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Cardiovascular exercise (CE) is a promising intervention strategy to facilitate cognition and motor learning in healthy and diseased
populations of all ages. CE elevates humoral parameters, such as growth factors, and stimulates brain changes potentially relevant for
learning and behavioral adaptations. However, the causal relationship between CE-induced brain changes and human’s ability to learn
remains unclear. We tested the hypothesis that CE elicits a positive effect on learning via alterations in brain structure (morphological
changes of gray and white matter) and function (functional connectivity and cerebral blood flow in resting state). We conducted a
randomized controlled trial with healthy male and female human participants to compare the effects of a 2 week CE intervention against
a non-CE control group on subsequent learning of a challenging new motor task (dynamic balancing; DBT) over 6 consecutive weeks. We
used multimodal neuroimaging [T1-weighted magnetic resonance imaging (MRI), diffusion-weighted MRI, perfusion-weighted MRI,
and resting state functional MRI] to investigate the neural mechanisms mediating between CE and learning. As expected, subjects
receiving CE subsequently learned the DBT at a higher rate. Using a modified nonparametric combination approach along with multiple
mediator analysis, we show that this learning boost was conveyed by CE-induced increases in cerebral blood flow in frontal brain regions
and changes in white matter microstructure in frontotemporal fiber tracts. Our study revealed neural mechanisms for the CE–learning
link within the brain, probably allowing for a higher flexibility to adapt to highly novel environmental stimuli, such as learning a complex
task.

Key words: cardiovascular exercise; motor learning; MRI; neuromodulation; neuroplasticity; skill acquisition

Introduction
Strategies to augment behavioral performance and learning in
healthy and diseased populations of all ages are proposed in sev-

eral scientific disciplines, such as cognitive psychology, neurol-
ogy, and sport science (Wulf et al., 2010; Sternberg and Sternberg,
2012). Cardiovascular exercise (CE) receives much attention as a
natural and easily accessible strategy to maintain or improve car-
diovascular and musculoskeletal integrity throughout life (Fiuza-
Luces et al., 2013), but it was only until recently that CE was
discussed as a valid neuro- and cognitive-enhancement strategy
in animal models as well as humans (Voss et al., 2013a).
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Significance Statement

It is established that cardiovascular exercise (CE) is an effective approach to promote learning and memory, yet little is known
about the underlying neural transfer mechanisms through which CE acts on learning. We provide evidence that CE facilitates
learning in human participants via plasticity in prefrontal white matter tracts and a colocalized increase in cerebral blood flow.
Our findings are among the first to demonstrate a transfer potential of experience-induced brain plasticity. In addition to practical
implications for health professionals and coaches, our work paves the way for future studies investigating effects of CE in patients
suffering from prefrontal hypoperfusion or white matter diseases.
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Behavioral research demonstrates CE-induced cognitive (Smith
et al., 2010) and motor performance improvements (Roig et al.,
2012; Taubert et al., 2015). Yet surprisingly, the biological pro-
cesses by which CE elicits these beneficial effects are far from
clear, especially for humans (Voss et al., 2013b; Stillman et al.,
2016). Recent studies investigating single bouts of CE in humans
shed first light on this question and demonstrated exercise-
induced elevation of learning-related humoral parameters
(Skriver et al., 2014), alterations of cortical excitability (Ostadan
et al., 2016; Andrews et al., 2019), as well as increased cerebral
blood flow (CBF) and functional connectivity (Rajab et al., 2014).
Because such physiological responses to acute exercise often re-
turn to rest levels quickly (Heinonen et al., 2014), the mecha-
nisms by which repeated or regular exposure to CE affect
behavioral performance and learning might be different.

Animal studies suggest that long-term CE interventions (i.e.,
multiple bouts of exercise over several weeks or months) create a
fertile metabolic and structural milieu in the brain to support
subsequent learning, for example by affecting synapses, neuro-
glia, vasculature, myelin plasticity, and the expression of
plasticity-related genes and growth factors (Voss et al., 2013b). It
is generally assumed that the bulk effect of these molecular and
cellular events are correlated with macroscopic and mesoscopic
measurements of brain structure and brain function, which can
be mapped in vivo using high-resolution magnetic resonance im-
aging (MRI; Blumenfeld-Katzir et al., 2011; Sampaio-Baptista et
al., 2013; Lerch et al., 2017).

Important MRI sequences used in neuroplasticity research are
T1-weighted (T1w) and diffusion-weighted (DW) MRI, allowing
to estimate morphometric properties of gray matter (Ashburner
and Friston, 2000) and to infer microstructural features of white
matter such as axonal packing, membrane properties, and myeli-
nation (Beaulieu, 2002; Song et al., 2005), respectively. Using
these methods, an increasing number of longitudinal studies
have reported CE effects on cortical morphology and white mat-
ter microstructure from early adulthood to senescence (Erickson
et al., 2011; Voss et al., 2013a; Svatkova et al., 2015). Complemen-
tary, functional neuroimaging methods like resting-state func-

tional MRI (rs-fMRI) and perfusion MRI
are used to study changes in brain connec-
tivity and cerebral circulation. Studies
using these methods have shown exercise-
induced changes in functional connectiv-
ity (Voss et al., 2010; van der Stouwe et al.,
2018) and CBF at rest (Maass et al., 2015).

However, the potential behavioral im-
plications of exercise-induced neuroplas-
ticity have often not been assessed at all or,
if so, without statistically testing for medi-
ation (Stillman et al., 2016). This is sur-
prising, because structural and functional
properties of the brain are associated with
subsequent cognitive and motor perfor-
mance and learning (Deary et al., 2006;
Cole et al., 2012; Sampaio-Baptista et al.,
2014; Lehmann et al., 2019). Further-
more, several studies have reported that
long-term cognitive and motor training
may elicit behaviorally-relevant structural
and functional changes of the brain (Dra-
ganski et al., 2004; Taubert et al., 2010,
2011; Engvig et al., 2012).

Therefore, if (1) CE stimulates struc-
tural and functional plasticity and (2) learning critically depends
on the brain and its continual structural and functional reorga-
nization, would exposure to a CE intervention improve subse-
quent learning by affecting brain structure and function? We
hypothesize that CE might prepare the brain for future experi-
ences in a way that necessary structural and functional precondi-
tions for high performance are already in place before learning
starts.

Materials and Methods
Participants and experimental design. We used a sequential transfer design
(Fig. 1) to investigate whether 2 weeks of CE speeds up subsequent
learning and, if so, to investigate whether this effect was driven by
exercise-induced structural and functional plasticity. A total of 34
healthy, right-handed adults of either sex (11 male, 23 female; age range
18 –35 years) were recruited for the study (3 dropouts due to illness or
injury). Sample size estimation was based on the expected behavioral
effect of CE on subsequent learning (ANCOVA-based between-group
difference adjusted for age, sex, and initial performance of motor skill);
assuming an effect size of f � 0.5 (Quaney et al., 2009; Roig et al., 2012,
2013), probability of type I error � � 0.05, and power � � 0.8 yields a
sample size of n � 34 (Faul et al., 2007). Exclusion criteria were contra-
indications to MRI, body mass index (BMI) � 30 kg/cm 2, a history of
neuropsychiatric diseases, left-handedness, self-reported physical activ-
ity of �4 h/week, prior experience with the skill to be learnt, and past
or present performance-oriented participation in endurance and/or
coordinative-demanding sports (for example gymnastics, slacklining).
The study was performed in accordance with the Declaration of Hel-
sinki and approved by the Ethics Committee of the University of
Leipzig. Subjects gave their informed written consent and underwent
neurological examination as assessed by a credentialed physician be-
fore participation.

