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Alpha Activity Reflects the Magnitude of an Individual Bias
in Human Perception
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Biases in sensory perception can arise from both experimental manipulations and personal trait-like features. These idiosyn-
cratic biases and their neural underpinnings are often overlooked in studies on the physiology underlying perception. A
potential candidate mechanism reflecting such idiosyncratic biases could be spontaneous alpha band activity, a prominent
brain rhythm known to influence perceptual reports in general. Using a temporal order judgment task, we here tested the hy-
pothesis that alpha power reflects the overcoming of an idiosyncratic bias. Importantly, to understand the interplay between
idiosyncratic biases and contextual (temporary) biases induced by experimental manipulations, we quantified this relation
before and after temporal recalibration. Using EEG recordings in human participants (male and female), we find that presti-
mulus frontal alpha power correlates with the tendency to respond relative to an own idiosyncratic bias, with stronger o lead-
ing to responses matching the bias. In contrast, alpha power does not predict response correctness. These results also hold
after temporal recalibration and are specific to the alpha band, suggesting that alpha band activity reflects, directly or indi-
rectly, processes that help to overcome an individual’s momentary bias in perception. We propose that combined with estab-
lished roles of parietal a in the encoding of sensory information frontal a reflects complementary mechanisms influencing
perceptual decisions.
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ability; time perception
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The brain is a biased organ, frequently generating systematically distorted percepts of the world, leading each of us to evolve

in our own subjective reality. However, such biases are often overlooked or considered noise when studying the neural mecha-

nisms underlying perception. We show that spontaneous alpha band activity predicts the degree of biasedness of human

choices in a time perception task, suggesting that alpha activity indexes processes needed to overcome an individual’s idiosyn-

cratic bias. This result provides a window onto the neural underpinnings of subjective perception, and offers the possibility to
\quantify or manipulate such priors in future studies. j

Introduction life-long learned and stable assumptions about the world, such as
the sun shining from above (Sun and Perona, 1998). These priors
may vary between individuals, but are stable for a given individual,
and reflectidiosyncratic biases. These are often unknown to the ex-
perimenter and may be shadowed by experimental manipulations
or regarded as interindividual noise eliminated during data analy-
sis (Kanai and Rees, 2011; Wexler et al., 2015; Grabot and van
Wassenhove, 2017; Rahnev and Denison, 2018; Lebovich et al.,
2019). We here argue that such interindividual variability in tem-
porary and idiosyncratic biases provides key perspectives on the
neural mechanisms underlying perception. Particularly, we ask
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top-down mechanism (Engel et al., 2001; Summerfield and
Lange, 2014; de Lange et al., 2018). One neural signature suppos-
edly reflecting these underlying processes is alpha band activity
(van Kerkoerle et al., 2014; Mayer et al., 2016; Michalareas, et al.,
2016; Sherman et al,, 2016), generally known to be predictive of
upcoming perceptual decisions (Ergenoglu et al., 2004; Hanslmayr
et al.,, 2007; van Dijk et al., 2008; Mathewson et al., 2009). Recent
studies have suggested that prestimulus alpha activity may reflect
the criterion used to commit a specific response and may hence
reflect a perceptual or decisional bias (Limbach and Corballis,
2016; Craddockeetal., 2017; Iemi et al., 2017; Iemi and Busch, 2018;
Rohe et al., 2019). Along such a role in perceptual decision-mak-
ing, alpha activity was shown to correlate with subjective aware-
ness (Lange et al,, 2013; Benwell, etal., 2017; Gulbinaite et al., 2017)
and decision confidence (Samaha et al., 2017; Wostmann et al.,
2019b). Still, it remains unclear whether prestimulus activity
indeed reflects processes shaping an individual’s intrinsic bias or
processes facilitating veridical sensory encoding, as previous work
did not unambiguously quantify the relation of spontaneous brain
activity to idiosyncratic and temporary biases.

We have previously proposed the hypothesis that alpha band
activity compensates for an individual’s idiosyncratic bias:
thereby low alpha power enhances the probability to respond
against the bias, whereas high power increases the tendency to
follow the bias (Grabot and van Wassenhove, 2017; Grabot et al.,
2017). To directly test this hypothesis, we here used a temporal
order judgment task, in which perception is shaped by idiosyn-
cratic biases (Freeman et al., 2013; Grabot and van Wassenhove,
2017; Ipser et al, 2018) and can be manipulated by inducing
temporary biases through temporal recalibration. Importantly,
our paradigm was specifically designed to dissociate intrinsic
biases from overall task performance. This allowed us to test
whether prestimulus activity is predictive of the correctness or
the degree of biasedness of a response, factors that were con-
founded in previous work. Our results confirm that a decrease in
prestimulus alpha power enhances the probability to respond
against the individual idiosyncratic bias and that interindividual
fluctuations in alpha power correlate with the magnitude of this
perceptual bias. Furthermore, by testing the influence of contex-
tual recalibration (Fujisaki et al., 2004; Van der Burg et al., 2013)
we show that this relation persists after temporal recalibration,
suggesting that alpha power reflects both idiosyncratic and tem-
porary biases.

Materials and Methods

Participants

Forty right-handed naive participants with normal or corrected-to-nor-
mal vision and normal hearing were tested in a first screening session
(10 male, 30 female; mean * SD age =24 = 3 years). Each provided writ-
ten informed consent in accordance with the Declaration of Helsinki
(World Medical Association, 2013), and the study was approved by the
local ethics committee of Bielefeld University. The screening session was
designed to collect a planned sample of 24 participants, balanced accord-
ing to their preferred temporal order (see Results section), and with a
negative JNDI1 and a positive JND2 (just noticeable difference; defined
as in Fig. 1B). Twelve participants were excluded based on the screening
data, including 10 whose JNDs fell outside the range of tested stimulus
onset asynchronies (according to the criteria used by Spence et al,
2001), one whose JNDs were both negative, and one who did not com-
plete the entire session. In total, 28 participants joined the EEG session,
four of which had to be excluded because they had <20 trials in at least
one condition. Thus, in the final analysis, we included 24 participants (7
male, 17 female; age =24 = 2 years mean * SD).

