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Local circuits in different cortical areas
and animal species share ubiquitous fea-
tures of synaptic connectivity and neural
spiking activity. For example, neurons in
local cortical circuit are more likely to be
bidirectionally connected and to exhibit
particular connectivity patterns among
three or more neurons than would be ex-
pected if synapses were made by chance
(Song et al., 2005). Individual neurons
also fire irregularly, with random time in-
tervals between spikes (Softky and Koch,
1993). However, different cortical circuits
rely on their specific synaptic connectivity
to perform specialized functions. Models
show that neurons must fire periodically
when integrating random synaptic inputs
(Softky and Koch, 1993). What gives rise
to the experimentally observed features
that are largely conserved across cortical
circuits?

The ubiquitous features of synaptic
connectivity and neural spiking activity
have been explained separately, with as-
sumptions made about the other. When
each neuron is modeled to fire irregularly
with a Poisson process, synaptic plasticity
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rules can shape randomly connected net-
works to exhibit the experimentally ob-
served over-represented patterns (Kozloski
and Cecchi, 2010; Babadi and Abbott,
2013). In terms of activity, networks with
sparse and strong synaptic connectivity
patterns can yield irregular spiking activ-
ity through balanced excitatory and in-
hibitory synaptic inputs at each neuron
(van Vreeswijk and Sompolinsky, 1996,
1998; Shadlen and Newsome, 1998).
However, it remains unclear whether such
features of synaptic connectivity and neu-
ral spiking activity can be explained si-
multaneously without assumptions about
each other.

Zhang et al. (2019) hypothesized that
experimentally observed features of both
synaptic connectivity and neural spiking
activity in local cortical circuits can be
attained when the network optimizes
its synaptic connectivity for associative
memory storage. They modeled the local
cortical circuit with the McCulloch and
Pitts (1943) neural network model, which
included both excitatory and inhibitory
neurons. Each neuron was represented by
a binary unit that is either spiking (activ-
ity = 1) or silent (activity = 0) at each
simulation step; the unit only spikes if its
summed synaptic inputs at the previous
time step exceeds its predefined spike
threshold. To simulate biological noise
such as spontaneous neural activity and
synaptic failure, the model also incorpo-
rated noise in the synaptic inputs to each

unit. All units were initially intercon-
nected and the synaptic connections were
adjusted to store a set of predefined asso-
ciative memories. Each memory was rep-
resented by a pair of network states x and
x', each defined by a randomly chosen bi-
nary activity pattern of units in the model.
To load the memory into the network,
synaptic connection weights were ad-
justed such that when the network is ini-
tialized at state x, it produces activity as
close to x" as possible at the next simula-
tion step.

The model was primarily constrained
by two parameters: robustness and mem-
ory load. Robustness refers to the ampli-
tude of noise permissible in the synaptic
input such that the network can still suc-
cessfully store memories. Memory load
refers to the number of associative mem-
ories that the network optimizes its syn-
aptic connections to store. The model
cannot store an unlimited amount of
memories given its finite number of units
(Cover, 1965; Gardner and Derrida, 1988)
and the optimized synaptic connectivity
depends on the number of memories
loaded.

By systematically examining network
models with different levels of memory
load and robustness, Zhang et al. (2019)
found that within a certain range of pa-
rameters, there exists a set of networks
that exhibit experimentally observed over-
representation of bidirectional pairs and
specific three-neuron connectivity pat-
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terns, as well as irregular neural spiking
activity. Moreover, the parameter regime
where features of biological circuits were
reproduced overlapped with the regime in
which memory load was at maximum ca-
pacity for the corresponding robustness
level. That is, given each level of robust-
ness, the amount of memory load stored
in the network that gave rise to the exper-
imentally observed features matched the
maximum amount of memories that neu-
rons in the network could store and re-
trieve successfully. This suggests that local
circuits in the brain might have evolved
to store the near-maximum amount of
memories.

Although over-representation of bidi-
rectionally connected neuron pairs is
found ubiquitously across different corti-
cal areas, the over-representation ratio
(the ratio between the number of bidirec-
tional connections observed and the ex-
pected number of such connections in
random networks with equivalent con-
nection rates) varies from 1 in barrel cor-
tex to 2 in visual cortex and 4 in prefrontal
cortex (Song et al., 2005; Wang et al,,
2006; Lefort et al., 2009). Zhang et al.
(2019) explain the wide experimentally
observed range of over-representation ra-
tios with the correlation strength between
network state pairs stored in the network
as associative memory.