Subjects were randomly (gender-balanced) assigned to groups
RESTLEARN (n � 16) and EXELEARN (n � 15; for group characteris-
tics, see Table 1). All participants engaged in 6 consecutive weeks of
learning a well established dynamic balancing task (DBT; Wulf et al.,
2001). We chose complex motor skill acquisition as a learning paradigm
because the vast majority of existing studies focused on CE-induced
changes in cognitive or motor performance, rather than learning,
whereas the effect of CE on the acquisition of novel tasks or skills over

Figure 1. Overview of the experimental design. Subjects were randomly assigned to either 2 weeks of CE or no exercise (life as
usual). White squares depict seven training sessions subjects in the CE group engaged in. After the intervention period, both groups
learned a complex dynamic balancing task over six training sessions (black squares). MRI measurements to assess exercise-related
neuroplasticity and standing balance assessments were conducted before the experiment (t0) and after the intervention/before
DBT learning (t1). Furthermore, all subjects underwent a cardiovascular fitness assessment at t0 to determine aerobic fitness levels
and to derive intensity prescriptions for the intervention group’s training schedule.
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longer timescales remains largely underexplored (Taubert et al., 2015).
Before learning commenced, the intervention group EXELEARN under-
went a 2 week supervised and individually tailored CE intervention,
whereas the control group RESTLEARN continued with their habitual
activities (life as usual) in parallel (Fig. 1). The rate of adherence was
100% for both CE intervention and DBT learning. Concomitantly, struc-
tural (T1w and DW MRI) and functional [BOLD rs-fMRI and pulsed
arterial spin labeling (PASL)] MRI measurements were undertaken be-
fore and after CE allowing us to track exercise-induced neuroplasticity.
Before the experiment started, all subjects underwent standing balance
(posturography) and aerobic fitness (cycle ergometry) assessments.
Standing balance tests were repeated after the 2 week intervention period
to gain insight into the specificity (or generality) of the behavioral effects
of exercise. Endurance test results were used to derive adequate intensity
prescriptions for the CE intervention of group EXELEARN and to com-
pare baseline aerobic fitness between groups.

Standing balance assessment. For general balance assessment, a Wii
Balance Board (Nintendo) in combination with standing balance evalu-
ation software (pro-WISS) was used. Numerous studies have shown the
Wii Balance board to be a reliable and valid device and therefore a suit-
able tool for balance assessment (Weaver et al., 2017; Clark et al., 2018).
We used three posturographic standard tasks based on common use in
the literature, namely double-limb stance with eyes open (DLO), double-
limb stance with eyes closed (DLC), and single-limb stance with eyes
open (SLO; Kapteyn et al., 1983; Clark et al., 2010). For each condition,
three trials with a length of 30 s each were conducted. Subjects were
instructed to place their hands on their hips and remain as still as possible
during the trial. For subsequent analyses, we used the total path length of
the center of pressure (CoP) and the sway area (SA) of the CoP as derived
from the statokinesigram. The best trial for each condition was consid-
ered for between-group comparison of baseline balance performance
and performance change over time.

Cardiovascular fitness assessment. Before engaging in 2 weeks of either
exercise (EXELEARN) or rest (RESTLEARN), all participants performed
a graded incremental exercise test (GXT) on a bicycle ergometer (Ergo-
line, ergoselect 200). We used the standard scheme of the World Health
Organization (Hollmann et al., 2012) with an initial work intensity of 25
W and an increase of 25 W every 2 min (pedaling rate 60 –70 � min �1).
The GXT was terminated after completion of the stage during which a
heart rate of 170 � min �1 was reached. Heart rate was continuously
monitored (Polar Elektro Oy H7) and capillary whole-blood samples
were drawn from a hyperemic earlobe 15–25 s before the end of each
GXT stage.

Body weight-adjusted power output (physical working capacity;
PWC) at fixed heart rates of 120 � min �1 (PWC120) and 170 � min �1

(PWC170) was determined by linear interpolation of the workload–
heart rate pairs (Eston and Reilly, 2001). Lactate concentrations were
determined photometrically using a laboratory analyzer. Workload–
lactate pairs were fitted with a degree three polynomial and two

bodyweight-adjusted indices of cardiovascular fitness were calculated.
These were (1) the workload at a fixed lactate concentration of 3 mmol �
l �1 (P3), and (2) the individual anaerobic threshold (IAT) determined
with the 1.5 mmol method as described previously (Dickhuth et al.,
1999). Body weight-adjusted P3 and IAT are both recognized as valid
indicators of maximal lactate steady state and therefore cardiovascular
fitness (Föhrenbach et al., 1987; Faude et al., 2009).

Cardiovascular exercise intervention. Participants of the EXELEARN
group performed seven supervised training sessions of cycling spread
over 2 weeks. The primary aim of CE was to strain the anaerobic–lactic
energy system in every training session, because high-intensity exercise
has been shown to be particularly effective to elevate learning-related
humoral and brain biomarkers known to induce several neuromodula-
tory effects, among them lactate (Ide et al., 2000; Yang et al., 2014; El
Hayek et al., 2019), brain-derived neurotrophic factor (BDNF; Afzalpour
et al., 2015; El Hayek et al., 2019), vascular endothelial growth factor
(VEGF; Morland et al., 2017), or cortico-motor excitability (Andrews et
al., 2019). Note that the intervention was designed as a means to improve
the brain’s capacity for subsequent motor learning, and not necessarily to
improve cardiovascular fitness. Especially for young participants, the
current literature supports the idea that the effectiveness of CE to im-
prove behavioral performance and learning primarily depends on exer-
cise intensity (Skriver et al., 2014; Taubert et al., 2015; Hashimoto et al.,
2018), rather than gains in cardiovascular fitness (Etnier et al., 2006).
However, exercise was not to be too strenuous to avoid stress and accu-
mulating fatigue (overreaching) throughout the time course of the inter-
vention, potentially exerting a negative effect on the neuroplastic
potential of the brain (Smith et al., 1995; Billat et al., 1999).

Taking these considerations into account, each training session started
with continuous cycling at PWC120 for 5 min, immediately followed by
two 3 min phases with a gradual increase of exercise intensity in six steps
of 30 s each up to the individual 100% PWC170, in which intensity peaks
were interspersed by another 4 min at PWC120 (Woost et al., 2018).
Exercise ended with a cooling down phase at PWC120 for 4 min (overall
duration 19 min). For the last four training sessions, the duration of the
two intensity peaks was increased to 4 min, respectively, while the rest of
the protocol remained unchanged. An increase of exercise intensity in the
second week was chosen to avoid a habituation effect potentially result-
ing in a reduced neuroplastic response (Knaepen et al., 2010). Further-
more, it has been shown that a gradual increase of training intensity
fosters the transfer effect of CE on coordinative-motor functions, for
example in terms of rehabilitation outcomes of rats that were given an
artificial stroke (Sun et al., 2014).

