulus. There-
fore, we next examined whether neural dissimilarities between
tones could be explained without invoking any prior knowledge,
by the cortical formation of a representation of recent stimulus
information contained strictly within the bounds of the experi-
ment. If findings reflect a genuine perceptual schema, the geom-
etry of neural RDMs should be unaffected by bottom-up
relationships between probe tones and the acoustic or statistical
structure of the experiment.

First, we considered whether the structure of the preceding
context on each trial could explain neural dissimilarities between
the subsequent probe tones. A candidate RDM based on differ-
ences in SO between probe tones and context failed to predict
cortical dissimilarities (Fig. 3D), suggesting that MEG decoding
was not driven by adaptation to the prior context at a sensory
level. However, listeners are also known to track the statistics of
higher-level properties, including f, and pitch class, during per-
ception of tonal sequences (Saarinen et al., 1992; Saffran et al.,
1999; Creel et al., 2004). In the current design (as in most tonal
music), the probability distribution of pitch classes in the constit-
uent chords of the context (Fig. 5E, red curve) closely tracked the
profile of the STH itself (Fig. 1). Consequently, those pitch classes
with highly distinct neural activation patterns (e.g., C) were also
the most frequently occurring. This raises the possibility that,
rather than a genuine perceptual schema acquired through long-
term exposure, neural RDMs may index differences in surprisal
between probe tones given the statistical context in which they
occur.

To test whether neural dissimilarities between tones were in-
fluenced by the frequency of their occurrence in the prior con-
text, subjects in a control condition were presented with two
variants of the context (Fig. 5D). Half of the trials contained the
original chords voiced in 4-part harmony (cntx4), whereas the
other half contained chords with the most probable pitches re-
moved (see Materials and Methods). This resulted in an alternate
3-voice chord progression (cntx3) that still unambiguously es-
tablished the key of C major but crucially disrupted the associa-
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tion between the statistical likelihood of each pitch class and its
position within the STH (Fig. 5E). We hypothesized that a stable
internal knowledge of tonal structure underlies the observed
structure in the brain; and as such, neural RDMs would remain
invariant to statistical manipulations of the context. In particular,
the likelihood of the most perceptually stable pitch class [C] dif-
fered by an approximate factor of 2 across the two contexts. Fur-
thermore, in terms of absolute pitch ( f,), the tone C4 was highly
probable within cntx4 but completely absent from cntx3. If neu-
ral responses reflect adaptation or tracking of short-term statis-
tical regularities, evoked activity to C should be less distinct from
the other probe tones when preceded by cntx3. On the other
hand, if neural responses reflect the perceived musical stability of
tones, activity evoked by C should remain equally distinct across
both contexts. Separating probe tone responses that were pre-
ceded by cntx4 and cntx3, and independently assessing MEG
decoding performance in each instance, we found that classifiers
were able to discriminate responses to C from the other probe
tones equally well in both contexts (Fig. 5F; across all time points:
Z < 0.97; p > 0.62), thereby supporting our hypothesis. To ex-
amine neural dissimilarities across the two contexts in more de-
tail, we next generated two independent sets of time-varying
neural RDMs by separately decoding all pairwise combinations of
probe tones preceded by cntx4 and cntx3. We assessed their rela-
tionship to one another by examining RDM correlations aver-
aged into 200 ms bins (Fig. 5G). RDMs across cntx4 and cntx3
were significantly correlated in two bins centered at 200 ms (Z =
2.45; p = 0.0195) and 400 ms (Z = 2.75; p = 0.005) after onset.
Last, we sought to systematically determine whether differences,
if any, in the structure of neural RDMs across cntx4 and cntx3
could be explained by differences in the relative pitch class prob-
ability of probe tones. We first computed a neural difference
RDM (ARDM) by subtracting the time-averaged cntx3 RDM
from that of cntx4 (Fig. 5H, top row). Similarly, we constructed a
candidate ARDM that coded differences in the relative probabil-
ity of each pitch class across cntx3 and cntx4 (Fig. 5H, bottom
row). We found that neural and candidate ARDMs were not
significantly correlated (mean T, = —0.05; Z = —1.42; p =
0.92), suggesting that any variation in the structure of neural
RDMs between cntx4 and cntx3 could not be accounted for by
statistical differences between the two contexts at the level of
pitch class. Modeling the differences in statistical regularity in
terms of absolute pitch ( f,) instead of pitch class also failed to
explain neural RDM differences between cntx4 and cntx3 (mean
T, = —0.09; Z = —1.94; p = 0.97). Finally, to account for tem-
poral recency effects, we exponentially weighed the pitch class
and f; distributions of both contexts such that constituent tones
that were temporally proximate to probe tones received greater
weights. Three different weighted pitch distributions using expo-
nential time constants of 1, 2, and 3 beats, respectively (1 beat =
650 ms) all failed to produce significant correlations between
candidate and neural ARDMs, regardless of whether distribu-
tions were modeled on pitch class or f, (all Z < —1.43; p > 0.92).
Together, these results indicate that neither the low-level acoustic
nor the high-level statistical structure of the preceding context
can account for neural dissimilarities between tones.