The network successfully stores an as-
sociative memory pair of x and x” if, when
the activity is initialized at state x;, it trans-
forms the activity pattern to x’ at the sub-
sequent simulation step. The two network
states x and x’ can vary from being identi-
cal (correlation = 1) to totally different
(correlation = 0). In other words, net-
works that store associative memory pairs
with a correlation of 1 stay in activity state
x once initialized at it, making the net-
work activities strongly temporally corre-
lated. As the correlation strength of the
associative memory pair decreases, x and
x" become less similar. Networks that
store associative memory pairs with a cor-
relation of 0 transforms activity x to a dif-
ferent state x” at the next time step, so the
network activities are not temporally
correlated.

Zhang et al. (2019) found that for net-
works optimized to store associative mem-
ory pairs with correlations that increase
from 0 to 1, the over-representation ratio of
excitatory-excitatory neural pairs increases
monotonically from 1 to 4, recapitulating
the experimentally observed range. At the
same time, the over-representation ratio
of excitatory—inhibitory neuron pairs de-
creases monotonically, which leads to the

prediction that cortical areas with high ex-
citatory—excitatory —over-representation
ratios will exhibit low excitatory—inhibi-
tory over-representation ratios. Future
experiments should test this prediction.

In addition, the finding that networks
optimized to store more temporally cor-
related activity patterns show higher ra-
tios of bidirectional connectivity suggests
that associative learning with different
temporal correlations can lead to reliable
footprint in the network reciprocal con-
nections. Notably, the ratio of bidirec-
tional pairs in higher cortical areas such as
the prefrontal cortex is higher than sen-
sory areas such as the visual cortex (Wang
et al., 2006). This observation is in line
with the findings that prefrontal cortex
shows stronger persistent activities, which
may support working memory (Curtis
and D’Esposito, 2003); whereas visual
cortex shows transient activity in response
to rapidly changing external stimuli
(Murray et al., 2014). Emerging EM data-
sets that enable characterizations of bidi-
rectional overrepresentation in different
areas of cortex would provide further
clues into network functions as associative
learning and contribute to the exciting
field of relating connectivity motifs to dif-
ferent aspects of computation.

In summary, the paper by Zhang et al.
(2019) shows that, if a local cortical circuit
is assumed to optimize its synaptic con-
nectivity for storing associative memories,
the network exhibits the ubiquitously
observed features of both synaptic con-
nectivity and neural spiking activity si-
multaneously, when stored memory is at
capacity. Previous works have explained
some of these features under the same as-
sociative memory assumption. Specifi-
cally, when associative memories are
loaded to capacity, varying robustness can
uncover networks that exhibit experi-
mentally observed features of synaptic
connectivity (Chapeton et al., 2012, 2015;
Brunel, 2016), and optimizing for robust-
ness can yield the balanced state required
for irregular spiking (Rubin et al., 2017).
Zhangetal. (2019), however, make no ini-
tial assumptions about the memory load
or robustness of the network and discover
that networks exhibiting experimentally
observed features are in the regime of
maximum memory load and large robust-
ness. Thus, Zhang et al. (2019) show that
the ubiquitous cortical synaptic connec-
tivity and neural spiking activity features
can arise naturally as a result of optimiz-
ing network connectivity for associative
memory storage.
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The cortex is not a static network with
fully optimized synaptic connectivity but
in a constantly changing state across mul-
tiple time scales. At short time scales,
synapses between neurons change in an
activity-dependent manner leading to
synaptic facilitation and depression. If the
network is optimized for storage at full
capacity as suggested by the paper by
Zhang et al. (2019), then the network
must forget some memories to store new
ones and stay updated with the external
environment. Relating how synaptic con-
nectivity changes as the network turns
over its storage can be pursued in future
work by adding synaptic mechanisms
for forgetting and activity-independent
fluctuations in synaptic strength. At the
developmental time scale, the synaptic
connectivity pattern is not only affected
by experience-dependent plasticity but
also shaped by mechanisms such as genetic
guiding events (Williams et al., 2010) and
resource conservation constraints (Ramon
y Cajal, 1899). In biological systems, synap-
tic connectivity is most likely preconfigured
genetically and continuously tuned by a
combination of activity-dependent plastic-
ity rules and activity-independent cellular
mechanisms. Which observed features are
constrained by which mechanisms is an ex-
citing topic for future research.
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