For each subject, we drew blood samples from the earlobe in the first
training session of Week 1 (19 min program) and the first training session
of Week 2 (21 min program), respectively. Sampling was performed five
times during the respective training sessions. To assure that exercise-
induced lactatemia took place, we first averaged the lactate concentra-
tions of each training session separately before averaging the resulting

Table 1. Between-group comparison of demographic, anthropometric, aerobic fitness, and standing balance data at baseline

EXELEARN (n � 15) RESTLEARN (n � 16) EXELEARN vs RESTLEARN

Age, y 23 (7) 23.5 (4) U(16,15) � 110.0, z � �0.40, p � 0.71
Sex, �/� 6/9 5/11 � 2

(1) � 0.25, p � 0.61
Height, m 1.73 (0.11) 1.74 (0.09) t(29) � 0.26, p � 0.80
Weight, kg 65.6 (13.29) 66.5 (9.56) t(29) � 0.22, p � 0.83
BMI, kg/m 2 21.63 (2.19) 21.85 (2.08) t(29) � 0.29, p � 0.77
Handedness (Oldfield, 1971) 86 (20) 100 (20) U(16,15) � 99.0, z � �0.88, p � 0.42
IAT (Dickhuth et al., 1999), W/kg 2.19 (0.48) 1.99 (0.46) t(29) � �1.21, p � 0.24
P3 , W/kg 2.12 (0.72) 1.77 (0.36) U(16,15) � 74.0, z � �1.82, p � 0.07
LOP DLO, mm 979.6 (181.82) 959.38 (144.25) t(29) � �0.34, p � 0.73
LOP DLC, mm 1060.33 (195.38) 1017.88 (144.67) t(25.74) � �0.68, p � 0.50
LOP SLO, mm 1684.67 (336.87) 1626.13 (256.39) t(29) � �0.55, p � 0.59
SA DLO, mm 2 44.24 (36.41) 37.33 (37.75) U(16,15) � 115.0, z � �0.20, p � 0.86
SA DLC, mm 2 67.33 (66.31) 58.01 (59.66) U(16,15) � 91.0, z � �1.15, p � 0.26
SA SLO, mm 2 334.37 (130.29) 268.85 (110.59) U(16,15) � 87.0, z � �1.30, p � 0.20

Descriptive statistics refer to frequencies (in the case of �2 test), median and interquartile range (in case of Mann–Whitney U test), or mean and SD (in case of t test or Welch’s test). IAT, Individual anaerobic threshold; P3 , workload at a fixed
lactate concentration of 3 mmol � l �1.
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values for both training sessions together. The resulting mean lactate
value was subsequently normalized to the IAT (in terms of the absolute
lactate value) of every subject and compared against �0 � 100 by means
of a one-sample t test. Average training lactate values were significantly
[mean difference � 44.48%, 95% CI (18.98, 69.98)] higher than the IAT:
t(14) � 3.74, p � 0.002. We conclude from this that the intervention was
successful in straining the anaerobic lactic metabolism.

Assessment of extra-study physical activities. To control extra-study lev-
els of physical activity (PA), subjects were asked to report their PA (ex-
cept the activities related to the study) by means of a self-report
questionnaire [International Physical Activity Questionnaire short-form
(IPAQ-SF); Craig et al., 2003]. IPAQ-SF consists of seven items to cap-
ture average daily time spent sitting, walking, and engaging in moderate
and vigorous PA over the last 7 d. Importantly, IPAQ-SF is one of the few
existing PA questionnaires to show acceptable to good results for both
reliability and validity (for review, see Helmerhorst et al., 2012).

The questionnaire was administered in each week of the study, i.e., two
questionnaires during the intervention phase and six questionnaires dur-
ing the learning phase. IPAQ-SF responses were converted to Metabolic
Equivalent Task minutes per week (MET-min � wk �1) according to the
scoring protocol of The IPAQ Group (2005).

Whole-body DBT. After 2 weeks of exercise (EXELEARN) or life as
usual (RESTLEARN), subjects engaged in 6 weeks of DBT practice (Wulf
et al., 2001) on a seesaw-like platform (stability platform, model 16030,
Lafayette Instrument) with one training session each week. The platform
is moveable in a mediolateral direction with a maximum deviation of �
26° on either side. Each training session consisted of 15 trials with an
intertrial break of 2 min to avoid fatigue. Standing with both feet on the
platform, subjects were instructed to keep the board in a horizontal
position for as long as possible during a 30 s trial (Taubert et al., 2010).
The behavioral outcome measure was the time (in seconds) in which
subjects kept the platform in a horizontal target interval of � 3° on either
side [time balancing (BAL)]. After each trial subjects received verbal
feedback about their BAL (knowledge of results), whereas no feedback
regarding strategy or other aspects of the task was provided (discovery
learning approach). During task execution, participants’ attention was
directed to a fixation cross affixed to the wall in front of them (external
focus of attention).

MR image acquisition. MRI data were acquired on a 3T MAGNETOM
Prisma system (Siemens Healthcare) using a 32-channel phased-array
head coil. We used the same protocol for each volunteer and each scan-
ning session. Whenever possible, subjects were measured at approxi-
mately the same time of day during the study. The imaging protocol
consisted of a series of structural and functional MRI sequences, as out-
lined below. Subjects were asked to relax, keep their mind free of any
thoughts, and to move as little as possible. With respect to the functional
image acquisitions, they were additionally instructed to stay awake and
alerted while keeping their eyes closed.

Anatomical images were acquired using a T1w three-dimensional
magnetization-prepared rapid gradient echo sequence (Mugler and
Brookeman, 1990) with 176 slices in sagittal orientation. The imaging
parameters used were as follows: inversion time (TI) � 900 ms; repeti-
tion time (TR) � 2300 ms; echo time (TE) � 2.98 ms; readout pulse flip
angle, � � 9°; image matrix � 256 � 240; field-of-view (FOV) � 256 �
240 mm 2; nominal spatial resolution � 1 � 1 � 1 mm 3.

Whole-brain DW images were acquired from 88 axial slices with a
spatial resolution of 1.72 � 1.72 � 1.7 mm 3 (no gap) with a twice-
refocused spin echo echoplanar imaging sequence (Reese et al., 2003):
TE � 80 ms, TR � 11,000 ms, � � 90°, FOV � 220 � 220 mm 2, matrix:
128 � 128, parallel imaging: GRAPPA acceleration factor 2 (Griswold et
al., 2002), 60 diffusion-encoding gradient directions, b value � 1000
s/mm 2. Additionally, seven datasets without diffusion weighting (b � 0
s/mm 2) were acquired initially and interleaved after each block of 10
diffusion-weighted images as anatomical reference for off-line motion
correction.

rs-fMRI scans were acquired using T2*-weighted gradient-echo EPI
(GE-EPI) with multiband acceleration, sensitive to BOLD contrast
(Feinberg et al., 2010; Moeller et al., 2010). A total of 420 whole-brain
volumes were acquired using the following parameters: axial acquisition

orientation, phase encoding � A �� P, echo spacing � 0.67 ms, voxel
size � 2.3 mm isotropic, FOV � 202 � 202 mm 2, matrix � 88 � 88, 64
slices with 2.3 mm thickness, TE � 30 ms, TR � 1400 ms, � � 69°, partial
Fourier factor � 7/8, multiband acceleration factor � 4, acquisition
bandwidth � 1775 Hz/Px, interleaved slice order.

Quantitative resting perfusion was measured using PASL, which uses
magnetically-labeled water molecules in arterial blood as an endogenous
tracer to non-invasively assess CBF. We used the official Siemens PASL
sequence (PICORE-Q2TIPS; Luh et al., 1999) with the following se-
quence parameters: 10 cm labeling slab with a 19 mm gap to the imaging
slab, TI1 � 700 ms (begin of periodic saturation pulses after inversion),
TI1s � 1975 ms (end of periodic saturation pulses after inversion), and
TI2 � 2000 ms (begin of image acquisition after the inversion pulse).
Mild flow weighting gradients with Venc � 10 cm s �1 were applied to
suppress contributions from larger scale arterial vessels. Interleaved label
and control images of 18 axial slices (ascending order, thickness � 4 mm,
gap � 1 mm) were acquired using a GE-EPI readout (FOV � 192 � 192
mm 2, matrix � 64 � 64, partial Fourier factor � 6/8, acquisition band-
width � 1815 Hz/Px, TR/TE � 3000/15 ms, � � 90°). Each PASL acqui-
sition consisted of 50 label-control pairs. Additionally, a separate proton
density image (m0) was collected at the start of the acquisition to scale the
perfusion signal differences by the equilibrium brain tissue signal (cali-
bration). Because we expected exercise-induced mediation effects in
brain regions that were previously found to be related with DBT perfor-
mance (Taubert et al., 2010; Lehmann et al., 2019), we ensured that the
imaging slab covers the prefrontal and motor regions of the brain, at the
expense of occipital regions and the cerebellum (Alfini et al., 2019).

