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The failure of lesioned axons to regenerate
in the mammalian CNS underlies some of
the permanent functional deficits caused
by ischemic stroke, traumatic brain in-
jury, and spinal cord injury. Axonal re-
generation is prevented by both extrinsic
factors including inhibitory molecules
found in the post-traumatic extracellular
environment and intrinsic factors that in-
volve the neuron’s internal reaction to in-
jury. One manipulation of an axotomized
neuron’s internal signaling that has led to
an augmented regenerative response is the
elevation of cAMP. cAMP levels were first
manipulated to enhance the regeneration
of a severed axon by Kilmer and Carlsen
(1984) in the peripheral nervous system.
Later, Song et al. (1998) demonstrated in
vitro that a cAMP analog allowed axons to
overcome the inhibitory effect of myelin-
associated glycoprotein (MAG). Subse-
quent work was able to induce regeneration
of primary afferent axons after a dorsal
column lesion with the addition of a
cell-permeable analog of cAMP in vivo
(Neumann et al., 2002; Qiu et al., 2002).
Eventually, cAMP elevation was demon-
strated to improve functional outcomes
after spinal cord injury in rats (Kajana and
Goshgarian, 2009), although its most
promising clinical applications have been

as part of combination therapies (Pearse
et al., 2004).

Given that cAMP is a second messen-
ger involved in numerous signaling cas-
cades, it is important to determine which
downstream effectors underlie its ability
to promote axon regeneration. The best
studied effector of cAMP is protein kinase
A (PKA). When PKA was inhibited, cul-
tured axons’ ability to overcome MAG
inhibition was abolished indicating that
targets of PKA promote axon growth (Qiu
et al., 2002). Surprisingly, however, when
PKA activity was blocked in vivo after a
cervical spinal cord injury, functional re-
covery improved in rats (Wei et al., 2016).
This suggests that cAMP activates separate
pathways that produce beneficial or detri-
mental effects after spinal cord injury.

The exchange protein activated by
cAMP (Epac) is a more recently established
family of proteins targeted by cAMP, and
they act as nucleotide exchange factors for
the small GTPase Rap (de Rooij et al.,
1998). Interestingly, activation of Epac1/2
has been shown to increase neurite out-
growth in vitro (Murray and Shewan,
2008). Guijarro-Belmar et al. (2019) pub-
lished a study in The Journal of Neurosci-
ence that examined the role of Epac2 in
neurite outgrowth, growth cone guid-
ance, and glial reactivity in vitro and ex
vivo. Using both cortical and dorsal root
ganglia neural cultures, the authors showed
that an Epac2 agonist increased neurite
outgrowth, induced attractive growth
cone turning, and was sufficient to miti-
gate growth inhibition by chondroitin

sulfate proteoglycans (CSPGs). Each of
these results mirror the effects of cAMP:
cAMP increases neurite outgrowth (Neu-
mann et al., 2002), induces a growth cone
turning response (Song et al., 1998), and is
sufficient to overcome an inhibitory envi-
ronment (MAG inhibition was tested in
the cAMP studies, Cai et al., 2001; whereas
CSPG inhibition was tested by Guijarro-
Belmar et al., 2019). The resemblance be-
tween the effects of cAMP and Epac2
activation in axon regeneration experi-
ments strengthens the claim that Epac2 is an
important downstream mediator responsible
for cAMP-induced axonal regeneration.

Guijarro-Belmar et al. (2019) next ex-
amined the effects of the Epac2 agonist in
an organotypic spinal cord culture and in-
jury model. Postnatal day 1–3 rat spinal
cords were dissected, cultured as intact
spinal cord slices, and then lesioned. To
locally deliver the Epac2 agonist at the site
of injury, the authors prepared a fluore-
nylmethyloxycarbonyl (Fmoc)-based hy-
drogel and incorporated the agonist in the
hydrogel before treatment. Tissue treated
with the Epac2 agonist delivered in the hy-
drogel exhibited significantly more axonal
outgrowth into the lesioned area than tis-
sue grown with the hydrogel alone.

