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Cognitive Effort Modulates Connectivity between Dorsal
Anterior Cingulate Cortex and Task-Relevant Cortical Areas
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"Faculty of Psychology and Educational Sciences, Brain and Cognition, KU Leuven, 3000 Leuven, Belgium, and *Department of Experimental
Psychology, Ghent University, 9000 Ghent, Belgium

Investment of cognitive effort is required in everyday life and has received ample attention in recent neurocognitive frame-
works. The neural mechanism of effort investment is thought to be structured hierarchically, with dorsal anterior cingulate
cortex (dACC) at the highest level, recruiting task-specific upstream areas. In the current fMRI study, we tested whether
dACC is generally active when effort demand is high across tasks with different stimuli, and whether connectivity between
dACC and task-specific areas is increased depending on the task requirements and effort level at hand. For that purpose, a
perceptual detection task was administered that required male and female human participants to detect either a face or a
house in a noisy image. Effort demand was manipulated by adding little (low effort) or much (high effort) noise to the
images. Results showed a network of dACC, anterior insula (AI), and intraparietal sulcus (IPS) to be more active when effort
demand was high, independent of the performed task (face or house detection). Importantly, effort demand modulated func-
tional connectivity between dACC and face-responsive or house-responsive perceptual areas, depending on the task at hand.
This shows that dACC, Al, and IPS constitute a general effort-responsive network and suggests that the neural implementa-

tion of cognitive effort involves dACC-initiated sensitization of task-relevant areas.
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ignificance Statement

Although cognitive effort is generally perceived as aversive, its investment is inevitable when navigating an increasingly com-
plex society. In this study, we demonstrate how the human brain tailors the implementation of effort to the requirements of
the task at hand. We show increased effort-related activity in a network of brain areas consisting of dorsal anterior cingulate
cortex (dACC), anterior insula, and intraparietal sulcus, independent of task specifics. Crucially, we also show that effort-
induced functional connectivity between dACC and task-relevant areas tracks specific task demands. These results demon-
strate how brain regions specialized to solve a task may be energized by dACC when effort demand is high.
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Introduction

Cognitive effort plays an important role in many aspects of daily
life. For example, its investment can lead to feelings of cognitive
fatigue (Boksem and Tops, 2008; Inzlicht et al., 2018; Miiller and
Apps, 2019); it is perceived as aversive and is therefore avoided if
possible (Kool et al., 2010; Kurzban et al., 2013); and it is regis-
tered as a cost in decision-making (Botvinick et al, 2009;
Shenhav et al,, 2013; Apps et al., 2015). Cognitive effort is distinct
from task difficulty. Whereas effort is a property of the actor (i.e.,
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defined as the investment of cognitive resources), difficulty is a
property of the task (Inzlicht et al., 2018). For example, a task
can be difficult without the actor investing much effort into it.
Yet, effort and difficulty are also closely related: difficult stimuli
will typically require and evoke (at least up to some difficulty
level) a higher effort investment.

Cognitive effort can be conceptualized as the amplification of
cognitive activity to resolve a demanding cognitive task (Inzlicht
et al,, 2018). Research on effort-based decision-making has identi-
fied a network of brain regions that are active when a person
engages in effortful behavior. This circuitry mainly involves dorsal
anterior cingulate cortex (dACC), anterior insula (AI), lateral pre-
frontal cortex (PFC), and intraparietal sulcus (IPS; Dosenbach et
al., 2008; Menon and Uddin, 2010; Shenhav et al., 2013). Although
dACC and Al in particular are often jointly activated across vari-
ous tasks (Medford and Critchley, 2010; Nelson et al, 2010;
Engstrom et al,, 2015), it is generally thought that dACC is more
directly involved in effort allocation. Instead, AI may signal the
saliency of events (Menon and Uddin, 2010; Shenhav et al., 2017)
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A, Examples of the face and house stimuli in the four conditions. The color coding is used for clarification only and was not used in the experiment. B, Paradigm of the target

detection tasks. Each block started with a cue signaling the task the subject had to perform: decide whether the image contained a face (target present) or not (target absent), or decide
whether the image contained a house or not. The cue also indicated the effort level of the task (easy for low effort, difficult for high effort). The trial displayed here is an example of a target-

present trial in the low-effort condition of the face detection task. ITl = intertrial interval.

or represent task-set maintenance (Dosenbach et al., 2006; Nelson
et al,, 2010). Therefore, recent frameworks have positioned dACC
at the top of a hierarchy, exhibiting increased activity whenever
effort demand is high, independent of the task that is performed
(Holroyd and Yeung, 2012; Verguts et al., 2015). To solve a diffi-
cult task, it is believed that dACC, as part of a broader network of
brain regions, recruits specialized upstream areas such as percep-
tual regions.

The activation of perceptual areas by top-down processes has
been reported previously. For example, dACC is involved in top-
down attentional modulation of task-relevant perceptual areas
(Crottaz-Herbette and Menon, 2006; Danielmeier et al., 2011).
The mere expectation of a face or house image can also be suffi-
cient to evoke activity in fusiform face area (FFA) and parahippo-
campal place area (PPA), respectively (Summerfield et al., 2006;
Esterman and Yantis, 2010). In the present fMRI study, we built
on these findings to elucidate how effort investment is imple-
mented in the brain and to investigate whether dACC indeed
recruits specialized upstream areas when effort demand is high.