Preprocessing of MR images. The applied preprocessing pipelines for
T1w and DW MRI data were adapted from recent longitudinal studies
(Engvig et al., 2012; Wenger et al., 2017). T1w-preprocessing was per-
formed using the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm/)
incorporated in the SPM8 v8.6313 software package (Wellcome Trust
Centre for Neuroimaging, UCL, London, UK; http://www.fil.ion.
ucl.ac.uk/spm/) running under a MATLAB 2012a (MathWorks) envi-
ronment. In brief, we used a default procedure with the following major
steps: visual quality assessment, bias correction, semiquantitative tissue
segmentation (Ashburner and Friston, 2005), normalization to MNI152
space using DARTEL (Ashburner, 2007), nonlinear only modulation,
and spatial smoothing with a Gaussian kernel of 8 mm full-width at
half-maximum (FWHM). To avoid partial volume effects near the bor-
der between gray and white matter, all voxels with a gray matter value
�0.2 were excluded from subsequent statistical analyses.

DW datasets were processed using a pipeline based on the FMRIB
Software Library v5.0.9. (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL; Smith
et al., 2004). First, the T1w structural scans were used for skull stripping.
The seven images without diffusion weighting distributed in the whole
sequence were used to estimate motion correction parameters using
rigid-body transformations (Jenkinson et al., 2002). Motion correction
parameters were interpolated for all 67 volumes and combined with a
global registration to the T1 anatomy computed with the same method.
The gradient direction for each volume was corrected using the rotation
parameters (Leemans and Jones, 2009). The registered images were in-
terpolated to the new reference frame with an isotropic voxel resolution
of 1.72 mm/1 mm, and the three corresponding acquisitions and gradi-
ent directions were averaged. Subsequently, a diffusion tensor (Basser
and Pierpaoli, 1996) was fitted at each voxel. To increase tract-based
spatial statistics (TBSS) reliability and therefore statistical power, data
were smoothed using a 1 voxel median filter before tensor fitting (Mad-
hyastha et al., 2014). The diffusion indices fractional anisotropy (FA),
mean diffusivity (MD), and radial diffusivity (��) were computed from
the eigenvalues of the diffusion tensor with the respective formulas (Pier-
paoli and Basser, 1996). Subsequent steps followed the TBSS approach
(Smith et al., 2006), including creation of a subject-wise mid-space tem-
plate (Engvig et al., 2012), nonlinear alignment of each subject-wise tem-
plate to every other one to identify the most representative template of
the sample (target), application of the warps found in the previous stage
to register all templates to MNI152 space, and averaging/thinning/skel-
etonization with an FA value � 0.2. The mid-space registered FA, MD,
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and �� maps of all measurement points were projected onto this skeleton
using the warp fields created previously.

The rs-fMRI data were preprocessed using the toolbox fMRIPprep
1.1.3 (Esteban et al., 2019), a Nipype (Gorgolewski et al., 2011) based
toolbox. Functional data were slice time corrected using AFNI’s (Cox,
1996) 3dTshift, motion corrected using FSL’s mcflirt (Jenkinson et al.,
2002), and susceptibility distortion corrected (based on a field map)
using D. Greve’s “epidewarp.fsl” script (http://www.nmr.mgh.harvard.
edu/�greve/fbirn/b0/epidewarp.fsl), followed by intrasubject registra-
tion to the respective T1w image and spatial normalization to the ICBM
152 Nonlinear Asymmetrical Template 2009c (Fonov et al., 2009). Next,
a diverse set of confound estimates was extracted, among them global
signal in the white matter and the CSF based on the segmented T1w
image (Zhang et al., 2001). Subsequently, automatic removal of motion
artifacts using independent component analysis (ICA-AROMA; Pruim
et al., 2015) was performed on the preprocessed data in standard space
after a spatial smoothing of 6 mm FWHM was applied (Pruim et al.,
2015). Further nuisance regression was performed on the “non-
aggressively” de-noised time series from ICA-AROMA. Specifically, we
regressed white matter and CSF global signals, a column of ascending
numbers (linear trend removal), and a set of eight discrete cosine trans-
form (DCT) basis functions (high-pass filtering; Kiebel and Holmes,
2004) from the BOLD time series using FSL’s fslregfilt. Note that each of
the aforementioned nuisance regressors (i.e., white matter, CSF, linear
trend, DCTs) was orthogonalized with respect to the ICA-AROMA noise
components before the de-noising was performed to avoid reintroducing
artifacts or nuisance signal to the data (Esteban et al., 2019; Lindquist et
al., 2019).

Using the preprocessed functional data, we quantified two voxelwise
measures reflecting the hubness or centrality of network nodes based on
a graph theoretical approach. Degree centrality (DC) summarizes the
connection strengths of each node (voxel) to all other nodes (voxels) in
the network (Lohmann et al., 2013; van Duinkerken et al., 2017). In
contrast, eigenvector centrality (EC) reflects the relative importance of a
node on the network as a whole, such that high centrality values are
assigned to nodes (voxels), which are correlated with many other nodes
(voxels) that themselves are “central” (Lohmann et al., 2010). DC (node
power) and EC for each subject and time point were computed within a
study specific gray matter mask using the toolboxes fastECM (Wink et
al., 2012; van Duinkerken et al., 2017) and LIPSIA v3.0 (Lohmann et al.,
2010, 2018), respectively. With regard to the computation of EC maps,
we used a correlation metric in which negative Pearson correlation values
were set to zero, and positive values were left unchanged (Taubert et al.,
2011).

To generate resting state perfusion images from PASL data in standard
space, we used oxford_asl v3.9.21, which is part of the Bayesian Inference
for Arterial Spin Labeling MRI (BASIL) toolbox within FSL (Chappell et
al., 2009). Full quantification was performed using a single call to
oxford_asl, which included motion correction of the ASL series and re-
alignment of the calibration image to the series, automated spatial regu-
larization, label-control subtraction, relative CBF quantification, and
conversion of relative CBF to absolute physiological units (ml/100
g/min) by using the m0 image. With respect to relative CBF quantifica-
tion, we used a Bayesian model inversion technique (Chappell et al.,
2009) and model parameters consistent with the ASL Consensus Paper
for a magnetic field strength of 3 T (Alsop et al., 2015): longitudinal
relaxation time of arterial blood T1b � 1650 ms, longitudinal relaxation
time of brain tissue T1t � 1300 ms, and inversion efficiency � � 0.98. The
TI2 value fed into the model was increased from slice to slice by the
inter-slice acquisition time difference of 35 ms. Segmented T1w images
of the respective subjects were used to support brain extraction, registra-
tion of the CBF images to standard space, and partial-volume correction
(Chappell et al., 2011). Statistical analyses on partial-volume corrected
absolute CBF maps were conducted within a study specific mask contain-
ing only voxels with 100% CBF coverage across all participants in con-
junction with gray matter values � 0.2 across all participants.

Statistical analysis of between-group differences at baseline. Between-
group comparisons at baseline were conducted dependent on level of
measurement and whether assumptions of the independent samples t

test were met. Therefore, results are reported as � 2, Mann–Whitney, or t
statistics. If not otherwise stated, statistical tests of significance per-
formed throughout the manuscript were performed two-sided.

Statistical analysis of changes in general standing balance. To compare
exercise-induced performance changes regarding standing balance, we
first calculated percentage change scores between baseline (t0) and post-
intervention performance (t1) [	t0 � t1 � (t1 � t0)/t0 � 100]. The
percentage change scores were then adjusted for baseline performance of
the respective measure (residualization). Finally, the resulting residual-
ized change scores were analyzed by means of multivariate analysis of
covariance (MANCOVA), corrected for age and sex. One MANCOVA
model per condition of the posturographic assessment (DLO, DLC,
SLO) was calculated, including the dependent variables LOP and SA of
the respective condition.