Grabot and Kayser o Alpha Reflects Individual Biases

Stimuli

The experiment was controlled using the Psychophysics Toolbox
v3.0.14 (http://psychtoolbox.org/) and run using MATLAB vR2017a
(MathWorks). The visual stimuli were white rings (outer diameter = 12°,
inner diameter = 8°, 275 cd/m?) presented for 25 ms (3 frames) and cen-
tered on a gray LCD screen (refresh rate=120Hz, resolution=1920
x 1080 pixels, 16 cd/m?). Participants were asked to fixate a black cross
presented in the middle of the screen during the whole experiment.
Auditory stimuli were sine-wave tones (2kHz) presented for 25ms
(including 5 ms fade-in and 5 ms fade-out) at a comfortable hearing level
(73 dB). They were presented trough speakers placed behind each side of
the monitor screen to ensure a perceived colocalization of sound and vis-
ual stimuli. The relative timing of auditory and visual stimuli was tested
to be precise up to = 3 ms using an oscilloscope and a photodiode.

Screening session

The experiment comprised a screening session and two EEG sessions
based on a temporal order judgment (TOJ) task (Fig. 1A). The three ses-
sions took place within ~10d (7 = 6d between the screening session
and the first EEG session, and 3 = 2d between the 2 EEG sessions).
Experiments took place in a darkened and electrically shielded room
(Desone Ebox), where the participant sat at 90cm distance from the
screen.

The screening session aimed at estimating the temporal thresholds
associated with judging the temporal order of a pair of audiovisual stim-
uli (Fig. 1A,B). The individual thresholds were then used as stimulus
onset asynchrony (SOA) in the following EEG sessions, ensuring a simi-
lar ratio of Afirst and Vfirst responses. In the screening session, the
audiovisual stimuli were separated by 12 different SOAs: = 20, = 50,
+ 80, = 110, £ 160, £ 250 ms. Negative values indicate that the sound
was presented first.

The task was performed in three conditions: without recalibration
(no), after sound-leading recalibration (A200V) and after visual-leading
recalibration (V200A). In the no recalibration condition, participants
were presented with a pair of audiovisual stimuli and had to judge which
of the two came first, in a two-alternative forced choice, by pressing a
key on a keyboard. The trials in A200V- and V200A- recalibration con-
ditions were split into three blocks per condition. Each block consisted
of an exposure phase and a test phase. During the exposure phase, 84
audiovisual pairs with an identical SOA of 200 ms were presented at
~1Hz (uniform distribution: 900-1100 ms). In A200V recalibration
(respectively, V200A) blocks, 80 trials were audio-leading (respectively,
visual-leading), whereas 4 deviant trials were visual-leading (resp. audio-
leading). To enhance recalibration effects and to ensure that participants
kept their attention focused they were asked to detect these deviant trials
as fast as possible (Heron et al., 2010). The hit rate was on average
84 + 10% and the false alarm rate was 1 = 1% (mean * SD). The expo-
sure phase was immediately followed by a test phase. Top-up trials were
used to maintain recalibration (Fujisaki et al., 2004; Vroomen et al.,
2004). We used a minimum number of top-up trials sufficient to
enhance recalibration effects (Cai et al., 2012) and tested two consecutive
audiovisual pair at once. Three top-up trials were presented at ~1Hz
(uniform distribution: 900-1100 ms). 700 ms after the last top-up trial,
the black fixation cross turned green, indicating to the participant to
judge the order of the two next pairs of AV stimuli.

For all conditions (no, A200V, V200A), intertrial interval delays
were uniform between 900 and 1100 ms. In the screening session, each
SOA was repeated 24 times per condition. The screening session con-
sisted of no recalibration block, followed by three A200V recalibration
and three V200A recalibration blocks, with randomized order.
Participants were allowed to take a short break between blocks. Before
the experiment, they were trained with 10 repetitions of maximal SOAs
(%£250ms) for each recalibration condition and received feedback.
Button mapping for responses was balanced between participants.

PSS and JND:s estimation

In the screening session, we determined the order bias [point of subjec-
tive simultaneity (PSS)] and the JNDs for each participant using the
method of constant stimuli. For each recalibration condition (no,
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Figure 1. Experimental design. A, The screening session was based on a temporal order judgment task and comprised three conditions: no adaptation, audio-leading adaptation (A200V)

and visual-leading adaptation (V200A). We assessed the individual bias in temporal order perception (PSS,,), adapted PSSs (PSSaz00v and PSSy0a), and JNDs. B, Schematics of a psychometric
curve obtained after the screening session. The PSS was defined as the SOA for which a participant’s performance was at chance level (50%). The JNDs were defined as the SOAs for which a
participant’s performance was at 30% (JND1) and 70% (JND2) of performance. If a participant has a negative PSS as shown here, i.e., the sound needs to be presented first so that s/he can
perceive simultaneity, s/he has an increased tendency to reply Vfirst (matching-bias response) compared with Afirst (against-bias response). €, In the EEG session, the two JNDs derived per con-
dition in the screening session were used as SOAs. D, The correctness and biasedness contrasts are fully orthogonal, and they comprise the same number of audio-leading and visual-leading

pairs.