The above findings suggest that the STH emerges in cortex
independently from the specific structure of the context that im-
mediately preceded tones. However, because the hour-long ex-
periment used a fixed subset of pitches, adaptation may have
operated at longer timescales than the duration of a single in-
stance of the context. To this end, we next examined whether the
geometry of neural RDMs changed over the course of the entire
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experiment in a manner that reflects gradual adaptation to regu-
larities in the structure of the repeatedly occurring context. For
each subject’s dataset, we again constructed neural RDMs by ap-
plying MVPA: classifying the neural activity corresponding to
every pairwise combination of probe tones. However, we now
only used MEG data from four adjacent experimental testing
blocks (of eight total), and repeatedly applied MVPA using a
sliding window proceeding in single block steps. This resulted in
five distinct windowed neural RDMs reflecting the cortical struc-
ture between tones at progressively later windows during the
experiment (Fig. 6A). Comparing correlations between each win-
dowed neural RDM (time-averaged from 200 to 1000 ms) and the
STH, we found no difference in the extent to which the tonal
hierarchy was reflected in neural data collected earlier versus later
in the experiment (one-way ANOVA; F, 45, = 0.17;p = 0.95). To
directly test whether MEG activity at later periods increasingly
reflected the acoustic or statistical regularities inherent in the
experiment, we correlated each windowed neural RDM with
three candidate RDMs that each predict dissimilarities between
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tone pairs based on the regularity of their occurrence in the con-
text at different levels of representation (Fig. 6B). If activity in-
creasingly reflected structural regularities in the unfolding
experiment, correlations with one or more candidate RDMs
should monotonically increase as a function of experiment time.
Importantly, however, correlations remained unchanged as neu-
ral data were taken from progressively later trials (Fig. 6C;
one-way ANOVA, F, 40, < 0.24; p > 0.91 for all models), indi-
cating that stimulus adaptation across timescales spanning the
entire experiment did not have a significant bearing on the cor-
tical representation of tonal structure.

In sum, we show that the representation of musical pitch in
cortex cannot be accounted for by purely bottom-up processes
that posit the integration of (or adaptation to) experimental stim-
ulus structure at varying representational levels or timescales.
Instead, the structure of neural RDMs >200 ms reflects a stable
mental representation of hierarchical pitch structure, acquired
through a lifetime of exposure to the structure of tonal music.