Statistical analysis of extra-study physical activities. To compare extra-
study PA between groups, we first calculated every participant’s average
PA scores during the intervention phase (mean of IPAQ-SF responses of
Weeks 1 and 2) and the learning phase (mean of Weeks 3– 8), respec-
tively. As advocated by the test developers (The IPAQ Group, 2005),
between-group comparisons of IPAQ-SF data were performed with non-
parametric statistical methods (Mann–Whitney U test).

Statistical analysis of motor learning. To determine the DBT learning
rate, we first averaged performance values (BAL) of each training session
(15 trials) for every subject. The resulting six data points per subject were
then fitted with a general power function: y(x) � a � xn, which describes
motor learning over longer timescales well (Ivry, 1996). In this function,
the base a denotes initial task performance, x is training session (time
devoted to practice), and the exponent n indicates the slope of the func-
tion (rate of learning).

For subsequent statistical analyses, we used the slope of DBT improve-
ment across the training period as criterion variable. As expected, based
on the motor learning literature (Adams, 1987), we found a significant
negative relationship between a and n (r � �0.72, p � 0.001), potentially
leading to a spurious advantage of subjects low on a when analyzing
unadjusted n as dependent variable. Therefore, we used the base a of the
power function as covariate when assessing between-group behavioral
differences of the learning rate n. Likewise, we used a residualized score of
n in all correlational and mediation models described subsequently
(MacKinnon et al., 2013; Voss et al., 2013a). To calculate residualized n,
we initially used the base a of the fitted power function of all subjects to
predict n via linear regression and subsequently subtracted predicted n
from actual n. Thus, higher scores of residualized n indicated subjects
who learned faster than could be linearly predicted from initial perfor-
mance, and vice versa.

We conducted the following statistical tests to evaluate behavioral data
of motor learning. First, we identified potential baseline differences in
DBT performance by comparing the base a of the power function be-
tween EXELEARN and RESTLEARN (independent samples t test). Sec-
ond, we compared averaged performance of the first DBT training
session with the last training session (TS6) separately for each group
(dependent samples t test) to examine whether performance improve-
ments occurred during 6 weeks of practice. Third, we examined the effect
of the exercise intervention group on DBT learning rate by means of a
univariate ANCOVA, corrected for the influence of age, sex, and the base
of the power function a.

Nonparametric combination. To identify putative mediators of the CE–
learning relationship, we statistically tested whether CE influences sub-
sequent learning through changes in gray matter volume (	_GMV),
white matter microstructure (	_FA, 	_MD, 	_��), network centrality
(	_EC, 	_DC), or cerebral blood flow (	_CBF). The basic idea of our
statistical approach was to decompose the global mediation hypothesis
into a set of two univariate statistical models, and to collate evidence over
both partial submodels using the union-intersection principle (Pesarin
and Salmaso, 2010; Winkler et al., 2016). With respect to 	_GMV, 	_FA,
	_EC, 	_DC, and 	_CBF, we modeled the following directional t con-
trasts: higher exercise-induced structural/functional brain changes in
EXELEARN compared with RESTLEARN (corrected for the influence of
age and sex), along with a positive relationship between structural/func-
tional change and subsequent motor learning (corrected for the influ-
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ence of age, sex, and group). The opposite contrast directions were used
for 	_MD and 	_��.

Whole-brain voxelwise statistical analyses on all imaging modalities
were performed within a modified nonparametric combination (NPC)
framework using the Permutation Analysis of Linear Models v. alpha115
toolbox (PALM; Winkler et al., 2014, 2016) running in a MATLAB
R2017B environment. After conceptualizing the aforementioned sub-
hypotheses as linear models (ANCOVA/Regression), NPC started with
analyzing the submodels separately using synchronized permutations
(Winkler et al., 2016), before the resulting pieces of evidence were aggre-
gated using Fisher’s (1932) combining function. This creates a joint sta-
tistic representing whether the observed results are consistent with the
global (mediation) hypothesis. Note that the “global” null hypothesis of
the NPC is that all null hypotheses for the partial tests are true, and the
alternative hypothesis that any is false, such that the joint statistic is
significant if an aggregate of the partial tests is significant (Pesarin and
Salmaso, 2010; Winkler et al., 2016). This is compatible with current
thinking in statistical mediation analysis in that the simultaneous pres-
ence of significant paths linking predictor to mediator (a-path) and me-
diator to criterion (b-path) is not mandatory to establish a mediating
effect (Preacher and Hayes, 2008).

Threshold-free cluster enhancement (TFCE; Smith and Nichols, 2009)
was used to enhance cluster-like structures in the statistical images with-
out the need to define clusters beforehand in a binary way. A total of
10,000 permutations of the data for each partial test were generated to
build up the empirical null distribution to test against. Cluster-based
familywise error (FWE) correction was applied to the statistical maps
that emerged from the NPC by using the distribution of the maximum
statistic (Smith and Nichols, 2009; Winkler et al., 2014). Voxels were
considered significant at p values � 0.05, FWE-corrected. To localize the
results in stereotactic space, we used the Harvard-Oxford cortical atlas
(GMV, EC, DC, CBF) and the JHU white-matter tractography atlas (FA,
MD, ��) as implemented in FSL (Desikan et al., 2006; Hua et al., 2008).
Note that statistical analyses were conducted on residualized change
images (MacKinnon et al., 2013; Voss et al., 2013a); i.e., the baseline
measurement of each modality was regressed out from the pre/post-
percentage change image of the same modality using FSL’s fsl_glm. This
procedure allows to consider (1) a potential relationship between initial
brain structure/function and brain’s responsiveness to treatment, as well
as (2) a potential effect of baseline brain structure/function on future
motor learning success (Sampaio-Baptista et al., 2014; Lehmann et al.,
2019).

Statistical mediation. Similarly to previous studies examining brain
structure– behavior relationships (Weinstein et al., 2012; Bellander et al.,
2016), we followed up the results from the whole-brain analyses with
statistical mediation. Here, we used a regression-based approach to me-
diation, which evaluates the decline in the strength of the relationship

between predictor (group) and outcome (mo-
tor learning) when controlled for the influence
of the mediating variables. On the one hand,
we were interested whether the entire set of
putative mediators identified via the NPC anal-
yses would convey the effect of CE to learning
(total indirect effect; Preacher and Hayes,
2008). On the other hand, we also evaluated the
unique contribution of each mediator to trans-
mit the CE–learning effect while controlling
for the other mediators (specific indirect ef-
fects; Preacher and Hayes, 2008).

Before running statistical mediation, signifi-
cant clusters to emerge from the whole-brain
analyses were used as a mask for averaging and
extracting voxel values of residualized change for
each participant. Next, the putative mediators
were correlated with each other to select media-
tor sets with acceptable levels of collinearity
(Preacher and Hayes, 2008). Specifically, variable
pairs with a correlation coefficient of �r� � 0.7
(Dormann et al., 2013) were not included in the
same multiple mediator model.

To determine whether the collinearity-checked data mediate the rela-
tionship between binary-coded exposure to the intervention (0 �
RESTLEARN, 1 � EXELEARN) and motor learning (residualized n), we
calculated parallel mediation models with bootstrap confidence interval
(CI) estimation as implemented in the PROCESS v2.16.3 macro
(Preacher and Hayes, 2004) running under an SPSS v18 environment.
Resampling-based estimation of the mediated effect imposes no distri-
butional assumptions (Preacher and Hayes, 2008) and has shown to be
applicable even in case of small samples (n 
 25; Preacher and Hayes,
2004; Shrout and Bolger, 2002). To keep variation due to the random
resampling process to an absolute minimum, 50,000 bootstrap samples
were drawn using the percentile method. From each of the bootstrap
samples the total and specific indirect effects were computed and sam-
pling distributions were empirically generated. With the distribution,
percentile 95% CI were determined. A significant mediating effect is
assumed if the percentile 95% CI of an indirect effect does not contain
zero (Preacher and Hayes, 2008). Age and sex were added to all multiple
mediator models as covariates of no interest.