A200V, and V200A), the percentage of Vfirst responses from the screen-
ing session was determined as a function of SOA and fit using a psycho-
metric curve described by a logistic function with three parameters: bias,
slope and lapse rate (Spence and Squire, 2003; Mégevand et al., 2013).
We chose a three-parameter model based on a piloting test (n = 6) which
revealed a lower Bayesian information and Akaike information criterion
for this model compared with two-parameter (bias and slope) or four-
parameter (bias, slope, lapse rate for auditory-leading stimuli, lapse rate
for visual-leading stimuli) models. Here, the goodness of fit (R?) was
90.2 £8.3% on average across participants (mean * SD). The PSS,
JNDI, and JND2 were defined as the SOA for which a participant’s per-
formance was respectively at chance level (50), 30, and 70% (Fig. 1B) for
each recalibration condition (no, A200V, and V200A). To obtain a bal-
anced design between correctness and bias (Fig. 1D), it was necessary
that each individual’s JND1 was negative (sound-leading SOA), and
each JND2 positive (visual-leading). To achieve this, we had to adjust
the definition of JNDs for five participants (the JNDs performance ratios
deviating from 30/70 for these participants were respectively: 23/70 in
V200A condition; 30/78 in no condition, 30/87 in A200V condition, 30/
78 in V200A condition; 30/93 in V200A condition; 30/95 in no condi-
tion, 30/82 in A200V condition, 30/90 in V200A condition; 30/92 in no
condition, 30/75 in A200V condition).

EEG sessions

Each EEG session consisted of two no recalibration, four A200V recali-
bration and four V200A recalibration blocks. Here, we used the three
pairs of JNDs derived from the screening session as SOAs, and each
SOA was repeated 200 times per condition (hence featuring 2 stimulus

conditions per recalibration condition). The ITI preceding test trials was
randomly drawn from a uniform distribution between 1.5 and 1.7 s.
Four catch trials (SOA = * 250ms) were introduced in each block
(~4% of the total number of trials) to test the involvement of the partici-
pants. Eighty-eight percent = 7% (mean = SD) of the catch trials were
correctly detected. The no recalibration blocks were always presented
first, followed by the eight recalibration blocks in a randomized order.

EEG acquisition and preprocessing

EEG signals were recorded using an active 128 channel Biosemi system,
with additional four electrodes placed near the outer canthi and below
the eyes to record the electro-occulogram. Electrode offsets were
<25mV.

Off-line preprocessing and analysis were performed with MATLAB
R2017a (MathWorks) using the Fieldtrip toolbox (Oostenveld et al.,
2011). The data were bandpass filtered between 0.2 and 90Hz,
resampled to 50 Hz and epoched from —1.5 s before the first stimulus
onset to 1 s after. We performed an independent component analysis
(ICA) and removed ICA components that reflect eye movement arte-
facts, localized muscle activity or poor electrode contacts (12 £ 6 rejected
components per block, mean * SD). These were identified following
definitions provided in the literature (Hipp and Siegel, 2013; O’Beirne
and Patuzzi, 1999). Furthermore, trials with amplitude exceeding
150 uV after 1Hz high-passed filtering and trials with reaction times
<200ms were rejected. In total, 3 = 5% of trials (mean * SD) were
rejected across all participants. The EEG signals were not re-referenced
to facilitate the analysis of local alpha power and phase effects (Yao et al.,
2005).
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Table 1. Models comparison for the trial-by-trial recalibration analysis

Model BIC
(1) respN = stimN 1341
(2) respN = stimN + stimN-1 1115
(3) respN = stimN + respN-1 0
(4) respN = stimN + stimN-1 + respN-1 73
(5) respN = stimN + respN-1 + stimN*respN-1 39
(6) respN = stimN + respN-1 + stimN-1 + stimN*respN-1 12
(7) respN = stimN + respN-1 + stimN-1 + stimN_1*respN-1. 202
(8) respN = stimN + respN-1 + stimN-1 + stimN*stimN-1 210

The table lists the group-averaged BIC differences from the best model (Model 3). The BIC were summed
across participants.

Logistic modeling of behavioral data

To quantify the influence of the current stimulus and the previous stim-
ulus or previous response on single-trial responses, we used generalized
linear models using a binomial distribution with a logit link func-
tion. The model parameters were estimated using maximum likeli-
hood methods based on Laplace approximation for each participant.
The outcome variable was the response of the current trial (respN:
Afirst=1, Vfirst=0), the predictors were the physical stimulus of the
current trial (stimN: Alead =1, Vlead=—1), the physical stimulus of
the previous trial (stimN-1: Alead=1, Vlead=—1), and the response
of the previous trial (respN-1: Afirst=1, Vfirst=—1). All variables
were treated as categorical variables. We first determined which be-
havioral model was explaining best the variance of the dataset by
comparing Bayesian information criterion (BIC) after summing it
across participants (Table 1).

Time-frequency analysis

We extracted the single-trial power in different frequency bands between
—1.5 and 0.5 s around the first stimulus onset. To avoid any poststimu-
lus contamination, each trial was windowed (with a function equal to
zero after stimulus onset and equal to 1 before, with a 27.5 ms transition
realized by a Hann window). The alpha power was obtained by using
Morlet wavelets (10 Hz, 3.5 cycles, which gives a spectral bandwidth of
7.1-12.8 Hz and a temporal resolution of 350 ms) and log-transformed.
We ensured that the individual «a peak frequency (IAF) matched the
chosen generic alpha band, by extracting the global IAF from the power
spectrum density computed on a —1.5 to —0.1 s prestimulus time win-
dow. These ranged from 7.1 to 11.4Hz (average =SD=9.8 = 1.3Hz,
median =10.0 Hz). We also extracted the power from theta (6 Hz, 3.5
cycles, spectral bandwidth =4.3-7.7 Hz), low 8 (17 Hz, 5 cycles, spectral
bandwidth = 13.6-20.4 Hz) and high B8 bands (25Hz, 5 cycles, spectral
bandwidth = 20-30 Hz).