Guijarro-Belmar et al. (2019) also ex-
amined the effects of Epac2 agonism on
the glial reaction to injury. Treatment of
dissociated microglia and astrocytes with
lipopolysaccharide, a bacterial molecule,
induced an inflammatory response, as in-
dicated by an increase in the proportion of
iNOS-positive microglia and GFAP inten-
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sity in astrocytes. The Epac2 agonist re-
duced these effects. Epac2 activation also
reduced astrocyte reactivity (GFAP den-
sity) and microglial activation (perimeter
of Iba1-positive cells) in the ex vivo spinal
cord injury model. These findings are
consistent with previous reports that Epac
activation diminished the inflammatory
response in microglia (Quan et al., 2013).

Finally, Guijarro-Belmar et al. (2019)
assessed locomotor recovery after a spinal
cord contusion in rats. Three groups were
compared: a group that received the
Epac2 agonist via an Fmoc-based hydro-
gel, a control group, and a sham surgery
group. The Epac2 agonist was applied 3
weeks after injury, and by week 7 there
was a significant improvement in open-
field locomotion in the treatment group
over the control group. However, the au-
thors did not provide in vivo histological
data showing the effects of Epac2 agonism
on axonal regeneration, astroglial reactiv-
ity, or microglial activation. In addition,
as the authors note, the control group re-
ceived a spinal cord injury but did not re-
ceive the hydrogel as a vehicle control.
Self-assembling hydrogels (Fmoc based
hydrogels being one such subtype) alone
can increase axonal regeneration in ani-
mal models of spinal cord injury (Cigog-
nini et al., 2014). The absence of a vehicle
control makes it impossible to fully parse
out the effects of Epac2 agonism from the
effects of providing a substrate for axons
to adhere to in vivo.

The data presented by Guijarro-Belmar et
al. (2019) provide important insight into
the mechanisms underlying cAMP-triggered
neurite growth and axonal regeneration.
How Epac2 acts downstream to ultimately
produce the observed neuronal growth
behavior is still unresolved, but studies
from other models may provide clues.
Epac has been shown to activate CREB,
which is sufficient to induce the regener-
ation of sensory axons after a spinal cord
injury (Gao et al., 2004). CREB is a basic
leucine zipper transcription factor that
binds directly to DNA at highly conserved
nucleotide sequences (CRE response ele-
ments) in promotor or enhancer regions
to modulate downstream gene expres-
sion. Arginase 1 and BDNF are two genes
upregulated by CREB (Gao et al., 2004;
Shieh et al., 1998), and both could con-
tribute to CREB’s role in axon regenera-
tion. Arginase-1 catalyzes the conversion of
L-arginine to L-orinthine, which limits the
availability of the substrate required to
produces nitrous oxide, this ultimately
shifts immune cells from a proinflamma-
tory to pro-reparative phenotype (for
review, see Yang and Ming, 2014).

The CREB-mediated upregulation of
arginase-1 might underlie the effect of
Epac2 activation on the attenuation of ac-
tivated microglia. BDNF and its role in
axon regeneration and functional recov-
ery following CNS damage has been the
subject of extensive investigation. BDNF
has been shown to promote neuronal sur-
vival, axonal regeneration, plasticity, and
remyelination (for review, see Weishaupt
et al., 2012). In addition to activating
CREB, Epac activates the small GTPase
Rap1, which subsequently leads to B-RAF
signaling, that has also been shown to ini-
tiate a regenerative growth response in
neurons (O’Donovan et al., 2014). B-RAF
is a Raf kinase and component of the
MAPK/ERK signaling pathway that has
downstream roles promoting cell divi-
sion, proliferation, and survival. Although
the mechanisms surrounding B-RAF acti-
vation and axon regeneration are still the
subject of debate, there is speculation that
the activation of the ERK pathway pro-
motes the stabilization of microtubules
(O’Donovan et al., 2014) and this micro-
tubule stabilization directly enhances the
ability of axons to grow (Hellal et al.,
2011). Further work is required to eluci-
date whether one, both, or neither of these
downstream pathways are the mecha-
nisms by which Epac activation leads to
neuronal growth.

In summary, Guijarro-Belmar et al.
(2019) show that Epac2 activation pro-
duces strikingly similar axonal regenera-
tion as the administration of its upstream
signaling molecule cAMP. Epac2 activa-
tion is sufficient to overcome CSPG inhi-
bition and to induce axons to grow into
the lesioned site of an organotypic model
of spinal cord injury. Further work is needed
to determine whether Epac2 activation
alone is sufficient to improve function after
spinal cord injury and to elucidate the
downstream mechanisms that produce
these neuronal growth responses.
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