Results
Exercise accelerates motor learning but does not enhance
standing balance performance
We started our analyses by comparing groups for baseline differ-
ences in demographic, anthropometric, aerobic fitness, cognitive,
and standing balance variables. No significant between-group
differences were detected (all p values � 0.07; Table 1). Subjects
in the EXELEARN group exercised with lactate values that were
on average 44% higher compared with their IATs, such that the
intervention was successful in straining the anaerobic-lactic
energy system (see Materials and Methods). Between-group
comparisons regarding self-reported extra-study PA during the in-
tervention phase yielded no significant differences (vigorous PA:
U(16,15) � 105.0, z � �0.58, p � 0.58; moderate PA: U(16,15) �
107.5, z � �0.50, p � 0.65; walking PA: U(16,15) � 85.0, z �
�1.39, p � 0.17; total PA: U(16,15) � 96.0, z � �0.95, p � 0.34).
Likewise, comparable PA levels between groups were registered
during the learning phase (vigorous PA: U(16,15) � 119.0, z �
�0.04, p � 0.98; moderate PA: U(16,15) � 107.5, z � �0.50, p �
0.65; walking PA: U(16,15) � 113.0, z � �0.28,
p � 0.80; total PA: U(16,15) � 98.0, z � �0.87, p � 0.39).

DBT data indicate that both groups learned the dynamic bal-
ancing task (for performance curves over time, see Fig. 2A), be-
cause average BAL, our primary outcome measure of DBT
performance, increased significantly from the first to the last

Figure 2. Short-term exercise improves subsequent motor skill learning. A, Time course of DBT performance (time balancing)
over 6 weeks of training for groups EXELEARN (black) and RESTLEARN (gray). Dashed lines depict the start of a new training session
à 15 trials for each group. B, Group EXELEARN learned the DBT at a significantly higher rate compared with RESTLEARN: F(1,26) �
5.69, p � 0.025. Data are presented as estimated marginal means and SE (corrected for variance associated with initial DBT
performance, age, and sex). Asterisk indicates a significance level of p � 0.05.
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training session [RESTLEARN: t(15) � 8.39, p � 0.001, mean
difference � 5.77 s, 95% CI � (4.30, 7.23); EXELEARN: t(14) �
7.90, p � 0.001, mean difference � 7.36 s, 95% CI � (5.36, 9.36)].
To determine the impact of CE on DBT learning, a power func-
tion was fitted to each participant’s training data and a residual-
ized score of the exponent was used as dependent variable (see
Materials and Methods). In line with our hypothesis, participants
in group EXELEARN had a steeper slope of their learning curves
than RESTLEARN: F(1,26) � 5.69, p � 0.025, mean difference �
0.12, 95% CI � (0.02, 0.22), �p

2 � 0.18 (adjusted for initial DBT
performance, age, and sex; Fig. 2 B). Note that the groups did not
differ with respect to initial DBT performance: t(29) � �0.37, p �
0.71, mean difference � �0.53, 95% CI � (�3.45, 2.39), d �
0.13.

To gain insight into the specificity (or generality) of behav-
ioral CE effects, we also examined participants’ standing balance
performance before and immediately after the intervention. Age-
and sex-adjusted MANCOVA revealed no significant effect of
exercise on standing balance performance (DLO: F(2,26) � 1.17,
p � 0.33, Wilks’ � � 0.92, �p

2 � 0.083; DLC: F(2,26) � 0.49, p �
0.62, Wilks’ � � 0.96, �p

2 � 0.036; SLO: F(2,26) � 1.09, p � 0.35,
Wilks’ � � 0.92, �p

2 � 0.077). Likewise, follow-up univariate tests
yielded no significant results for any measure.

White matter plasticity and increased cerebral blood flow
mediate the beneficial effect of endurance exercise on motor
learning
So far, we have demonstrated that CE improves motor learning
independent from changes in general balance proficiency. Be-

cause the primary aim of this paper was to evaluate whether
structural and functional changes of the brain convey the influ-
ence of CE to learning, we continued our analyses by addressing
the mediation hypothesis outlined previously. To establish me-
diation, it needs to be shown that the causal variable (group) is
correlated with the mediator (neuroplasticity), and that the
mediator is correlated with the outcome (learning; Preacher
and Hayes, 2008; MacKinnon et al., 2013). Using the NPC
methodology (Winkler et al., 2016), we first conducted union-
intersection tests to identify clusters of voxels in which
exercise-induced plasticity covaries with both treatment and
outcome (see Materials and Methods).

With respect to the diffusion-weighted MRI data, NPC anal-
yses revealed significant results (pFWE � 0.05) for 	_MD
mainly in frontotemporal fiber tracts, including bilateral superior
longitudinal fasciculus, bilateral inferior fronto-occipital fascic-
ulus, forceps minor, bilateral anterior thalamic radiation, bilat-
eral uncinate fasciculus, and right corticospinal tract (Fig. 3;
Table 2).

Likewise, we obtained significant, but strongly lateralized
NPC results for 	_�� involving most of the aforementioned fiber
tracts: right superior longitudinal fasciculus, right inferior
fronto-occipital fasciculus, right anterior thalamic radiation,
right corticospinal tract, right uncinate fasciculus, and forceps
minor (Fig. 4; Table 2).

These results suggest that, in the aforementioned fiber tracts
(1) MD and �� decreased more in EXELEARN compared with
RESTLEARN, and (2) MD/�� changes negatively correlate with
subsequent learning (controlled for group). Not least, we also

Figure 3. Mean diffusivity changes (	_MD) covary with both treatment (RESTLEARN vs EXELEARN) and outcome (DBT learning rate). A, Results from the union-intersection tests (UITs) on
baseline-adjusted (residualized) 	_MD maps based on the nonparametric combination methodology. Significant clusters depict voxels in which UITs revealed evidence for the presence of both a
between-group difference with respect to CE-induced residualized 	_MD (corrected for age and sex), and a correlation between exercise-induced residualized 	_MD and residualized DBT learning
rate (corrected for age, sex, and group). Clusters are displayed at p � 0.05, FWE-corrected (TFCE) and fattened with the “tbss_fill” script for the purpose of better visualization. B, C, Visualization of
the underlying idea of the UIT based on averaged within-cluster values of residualized 	_MD. B, Between-group differences in 	_MD based on a univariate ANCOVA (corrected for age and sex; data
presented as estimated marginal mean and SE). C, Partial regression scatterplot with line of best fit shows the relation between 	_MD and residualized DBT learning rate, corrected for the influence
of age, sex, and group. The UIT outputs a single measurement that summarizes evidence over statistical submodels B and C in every voxel.
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Figure 4. Radial diffusivity changes (	_��) covary with both treatment (RESTLEARN vs EXELEARN) and outcome (DBT learning rate). A, Results from the union-intersection tests (UITs) on
baseline-adjusted (residualized) 	_�� maps based on the nonparametric combination methodology. Significant clusters depict voxels, in which UITs revealed evidence for the presence of both a
between-group difference with respect to CE-induced residualized 	_�� (corrected for age and sex), and a correlation between exercise-induced residualized 	_�� and residualized DBT
learning rate (corrected for age, sex, and group). Clusters are displayed at p � 0.05, FWE-corrected (TFCE) and fattened with the “tbss_fill” script for the purpose of better visualization. B, C,
Visualization of the underlying idea of the UIT based on averaged within-cluster values of residualized 	_��. B, Between-group differences in 	_�� based on a univariate ANCOVA (corrected for
age and sex; data presented as estimated marginal mean and SE). C, Partial regression scatterplot with line of best fit shows the relation between 	_�� and residualized DBT learning rate,
corrected for the influence of age, sex, and group. The UIT outputs a single measurement that summarizes evidence over statistical submodels B and C in every voxel.