To investigate whether prestimulus alpha power was predictive of
response correctness or biasedness, the alpha power was z-scored for
each participant using the average and standard deviation across all trials
and time points between —600 and —200 ms for each sensor. We
ignored the 200 ms just before stimulus onset, as this time period is
affected (given the wavelet length) by the windowing procedure, and we
aimed to reduce any post-stimulus influence on spectral estimates as
much as possible. The trials were then split into two groups depending
on the contrast of interest (correct vs incorrect response, matching-bias
vs against-bias responses). On average across participants, there were
551 = 71 trials in the correct condition, 228 = 70 in the incorrect,
397 = 72 in the matching-bias condition and 382 = 61 in the against-
bias condition (mean = SD). For the correlation analyses with the PSS,
we used the raw alpha power differences between Afirst and Vfirst
responses without baseline or z-scoring to be able to compare absolute
changes in « between participants.

Source reconstruction

We performed source reconstruction on the prestimulus alpha activity
(—600 to —200 ms) using Dynamical Imaging of Coherent Sources
(DICS) and re-referenced data (Gross et al., 2001). Cross-spectral density
matrices were computed using multiple tapers in the alpha band
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(centered in 10 Hz, spectral smoothing of 3 Hz). We created a forward
model by using a standard 3D source model with 6 mm dipole spacing
and a MRI template from Fieldtrip, on which we manually aligned the
128-electrode array. We then computed the common inverse filter from
all trials using DICS and applied this filter to each condition.

Phase analysis

We used the phase opposition sum (POS) index to determine whether
the instantaneous prestimulus alpha phase was concentrated around a
mean value statistically different between two conditions (VanRullen,
2016). For this, we equalized the number of trials for conditions of each
contrast, leading to 228 = 68 trials for the correctness contrast and
341 = 45 for the biasedness contrast (mean = SD across participants).
We computed POS index, based on the intertrial coherence, for each
condition, sensor and time point between —600 and —200 ms, as
follows:

POS = ITCcona1 + ITCeondz— 2 * ITCorians -

Statistical analyses

The power difference (—600 to —200 ms) between conditions was tested
using a nonparametric cluster-based permutation procedure based on
paired-sample ¢ tests (Fig. 2A) using the following parameters: two-sided
t test, a level for thresholding individual points at p=0.05, minimal
number of neighbors in a cluster of three, t statistics performed on the
maximal sum across cluster, 4000 randomizations. The same procedure
was used to assess the significance of the Pearson correlation.

The phase difference between conditions was statistically assessed
using a permutation-based approach (VanRullen, 2016). For each partic-
ipant, a surrogate distribution was built by randomly shuffling the trials
label and recalculating the POS for each new shuffling (number of repe-
titions: 1000). Then, a group-level surrogate distribution was built by
randomly picking a POS sample for each participant and averaging the
samples across participants (number of repetitions: 100,000). Last, a
cluster-based permutation procedure was used to compare the empirical
POS values to the group-level surrogate distribution (cluster threshold
corresponding to the two-sided 95th percentile), ensuring a correction
for the multiple-comparison problem.

We computed the Bayes factor for paired ¢ tests and Pearson correla-
tion using the bayesFactor toolbox in MATLAB and the BayesFactor
package with R (v3.5.3), and interpreted the Bayes factor following
Jarosz and Wiley (2014).

Results

Temporary and idiosyncratic biases in time perception

The participants’ task was to judge which of two stimuli in an
audiovisual pair of asynchronous stimuli was presented first. In
an initial screening session, we determined the idiosyncratic bias
of each participant. If a participant exhibited the tendency
(across a set of balanced stimulus-onset asynchronies) to per-
ceive the flash first more often, we would deem the flash-first
response (Vfirst) as matching this individual’s bias (matching-
bias) and the sound-first response (Afirst) as against-bias (Fig.
1B). We computed the PSS as a proxy for an individual’s bias
(Grabot and van Wassenhove, 2017) and the JNDs for each indi-
vidual and condition (Fig. 1B). In a planned sample, 12 partici-
pants were biased toward Vfirst responses (negative PSS, mean
* SD = —44+46 ms) and 12 were biased toward Afirst
responses (positive PSS, mean = SD =38 = 31 ms).

To induce a temporary bias, we tested participants’ percep-
tion after prolonged exposure to constant audio-leading or vis-
ual-leading delays of 200 ms (A200V and V200A conditions). As
expected, recalibration significantly changed the perceived
simultaneity (Table 2). A repeated-measure one-way ANOVA
showed that there was a significant effect of recalibration on PSS
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Figure 2.  Behavioral results. A, Each line shows the participant's PSSs for each condition (gray, no; red, A200V; blue,

V200A). The insert depicts the group-averaged PSS for each condition (error bars shows =1 SEM). Asterisks indicate the signifi-
cance level of the repeated-measure one-way ANOVA (with *p << 0.05). B, Behavioral results of the EEG session. The percent-
age of flash-first responses is shown for each SOA (JND1 and JND2) and adaptation condition (error bars show =1 SEM).

Table 2. Group averaged PSSs and JNDs for each condition (mean =+ SD)

Condition No A200V V200A

PSS, ms —3+57 —17 =4 —6 + 41
IND1, ms —83 =54 —85 £ 57 —70 = 54
IND2, ms +77 =75 +48 + 46 +58 + 63

(F(2,23y=3.48, p=0.039, nf, = 0.67; Fig. 2A). A post hoc t test
revealed that the PSS after A200V recalibration significantly
decreased compared with V200A recalibration [f3) = —2.51,
p=0.019, CI95 = (—23, —2) ms, effect size = 12 ms, BF=2.80]. In
addition, the PSS significantly differed between the A200V and
no recalibration conditions [t3) = —2.34, p=0.028, CI95 =
(=29, —2) ms, effect size=16 ms, BF=2.04], but not between
the V200A and no recalibration conditions [f,3 = —0.45,
p=0.657, CI95 = (—17, 11) ms, effect size = 3 ms, BF =0.23].