Cortical population codes become increasingly stable

with time

Having characterized the representational dynamics of pitch
throughout the time course of neural processing, we last exam-
ined the dynamics of the underlying neural patterns that code this
information. Electrophysiological recordings during melodic per-
ception indicate that evoked components associated with initial
acoustic feature analysis are relatively transient, whereas later
components associated with tonal-harmonic analysis and con-
textual integration are activated across broader temporal extents
(Besson and Macar, 1987; Besson and Faita, 1995; Koelsch, 2009,
2011). We therefore hypothesized that patterns of cortical activity
would become increasingly stable across time as the information
being coded transitioned from a continuous physical stimulus
feature to a more discrete perceptual object. To test this hypoth-
esis, we evaluated the capacity of classifiers trained at a given time
point to generalize their performance across time (King and De-
haene, 2014), resulting in a train time X test time generalization
matrix (Fig. 7A). In the first 200 ms after onset of tones, classifiers
could only decode information when trained and tested on activ-
ity from the same time points, evidenced by the concentration of
decoding performance along diagonal cells of the matrix. The
lack of generalization during this initial period suggests that the
neural code separating tones was dynamically evolving rather
than stable. Interestingly, however, the generalization of classifi-
ers improved across time, evidenced by an increase in off-
diagonal decoding at later train times. We further verified this
effect by calculating the spread of decoding at each train time,
finding a monotonic increase in generalization across time (Fig.
7B). Although the specific profile of generalization varied across
individual subjects (Fig. 7C), the overall trends confirm our hy-
pothesis that populations encoding musical pitch have increas-
ingly stable dynamics with time. Interestingly, together with
earlier findings detailing the representational dynamics of pitch
(Fig. 3D), this result suggests that the sensory-to-perceptual tran-
sition in information coding is accompanied by a transition in
cortical dynamics, from transient to stable.

Discussion

Using temporal decoding techniques, we have characterized the
representation of the 12 chromatic pitch classes of Western tonal
music in human cortex. Our key finding, that dissimilarities in
the cortical population codes between tones correspond to their
differences in perceived stability, establishes the neurobiological
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reality of the tonal hierarchy: the first known study to compre-
hensively do so. However, consistent with a hierarchical view
of auditory processing (Koelsch, 2011), we also found that the
transformation of tones from acoustic waveforms to discrete per-
ceptual entities is mediated by at least one intermediate represen-
tational level, during which cortical coding reflects the dimension
along which tones are ordered from low to high by their f; value.

Although we have examined the representation of tones within
one musical key, it should be noted that the second-order repre-
sentational structure that exists between different musical keys
naturally emerges as a consequence. Specifically, transposing the
STH into different keys and correlating each profile with one
another, the theoretical key relations comprising the “circle-of-
fifths” have been empirically recovered (Krumhansl and Kessler,
1982). Thus, because we have detailed the encoding of the specific
structure of the STH in cortex, we also establish the neurobiolog-
ical basis of the structure among different keys. This represents a
significant advance in understanding the neural correlates of
tonal structure. Prior research examining key relationships have
used fMRI (Janata et al., 2002); and limited by its relatively poor
temporal resolution, these measurements reflect the general ac-
cumulation of information across an extended musical passage
rather than mechanisms operating at the timescale of an individ-
ual tone.

Having established the basis of musical pitch representations
and the dynamics with which they emerge in cortex, several out-
standing questions remain. First, what are the underlying com-
putations performed by populations in the auditory pathway that
transform low-level stimulus features, such as basic frequency
information, into a percept highly abstracted from acoustics?
Elucidating the architecture and mechanisms of such a network is
relevant to the more domain-general question of how incoming
sensory input gets integrated with schematic “top-down” knowl-
edge, a central problem in the study of human perception. Sec-
ond, while current findings are based solely on data collected from
musically trained subjects, future work should examine whether re-
sults generalize to nonmusicians. More broadly, to address out-
standing questions relating to the effects of domain expertise on
perception, research should explore how the neural substrates of
tonal structure emerge in the auditory system throughout the
course of musical development. Computational modeling has
shown that simple networks exposed to the natural statistics of
tonal music are capable of developing hierarchical pitch structure
(Tillmann et al., 2000), suggesting that the brain may heuristi-
cally learn such representations over the lifetime. The current
paradigm should therefore be extended to include subjects at
various levels of musicianship to map the time course and
examine specific mechanisms associated with learning of pitch
structure.
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