Table 2. Peak coordinates and localization of significant clusters emerging from the voxel-based NPC analyses (Figs. 3–5)

Cluster
index

No. of
voxels

Maximum
p value

Peak voxel (MNI152)
Most prominent structures in clusters (Hua et al., 2008; Desikan et
al., 2006)x y z

Mean diffusivity (	_MD)
9 2167 0.03 31 37 5 Bilateral superior longitudinal fasciculus, bilateral inferior fronto-

occipital fasciculus, forceps minor, bilateral anterior thalamic
radiation, bilateral uncinate fasciculus, right corticospinal tract

8 475 0.04 �25 35 6
7 435 0.04 17 30 23
6 150 0.05 37 �13 31
5 52 0.05 20 43 8
4 27 0.05 28 �17 33
3 22 0.05 2 17 17
2 19 0.05 �2 21 13
1 1 0.05 19 43 �2

Radial diffusivity (	_��)
3 3217 0.04 37 �12 27 Right superior longitudinal fasciculus, right inferior fronto-occipi-

tal fasciculus, right anterior thalamic radiation, right cortico-
spinal tract, right uncinate fasciculus, forceps minor

2 233 0.05 16 29 16
1 173 0.05 16 �11 36

Cerebral blood flow (	_CBF)
10 502 0.02 2 54 8 Frontal pole, paracingulate gyrus, cingulate gyrus (anterior divi-

sion), superior frontal gyrus, frontal medial cortex, inferior
frontal gyrus (pars opercularis and pars triangularis), subcal-
losal cortex, precentral gyrus, middle frontal gyrus

9 190 0.03 �18 64 18
8 40 0.03 40 46 �6
7 26 0.03 56 18 20
6 20 0.04 26 62 18
5 7 0.04 30 56 �2
4 7 0.04 10 60 18
3 1 0.05 �2 54 �6
2 1 0.05 �14 48 2
1 1 0.05 24 56 16
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found a trend-level effect (pFWE � 0.11) for FA in parietal and
motor areas (results not shown).

Furthermore, the NPC analysis on	_CBF yielded significant results
infrontalbrainareas(Fig.5;Table2),consistentwiththenotionthatCE
enhanced cerebral perfusion and that this enhancement was in turn
positively correlated with subsequent learning. Clusters mainly span the
frontal pole, cingulate/paracingulate gyri, superior, inferior, and middle
frontal gyri, frontal medial cortex, and precentral gyrus.

Regarding 	_GMV and network centrality measures (	_EC,
	_DC), however, we found no evidence of behaviorally relevant
exercise-induced plasticity (FWE-corrected p values � 0.1).

Results from NPC analyses indicate that CE-induced white
matter and CBF changes have plausibility as mechanisms driving
the exercise–learning relationship. Next, we took a closer look at
the strength of the mediating effect of exercise-induced neuro-
plasticity (white matter and CBF changes) with respect to
between-group differences in skill learning (statistical media-
tion). A variable selection procedure was applied to identify a
mediator set with an acceptable level of collinearity (Preacher and
Hayes, 2008), revealing that exercise-induced changes in MD and
�� were highly correlated (r � 0.7). Therefore, we ended up with
two separate parallel mediation models, one containing 	_MD
and 	_CBF as mediators, the other containing 	_�� and 	_CBF
as mediators (Fig. 6).

Taken as a set, neuroplastic changes in MD and CBF do me-
diate the effect of group on DBT learning rate [ab � 0.1514, 95%
percentile CI (0.0703, 0.2389), bootstrapped SE � 0.0428]. Fur-
thermore, we obtained significant specific indirect effects for
both frontotemporal 	_MD [a1b1 � 0.0716, 95% BCa CI
(0.0192, 0.1424), bootstrapped SE � 0.0318] and frontal 	_CBF
[a2b2 � 0.0798, 95% BCa CI (0.0229, 0.1528), bootstrapped SE �
0.0335], indicating that frontal 	_CBF contributed to the indi-
rect effect above and beyond 	_MD and vice versa. Likewise,
when analyzing the model containing 	_�� and 	_CBF as inter-
vening variables (Fig. 6B), we obtained a significant total indirect
effect [ab � 0.1524, 95% percentile CI (0.0710, 0.2424), boot-
strapped SE � 0.0437] paralleled by specific indirect effects of
frontotemporal 	_�� [a1b1 � 0.0729, 95% BCa CI (0.0180,
0.1470), bootstrapped SE � 0.0334] and frontal 	_CBF [a2b2 �
0.0795, 95% BCa CI (0.0239, 0.1532), bootstrapped SE �
0.0335], respectively.

Discussion
Two main novel findings emerged from this study: First, we show
that 2 weeks of CE speeds up the rate of subsequent learning of a
complex motor task over, at least, 6 consecutive weeks. Second,
we demonstrate that this augmentation of learning was mediated

Figure 5. Cerebral blood flow changes (	_CBF) covary with both treatment (RESTLEARN vs EXELEARN) and outcome (DBT learning rate). A, Results from the union-intersection tests (UITs) on
baseline-adjusted (residualized) 	_CBF maps based on the nonparametric combination methodology. Significant clusters depict voxels in which UITs revealed evidence for the presence of both a
between-group difference with respect to CE-induced residualized	_CBF (corrected for age and sex), and a correlation between exercise-induced residualized	_CBF and residualized DBT learning
rate (corrected for age, sex, and group). Clusters are displayed at p�0.05, FWE-corrected (TFCE). Color bar indicates FWE-corrected p values. B, C, Visualization of the underlying idea of the UIT based
on averaged within-cluster values of residualized 	_CBF. B, Between-group differences in 	_CBF based on a univariate ANCOVA (corrected for age and sex; data presented as estimated marginal
mean and SE). C, Partial regression scatterplot with line of best fit shows the relation between 	_CBF and residualized DBT learning rate, corrected for the influence of age, sex, and group. The UIT
outputs a single measurement that summarizes evidence over statistical submodels B and C in every voxel.
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by CE-induced changes in microstructural features in the brain’s
white matter and cerebral perfusion.

Generally, our behavioral results are in agreement with previ-
ous studies demonstrating beneficial effects of CE on cognitive
and motor functions (Smith et al., 2010; Roig et al., 2013; Taubert
et al., 2015). However, to the best of our knowledge, it has not
been shown that CE also facilitates learning of complex novel
skills over multiple sessions. Therefore, our study adds to the
literature by demonstrating that CE interventions do not only
improve behavioral performance, but also complex skill acquisi-
tion and learning over longer timescales. Of note, the very fact
that CE had no apparent effect on balance performance (assessed
with posturography) suggests that our exercise protocol specifi-
cally targeted neural mechanisms of learning.

How can exercise elicit its beneficial effects on learning? Al-
though it has often been pointed out that neuroplasticity might
play a crucial role in this respect (Voss et al., 2013b), this hypoth-
esis has not yet undergone rigorous testing. On the one hand,
previous cross-sectional studies (Weinstein et al., 2012; Oberlin
et al., 2016) have limited explanatory power in this respect, since
their designs do not allow to impute that interindividual varia-
tions in brain properties and cognition are a result of cardiovas-
cular fitness levels. On the other hand, the few existing RCTs
dealing with exercise-induced neuroplasticity and its effects on
cognition either did not test for statistical mediation (Erickson et
al., 2011; Voss et al., 2013a) or included changes in cardiovascular
fitness as an independent variable in a statistical mediation model
(Maass et al., 2015). However, the latter approach does not ascer-
tain that changes in fitness were caused by allocation to treatment
or instead by factors external to the experimental situation.