Recalibration also induced a change in perceptual sensitivity,
as measured by the difference between JND1 and JND2 (denoted
AJND). A repeated-measure one-way ANOV A showed that there
was a significant effect of recalibration (F(,,3)=3.85, p=0.028). A
post hoc t test revealed that the AJND during no recalibration
differed significantly from the A200V [t;3 = —2.30, p=0.031,
CI95 = (—54, —3) ms, effect size =28 ms, BF=1.90] and V200A
conditions [f3) = —2.22, p=0.037, CI95 = (—63, —2) ms, effect
size=32ms, BF = 1.66], showing that the temporal order judge-
ments became less sensitive after recalibration.

Behavioral results from the EEG sessions

The same participants then performed the same temporal order
judgment task while EEG was recorded. Here, we used only two
audiovisual SOAs as stimuli per condition (no, A200V, and
V200A conditions) defined as the individual JND1/2 extracted
for each individual from the screening session. The behavioral
data confirmed that the selection of JNDs for the EEG experi-
ment was appropriate and resulted in the expected percentage of
Vfirst responses (30% for IND1 and 70% for JND2; Fig. 2B): a
one-sample ¢ test indicated that the difference between the actual
percentage of Vfirst responses and the a priori percentage was
not statistically different [f(143)=1.23, CI95 = (—0.009, 0.038),
p=0.220, BF=0.19]. Using a sound-leading (J]ND1) and a flash-
leading (JND2) delay for each individual allowed us to orthogonal-
ize the correctness and the biasedness of the responses while
ensuring a sufficient number of trials per response (Fig. 1D).
Because our population was composed of 12 participants

@ no recalibration

J. Neurosci., April 22, 2020 - 40(17):3443-3454 - 3447

favoring flash-first responses and 12 par-
ticipants favoring sound-first responses,
the correctness and the biasedness of the
responses are also orthogonal to the
responses (Afirst, Vfirst).

Alpha activity reflects processes that help
to overcome an idiosyncratic bias

Given the presumed role of prestimulus
alpha band activity in shaping subse-
quent perceptual responses, we quanti-
fied the relation between alpha activity
and the idiosyncratic biases. To investi-
gate whether alpha power predicted the
correctness or biasedness of a subse-
quent response, we extracted alpha
power from —600 to —200 ms before
the onset of the first stimulus in no reca-
libration condition and entered this into
a 2x2 ANOVA combined with a
spatiotemporal cluster-based permutation test (Fig. 3A).
Importantly, the contrasts for correctness and biasedness were
orthogonal given the experimental design and were controlled
for the physical order of stimuli presentation. We found a signifi-
cant positive cluster for biasedness over left fronto-central sen-
sors (—598 to —438 ms, cluster-value=291.50, p=0.044),
suggesting that an increase in alpha power predicts a matching-
bias response (Fig. 3A, right). No effect (even at a reduced
p < 0.15) was found for correctness, nor was there any significant
interaction. A Bayesian analysis revealed that there is positive or
substantial evidence that alpha power averaged across the left
frontal cluster does not differ between correct and incorrect
response (BF=0.21), that there is no interaction effect
(BF=0.27), and confirmed decisive evidence for an effect of bias-
edness (BF=112).

To localize the neural generators underlying the effect of bias-
edness, we performed a source reconstruction on prestimulus
alpha activity and contrasted matching-bias and against-bias
responses. This revealed a cluster in left temporo-frontal areas,
consistent with the left frontal topography (Fig. 3B). The center
of mass of this cluster (at an uncorrected p < 0.05) was located in
the left rolandic operculum (MNI coordinates: —60, + 5, +6,
corresponding to Brodmann area 44). Based on the AAL atlas,
this cluster comprised prominent parts of the left frontal inferior
operculum, rolandic operculum and temporal superior area,
with 64% of the grid points contained in the cluster falling in left
frontal areas, 27% in left temporal areas, and 9% in the left post-
central area and the insula (Fig. 3B).

If prestimulus alpha band activity indeed reflects processes
that help to overcome an idiosyncratic bias, the difference in
power between responses (Afirst and Vfirst) should not only
show a general association with biasedness but should also scale
in proportion to the strength of the individual bias, hence the
magnitude of the individual PSS. To test this, we computed a
Pearson correlation between the difference in prestimulus alpha
power (Afirst-Vfirst) and the individual PSS extracted from the
no recalibration condition (Fig. 3C). This revealed a significant
cluster over left fronto-central sensors (—598 to —438 ms, cluster
value =436.09, p=0.037), the location of which was consistent
with the results from the ANOVA above. Within this cluster, the
correlation coefficient between the alpha power difference and
the PSSs was R = 0.61 [bootstrap-based CI95% = (0.27, 0.82),
BF=11; Fig. 3C]. As a control, we also tested within the same

JND2
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Prestimulus alpha power and idiosyncratic bias. A, Statistical maps from an ANOVA testing for main effects (correctness, matching bias) and an interaction performed for the no-

recalibration condition on prestimulus alpha power (7.1-12.8 Hz). One positive significant cluster for biasedness was found. Each topography shows the average t map across a 100 ms temporal
window starting at the indicated time point. The bar graph shows alpha power within the significant cluster, for each response (mean = SEM across participants). B, Source-space contrast of
prestimulus alpha power between matching-bias and against-bias responses between —600 and —200 ms. The center of mass of the cluster corresponding to uncorrected p << 0.05 is located
in the left rolandic operculum. Sixty-four percent of the cluster covers left frontal areas, 27% left temporal areas, and 9% left postcentral areas and insula (based on the AAL atlas). C,
Correlation between PSS, and the « difference (Afirst-Vfirst) tested using a spatiotemporal cluster based permutation test. One significant cluster was found. D, The POS index was used to
determine whether the instantaneous alpha phase has different concentration between two conditions. No significant cluster was found.

cluster whether the alpha power difference between correct and
incorrect response correlated with the PSS, and found no evi-
dence for a significant correlation (R = —0.04, p=0.864,
BF=0.16).

We explored whether this result was specific to the alpha
band by repeating the above analysis for the theta, low B8 and
high B bands. No significant clusters were found for biasedness
in any of these bands (Fig. 4). However, high beta band activity
was related to correctness (—298 to —218 ms, cluster-value =
—395.21, p=0.002), with decreased beta power in occipital cen-
tral electrodes predicting a correct response. To investigate the
amount of evidence in favor of the null hypothesis, we calculated
a Bayes factor for a paired ¢ test at each sensor and time point.
67.5, 75.4, and 70.5% of the data points in the theta, low 8 and
high B bands respectively showed positive and substantial evi-
dence for the null hypothesis (BF < 1/3), whereas only 1.2, 0.8,
and 1.3% of the data point in the same bands showed positive
and substantial evidence (BF > 3) for a difference in biasedness
(Table 3). Given the large number of data points tested, we con-
sider these few ‘significant’ data points as false-positives, because
their number does not exceed a threshold at a = 0.05. On the
contrary, >5% of the data points in the high beta band showed

positive and substantial evidence for a difference in correctness,
in line with the significant cluster found.

We also investigated whether the phase of alpha activity was
predictive of whether the following response was correct or bi-
ased, because previous studies suggested a link between alpha
phase, detection performance and prior expectation (Busch et al.,
2009; Sherman et al., 2016). A nonparametrical permutation-
based procedure on the POS index (VanRullen, 2016) revealed
no significant effects for correctness or biasedness (Fig. 3D).

Prestimulus « reflects both idiosyncratic and temporary biases

Next, we investigated the interplay between the idiosyncratic bias
and the temporary biases induced by recalibration. If alpha activ-
ity is reflective of neural processes that are affected by both types
of biases, we would expect that the relationship between alpha
power and the biasedness of responses would remain the same
across recalibration conditions. If, however, « indexes only an
idiosyncratic bias, we would expect that the explanatory power
differs between recalibration conditions, because the influence of
any long-term biases is shadowed by the temporary influence of
recalibration. To address this, we focused on the cluster (ie.,
electrodes and time points) that showed a significant « effect
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their interaction. There was no effect of biasedness in any frequency band, suggesting that this effect is specific to the alpha band. In the high 20-30 Hz beta band, reduced power was predic-

tive of a correct response (mean == SEM across participants). See Table 3 for Bayes factors.

Table 3. Bayes factors for theta and beta band results

Theta, % Low beta, % High beta, %
Correctness
BF >3 22 29 54
BF < 1/3 69.1 60.2 57.5
Biasedness
BF >3 1.2 0.8 13
BF < 1/3 67.5 75.4 70.5

Occurrence of (sensors, time point) couple with BF >3, denoting a positive and substantial evidence for a
difference between conditions (correct vs incorrect or matching-bias vs against-bias) and BF << 1/3, denoting
a positive and substantial evidence for the null hypothesis (no difference).

both for the ANOVA contrast and the correlation analysis in the
no recalibration condition (—598 to —438 ms, 19 electrodes; Fig.
34,0).

To quantify whether alpha power is predictive of either the
original idiosyncratic bias, or a updated bias emerging from reca-
libration, we split trials from A200V and V200A conditions (1)
according to correctness and biasedness relative to the recali-
brated biases (PSS 200y and PSSy2004), or (2) relative to the orig-
inal idiosyncratic bias (PSS,,). We then entered these alpha
power values into a linear mixed-effect model with the factors
correctness, biasedness, their interaction, and participants as a
random effect (Fig. 5A). When using the adapted PSSs, a was
significantly related to biasedness (x(;y=4.90, p=0.027, BF=
2.06), but not to correctness (X(21)=0.13, p=0.715, BF=0.22),

and the interaction was not significant ( )(fl)z 1.06, p=0.303,
BF=0.20). When using the non-adapted PSS, no factors were
significant (biasedness: x{)=0.26, p=0.611, BF=0.24; correct-
ness: x(y=0.13, p=0.720, BF=0.23; interaction: x{j,=0.43,
p=0.509, BE=0.02). Furthermore, a model comparison based
on a likelihood ratio test showed that the model using the
adapted PSSs (LL=96.1) was explaining significantly more var-
iance than the non-adapted model (LL=94.5, x> = 2.76,
p<1077). An estimated Bayes factor suggested that the model
with the adapted PSSs was 10 times more likely to occur than the
model with the PSS,,. These results suggest that prestimulus
alpha power predicts whether a subsequent response will follow
or not the momentary and contextually adapted bias.

Trial-by-trial dependencies

Temporal recalibration is not only observed after prolonged ex-
posure but can also emerge on a trial-by-trial basis (Van der
Burg et al, 2013, 2015). We investigated whether and how the
previous trial influenced the alpha band activity before the subse-
quent trial and contributed to the behavioral response in the sub-
sequent trial. First, we asked whether the previous stimulus
(stimN-1) or the previous response (respN-1) significantly influ-
enced the subsequent response (respN), by comparing the ability
of distinct linear models based on different combinations of
these predictors to predict the subsequent response (Table 1).
The model providing the most parsimonious account of the data
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The trials in A200V and V200A conditions were either classified following (A/) the adapted PSSs (PSSaa0oy and PSSyagos) OF (Aii) the non-adapted PSS (PSS,,). The alpha power was computed
according to biasness and correctness for these two classifications and averaged across the conjunction cluster derived from the ANOVA and the correlation analysis (Fig. 34,0). A two-way
ANOVA (factors: biasness, correctness) showed that the biasedness factor was significant only when trials were classified according to adapted PSSs (*p << 0.05; n.s., nonsignificant). B, A sin-
gle-trial model was used to explain the response in the current trial N (respN) based on the current stimulus (stimN) and the previous response (respN-1). The coefficient estimates for each
individual (black dots) and the mean across participants (red) are shown. C, The relationship between pre-trial N alpha power and the response of trial N-1 was investigated by splitting trials
according to stimulus, response, or biasedness of the response in trials N-1. No significant clusters were found.