Here we provide evidence supporting a causal path linking
treatment, exercise-induced neuroplasticity, and acceleration of
motor learning, such that between-group differences in learning
rate can be statistically explained by CE-induced changes of brain
structure and function. Because subjects were randomly assigned
to groups and the variance associated with factors such as age, sex,
and baseline values of motor skill and brain measures was ad-
justed in all statistical models, alternative explanations for the
observed results seem unlikely. This is corroborated by the mere
sequence of events in time (i.e., randomization, assessment of
brain change, assessment of learning), resulting in an unambig-
uous direction of relationships in the statistical models.

Specifically, we identified microstructural changes in fronto-
temporal white matter tracts and increased prefrontal CBF as
putative mechanisms underlying exercise-induced improvement
of motor learning. Therefore, we provide evidence that prefrontal
regions of the brain, which are known to be implicated in DBT
learning (Taubert et al., 2010; Lehmann et al., 2019), were directly
influenced by the intervention.

CE-induced white matter changes are in good agreement with
studies demonstrating rapid experience-induced diffusivity
changes (Sagi et al., 2012), substantiating white matter plasticity
as a plausible mechanism contributing to the exercise–motor
learning link. In line with this, previous intervention studies re-
vealed large-scale white matter remodeling after CE training in
young- to middle-aged subjects, which applies to healthy volun-
teers (Svatkova et al., 2015), patients with schizophrenia (Svat-
kova et al., 2015), and overweight to obese individuals (Mueller et
al., 2015). Likewise, it is well known that frontotemporal fiber
tracts are implicated in cognitive (Deary et al., 2006) and motor
functioning (Taubert et al., 2010; Peterson et al., 2017; Lehmann
et al., 2019). Therefore, the results of the present study are con-
sistent with the view that CE enables efficient neurotransmission
by altering the speed and/or timing of information transfer in
large-scale networks engaged during learning (Fields, 2015). In
this vein, CE potentially provides the basis for a higher flexibility
of the brain to adapt to highly novel environmental stimuli, such
as learning a complex task.

With respect to CE-induced perfusion changes, our results
corroborate the limited existing evidence showing that CE is as-
sociated with an increase in CBF (Chapman et al., 2013; Maass et
al., 2015; Alfini et al., 2019), and that higher CBF is in turn linked
to improved cognitive functioning (Stillman et al., 2016; Stimp-
son et al., 2018). In the only CE intervention study using statisti-
cal mediation to date, Maass et al. (2015) demonstrated that
the relationship between exercise-induced fitness and memory
changes can be well accounted for by hippocampal perfusion
changes in older participants. In line with this, two other studies
involving older subjects demonstrated that CE also leads to in-
creases of CBF in the frontal lobe, parallel to improvements in
cognitive performance (Chapman et al., 2013; Alfini et al., 2019).
Though speculative, better energy supply enabled by alterations
in CBF might contribute to a higher intrinsic potential for subse-
quent learning-induced plastic change in the brain (Lövdén et al.,
2010).

Which cellular and molecular events might underlie the mac-
roscale effects in white matter and CBF? With respect to white
matter results, there is no unambiguous one-to-one relationship
between diffusivity measures and underlying histological features
(Beaulieu, 2002; Lerch et al., 2017). Previous studies using immu-
nostaining suggest that MD and �� correlate with myelin prop-
erties (Klawiter et al., 2011; Peters et al., 2019), consistent with the
hypothesis that exercise led to myelin plasticity. In agreement

Figure 6. Exercise-induced neuroplasticity conveys the effect of treatment on subsequent
motor learning. Multiple mediator models show the relationship between allocation to treat-
ment (group) and baseline-adjusted (residualized) DBT learning rate, transmitted via (A) re-
sidualized 	_MD and residualized 	_CBF, or (B) via residualized 	_�� and residualized
	_CBF, corrected for the influence of age and sex, respectively. CIs not including zero indicate
significant indirect effects.
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with this, studies in mice have shown that wheel running elicits
adaptations of the myelin-forming oligodendrocytes (McKenzie
et al., 2014), which might in turn affect MRI-derived diffusion
indices (Blumenfeld-Katzir et al., 2011; Sampaio-Baptista et al.,
2013). Of note, oligodendrocyte and myelin plasticity are sup-
ported by BDNF (Xiao et al., 2010), of which levels in the brain
are known to increase even after comparably short periods of
exercise (Afzalpour et al., 2015). Moreover, it has been suggested
that lactate produced from active muscles during exercise enters
the brain, where it directly affects BDNF (Yang et al., 2014; El
Hayek et al., 2019) or VEGF release (Morland et al., 2017) and the
capabilities of oligodendrocytes to myelinate (Gundersen et al.,
2015). Elevated brain lactate levels might also be involved in
translating the effect of exercise on cerebral circulation (Morland
et al., 2017).

Our study yielded two unexpected findings. First, our results
indicate that exercise-induced white matter rearrangement plays
a substantially greater role in mediating the transfer effect of
exercise compared with gray matter changes. Based on animal
studies showing that short-term exercise interventions are suffi-
cient to trigger gray matter plasticity in motor-related brain areas
(Sumiyoshi et al., 2014), we expected similar results in young,
healthy adults. However, there are only few studies examining
this population to date and, on closer inspection, they reveal an
equivocal pattern of results (van der Stouwe et al., 2018). Thus,
our results do not fall out of alignment compared with existing
evidence. Second, we expected the mediating role of white matter
microstructure would be accompanied by similar effects on
resting-state functional connectivity (Voss et al., 2010; Rajab et
al., 2014), which was not the case. A possible explanation for this
may be that global connectivity metrics like DC and EC have
reliabilities that are considerably lower compared with measures
derived from structural MRI or even perfusion MRI (Holiga et
al., 2018). Therefore, the same sample size provided, global con-
nectivity measures have less power to detect an effect of a given
size compared with, for example, diffusion measures.

Some other potential limitations of the study need to be con-
sidered. First, given the limited criterion validity of self-report PA
questionnaires, future studies should consider to assess extra-
study PA with objective measures like accelerometers, pedome-
ters, or others (Dowd et al., 2018). Second, it cannot be ruled out
that subjects’ responses to CE or motor learning were affected by
inherited factors like certain genetic polymorphisms (McHughen
et al., 2010; Sarzynski et al., 2017). Third, we cannot contribute to
the debate whether fitness gains are a critical variable mediating
the effects of CE on behavioral performance and learning (Etnier
et al., 2006). Given the brevity of our intervention and the neces-
sary training volumes for endurance-related adaptations to occur
(Shephard, 2000), fitness gains exceeding familiarization with the
test setting were not expected. Rather, the primary aim of the
exercise intervention was to induce considerable lactatemia in
every session to evoke a beneficial neuroplastic response (Taubert
et al., 2015).

In sum, our study shed new light on the mechanisms by which
CE elicits beneficial effects on subsequent learning. On the be-
havioral level, we have extended previous work by demonstrating
that CE is not only capable of improving performance of cogni-
tive or motor skills, but also of boosting the acquisition of com-
plex skilled behaviors over longer timescales. Strikingly, we found
that a substantial part of between-group differences in skill learn-
ing can be statistically explained by CE-induced morphological
and functional changes of the brain. This underlines that neuro-

plasticity is not a mere epiphenomenon of CE, but instead of
direct functional relevance for an individual’s ability to learn.
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Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne
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Holiga Š, Sambataro F, Luzy C, Greig G, Sarkar N, Renken RJ, Marsman JC,
Schobel SA, Bertolino A, Dukart J (2018) Test-retest reliability of task-
based and resting-state blood oxygen level dependence and cerebral blood
flow measures. PLoS One 13:e0206583.

Hollmann W, Knigge H, Knicker A, Strüder HK (2012) Methods for mea-
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