(according to the group-level BIC criterion) was the model with
stimN and respN-1 as predictors (BIC =43 848; Table 1). The
model estimates and t values averaged across participants were
as follows: Bintercepyy = —0.97 * 0.84, p < 0.05 for 21/24 partici-
pants; BstimN = Alead) = 1.63 *0.76, p<0.05 for 23/24 partici-
pants; Brespn-1 = Afirsy = 0.06 = 0.97, p < 0.05 for 20/24 participants;
df=1 546+ 70 (mean * SD; Fig. 5B). Because a previous study
has suggested that trial-by-trial temporal recalibration is driven by
the previous stimulus rather than the previous response (Van der
Burg et al, 2018), we implemented a second analysis to better
contrast the influence of stimN-1 and respN-1. For this, we
removed the natural correlation between these two predictors by
equalizing, for each participant, the number of trials between
responses (Afirst or Vfirst) for a given previous stimulus (Alead
or Vlead), and recomputed the linear model with these predic-
tors. Still, stimN-1 was a significant predictor for only 6 of 24 par-
ticipants (8= —0.143 +0.285, t = —0.801 = 1.529, p < 0.05 for 6
participants), whereas respN-1 was significant for most participants
(B = 0157+ 0962, t=1062% 5945, p< 005 for 21 participants;

df =947 * 203; mean = SD). Hence in the present data, subsequent
responses are more tied to the previous response than the previous
stimulus.

We then asked whether the alpha activity before the subse-
quent trial was related to the stimuli or behavior in the previous
trial (Fig. 5C). We sorted trials according to either the stimulus
order (Alead vs. Vlead), the response (Afirst vs. Vfirst), and the
biasedness (matching-bias vs. against-bias) of the previous trial.
A spatiotemporal cluster-based permutation test revealed no sig-
nificant effects. In particular, for biasedness, one cluster over
frontal electrodes did not pass the significance threshold at 0.05
(p=0.111; —498 to —418 ms; Bayesian analysis: 57.5% of the
data points with BF < 1/3, 0.7% with BF > 3), suggesting that the
previous stimuli or responses did not influence the prestimulus
alpha activity for the subsequent trial.

Using additional analyses we further ruled out that @ medi-
ates, or modulates, the influence of the response in the previous
trial on the current trial: a mediation analysis on alpha power
from the left frontal cluster, revealed no significant mediation
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(path from respN-1 to the alpha power: a=0.022, p =0.051; path
from the alpha power to the respN: b=0.05, p =0.031; mediation
term: ab=>5.2e-5, p=0.424). Further, logistic modeling of the
subsequent response revealed no interaction between « and the
previous response (B(intercepyy = —0.01 = 0.53, p < 0.05 for 20/24
SUbj;  BlrespN-1 = Alead) = 0.07 £ 0.78, p<0.05 for 20/24 subj;
Biay=004+0.07, p<005 for 2/24 subj, B(arespny) =
—0.04 = 0.12, p<0.05 for 3/24 subj; df= 1 546 * 70; mean *
SD).

Discussion

Idiosyncratic biases are ubiquitous in human behavior but
are often ignored in experimental work (Matthews and Meck,
2014; Ipser et al, 2017; Kosovicheva and Whitney, 2017).
Their origin remains unknown but the persistency of these
biases over time suggests that they arise from structural or
functional characteristics of an individual’s brain (Kanai and
Rees, 2011). Indeed, previous work has speculated about the
relation of such biases with interindividual differences in ge-
notypes, neurotransmitters levels, brain structure or signatures
of spontaneous brain activity (Kanai and Rees, 2011; Mennes
et al., 2011; Kleinschmidt et al, 2012; Romei et al., 2013;
Haegens et al., 2014; Matthews and Meck, 2014; Chechlacz et
al., 2015; Marshall et al., 2015).

We here focus on a prevailing signature of spontaneous brain
activity, alpha band oscillations, and tested the previously specu-
lated hypothesis that alpha band activity relates to the degree of
how biased an individual response is (Grabot et al., 2017). Our
results show that a decrease in frontal prestimulus alpha power is
associated with an increased chance that the subsequent response
will go against an idiosyncratic bias, but is not predictive of
whether the response will be correct. Further, the stronger an
individual idiosyncratic bias, the more alpha power will differen-
tiate between responses that match and mismatch the bias.
Importantly, this relation also holds after temporal recalibration,
a manipulation that affects contextual short-term biases in per-
ception. Finally, we found that this relation is specific to the
alpha band. Hence, our results show that frontal prestimulus
alpha band activity indexes processes that help to overcome an
individual’s momentary, rather than only a stable and long-term,
bias.

A mechanistic role of alpha power
Previous studies have dissociated two patterns of alpha activity
typically described in relation to perception: a frontal « involved
in cognitive control, and a parieto-occipital « involved in spatial
perception (Noonan et al,, 2016; Sadaghiani and Kleinschmidt,
2016; Wostmann et al., 2019a). We suggest that the alpha activity
observed here is part of a frontal network and discuss its function
in relation to perceptual decisions within this framework.
Parieto-occipital « is usually observed in studies on spatial
attention, which show that lateralized changes in alpha power
are predictive of subsequent target detection performance
(Sauseng et al., 2005; Thut et al, 2006; Romei et al., 2010).
Recent studies tried to define the point of action of alpha activity
in the framework of signal detection theory (Iemi et al., 2017;
Iemi and Busch, 2018). These suggest that « reflects an additive
mechanism affecting sensory encoding more than the decision
process (Limbach and Corballis, 2016; Iemi et al., 2017), and
relates more to subjective awareness and confidence than percep-
tual accuracy (Samaha et al., 2017; Wostmann et al., 2019a; Iemi
and Busch, 2018). Given that alpha power correlates with sensory
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neural firing rates (Klimesch et al., 2007; Jensen and Mazaheri,
2010; Haegens et al., 2011; Klimesch, 2012), alpha power can be
interpreted as reflecting the overall excitability in those regions
encoding the sensory information. Our experiment was designed
to dissociate a response bias from performance and does not
allow an unambiguous interpretation in the framework of signal
detection theory. However, the prominent localization of «
effects over frontal sites found here is rather suggestive of an ori-
gin that is distinct from this parietal «.

Frontal « has been linked to cognitive control and the selec-
tion of task-relevant information (Sauseng et al, 2005;
Sadaghiani and Kleinschmidt, 2016; Wostmann et al., 2019a).
Thereby, frontal & may affect decision-making independently of
the sensory evidence, for example, by adding a fixed proportional
probability to choose one response over the other. In that case,
the response bias could change without changing the overall frac-
tion of correct responses. Still, at a mechanistic level this frontal
origin and its functional interpretation can be linked to an
understanding of the possibly multiple roles of alpha band activ-
ity in perception: in a complete sensory-decision cascade, parietal
« may affect early sensory encoding (Lou et al., 2014; Iemi et al.,
2017), whereas frontal o may affect the selection of a specific
response independently of the outcome of the preceding sensory
computation.

In terms of the underlying neurobiological correlates, idio-
syncratic biases have been suggested to arise from individual var-
iability in specific structural brain features or functional
connectivity (Freeman, et al., 2013; Grabot and van Wassenhove,
2017; Ipser et al,, 2018). These structuro-functional differences
may have been shaped by developmental experience, hence
introducing individual differences in the sensory decision-mak-
ing process. Similarly, cognitive control rests on consistent rules
learned from past experience (Miller, 2000). One could therefore
speculate that changes in frontal « reflect the degree to which
such structuro-functional imbalances shape behavior and are re-
flective of how cognitive control impacts perceptual reports.
How precisely frontal alpha band activity affects the degree of
biasedness of perceptual reports remains to be investigated,
similar as the direct links between alpha band activity and
structuro-functional connectivity, and how these relate to cog-
nitive control.

Decreased beta power predicts correct responses

We found that decreased beta power (20-30 Hz) was predictive
of correct responses. This fits with results obtained using similar
audiovisual simultaneity judgment tasks and with several studies
relating B decrease to a better sensory encoding (Griffiths et al.,
2019) and B increase to illusory (hence incorrect) perception
(for review, see Keil and Senkowski, 2018; Kaiser et al., 2019) .
However, one study reported an opposite relationship between
accuracy and beta power in a spatial auditory task (Bernasconi et
al., 2011), calling for more systematic studies on how the nature
of stimuli and task influence the neural generators of relevant
beta activity and its influence on performance.

The apparent asymmetry of temporal recalibration

We found no significant effect of VA recalibration on partici-
pants’ PSS. This is in contrast to AV recalibration, which signifi-
cantly reduced the PSS. Such an asymmetry between AV and VA
recalibration has been observed consistently in multiple studies
(Fujisaki et al., 2004; Vroomen et al., 2004; Tkumi and Soto-
Faraco, 2014; Kosem et al., 2014), yet a clear explanation remains
missing. One possibility is that in everyday life we are mainly
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confronted with VA asynchronies, as light travels faster than
sound and for many actions the visual movement precedes any
produced sound. The consistency of this observation across stud-
ies suggests that our brain may indeed be differentially sensitive
to AV and VA adaptation, in the same way that integrating
audiovisual events leads to an asymmetric temporal binding win-
dow (van Wassenhove et al., 2007; Stevenson et al., 2012).

Distinct mechanisms mediating prolonged and single-trial
recalibration

The neural correlates of temporal recalibration are still poorly
understood (Stekelenburg et al., 2011; Kosem et al., 2014; Simon
et al., 2017, 2018). We found that prestimulus alpha activity
predicts the degree of biasedness to perception after prolonged
temporal recalibration, but does not mediate trial-by-trial recali-
bration, ie., the influence of a previous response on behavior
(Van der Burg et al, 2013). This suggests that distinct mecha-
nisms underlie prolonged and single-trial recalibration, a conclu-
sion supported by psychophysical experiments in the temporal
(Van der Burg et al., 2015) and the spatial domains (Bruns and
Roder, 2015, 2019; Watson et al., 2019). A role of alpha activity
in reflecting an individual’s overall perceptual tendency without
interacting with trial-by-trial dependencies is also supported by a
recent study on multisensory integration (Rohe et al., 2019).
Assuming that « reflects the influence of cognitive control, the
dissociation of alpha activity and trial-by-trial recalibration could
reflect the need to strike a balance between the sustainability of a
temporally consistent internal state, and the flexibility required
to cope with dynamic environments. Frontal alpha activity
would help sustaining internal states in line with long-term expe-
rience without interfering with other trial-by-trial adaptive
mechanisms that also shape perception.

Alternatively, the perceptual dependencies often described as
single-trial recalibration may in fact not be a genuine recalibra-
tion effect but reflect a bias to repeat a previous response in con-
secutive trials (Keane et al., 2019; Roseboom, 2019). Our data
revealed a significant choice-repetition bias, which is inconsistent
with a recalibration effect (exposing participants to audio-leading
stimuli would increase their tendency for Vfirst responses).
However, because a genuine recalibration effect can be observed
when one controls for choice-repetition biases (Keane et al.,
2019), further work is needed to determine the neural mecha-
nisms underlying single-trial temporal recalibration. In the spa-
tial domain one study recently suggested that recalibration
induced by discrepant multisensory information arises from
medial parietal brain regions involved in episodic and spatial
memory (Park and Kayser, 2019), suggesting that in the spatial
domain single-trial and long-term recalibration emerge from dis-
tinct neural structures (Bruns and Roder, 2010; Bruns et al.,
2011; Bosen et al., 2017). Still, further studies are required to
directly compare the neural mechanisms underlying different
time scales of adaptive behavior within and across different
domains of sensory information.
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