In two perceptual detection tasks with different stimulus
types, subjects decided whether an image contained either a face
or a house, or only noise. To disclose the top-down effects of
effort investment on perceptual performance, we manipulated
the effort required to solve the tasks by adding a little noise (low-
effort trials) or much noise (high-effort trials) to the images.
With much noise, the perceptual evidence contained by the
image is low. On such difficult occasions, additional cognitive
effort is required for the actor to reach an accurate decision. We
hypothesized that this increased effort may serve as a top-down
amplifier of the low signal-to-noise ratio, leading to an improve-
ment in detection accuracy in noisy circumstances (Shenhav et
al., 2013; Verguts et al., 2015). Specifically, we expected increased
activation of effort-responsive areas such as dACC and Al when
effort demand is high, independent of the task that was per-
formed. Importantly, because participants knew beforehand
whether they had to detect a face or a house, we expected that
dACC would increase its functional connectivity to FFA and
PPA, respectively, when effort demand was high compared with
low. This would show that dACC exerts its effects by modulating
upstream areas, when effort investment is large. In addition to
the a priori chosen analyses, we also explored whether errors and
cognitive fatigue (i.e., time-on-task) affected behavioral and neu-
ral effort processing.

Materials and Methods

Participants

Thirty healthy Ghent University students gave written informed consent
to participate (19 females, 11 males; mean age,23.07 years; SD = 3.48;
age range, 18-33 years). The study was approved by the ethics commit-
tee of the Ghent University Hospital. All participants reported no history
of psychiatric or neurologic disorder, were right handed, had normal
vision, and were rewarded with 30 Euros in exchange for their
participation.

Stimuli

Grayscale images of 18 faces and 18 houses were used (Fig. 1; Schiffer et
al,, 2014). Several measures were taken to nullify differences in surface
properties between images. First, the images were equated in mean lumi-
nance level, contrast, and spatial frequency using the SHINE (Spectrum,
Histology and Intensity Normalization and Equalization) toolbox
(Willenbockel et al., 2010).

Next, for each trial, noise masks were created through image phase
scrambling. Fast Fourier transforms were computed of one randomly
selected face image and one randomly selected house image. The ampli-
tude and phase matrices of these images were averaged across the two
images. A random phase matrix was added to the averaged phase matrix,
resulting in 100% phase scrambling. The final noise mask was obtained
through inverse fast Fourier transformation of the averaged amplitude
matrix and the averaged phase-plus-noise matrix.

The following two different trial types were created: target-present
trials and target-absent trials. On target-present trials, a face or house
image was blended with a noise mask. The blending depended on a
threshold corresponding to a participant-specific and task-specific inter-
polation factor. These thresholds were obtained from a staircase proce-
dure performed before the main task (see Staircase procedure). The
thresholds could vary from 0, meaning that the original face or house
image was returned, to 1, meaning that the noise mask was returned.

Each target-absent trial consisted of a superimposed face and a house
image (i.e., they were blended with interpolation factor 0.5). Next, the
superimposed image was 100% phase scrambled. This phase-scrambled
image was in turn blended with the noise mask, with an interpolation
factor that was the average of the face and house threshold obtained
from the participant’s staircase performance (see below). This procedure
assured identical target-absent trials in all conditions.

Experimental design and statistical analysis

Target detection tasks. On each trial, participants were shown a noisy
image displayed against a gray background at 6.2° x 8° visual angle (Fig.
1B). Two different target detection tasks were administered. In the face
task, participants had to decide whether the noisy image contained a face
(target present) or not (target absent); in the house task, they had to
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decide whether the image contained a house or not (Fig. 1B).
Participants pressed a button either with the right index or middle finger
for a target-present or target-absent trial. Response mapping was coun-
terbalanced across participants. Each trial consisted of a 1000 ms image
presentation, during which participants were not allowed to respond,
followed by a 1000 ms response window during which a question mark
was displayed, and responses were recorded. Trials were separated by a
pseudoexponentially distributed intertrial interval ranging from 1000 to
7000 ms (average, 3000 ms) during which a fixation cross was displayed.

Each task was performed at the following two effort levels: in the
low-effort condition, the difference in target visibility between target-
present and target-absent trials was large; in the high-effort condition,
this difference was small (Fig. 1A). Specifically, the effort level of each
block depended on the interpolation level of the target images. In low-
effort blocks, the interpolation level of each target image was randomly
drawn from a normal distribution centered at ~0.30 with SD =0.07.
This resulted in a clear difference between target and noise trials (Fig.
1A). In high-effort blocks, the interpolation level of target images was
randomly drawn from a normal distribution centered around the thresh-
old obtained through a staircase procedure (see Staircase procedure),
with SD =0.07. Hence, on high-effort blocks, the difference between tar-
get and noise images was much smaller (Fig. 14).

Task (face vs house detection) and Effort (low vs high) were varied
blockwise, resulting in the following four different block types, or
conditions: face low-effort; face high-effort; house low-effort; and
house high-effort (Fig. 1A). Each block contained 18 trials, half of
which were target-present trials while the other half were target-
absent trials. Blocks were presented in five rounds, resulting in a total
of 90 trials per condition. Each round contained a single presentation
of all block types in random order.

Participants were made aware of the difference between low-effort
and high-effort blocks through verbal instructions before the experiment
started. They were also cued at the start of each block about which task
to perform (i.e., detect face or detect house) and whether the block was a
low-effort block (i.e., “easy”) or a high-effort block (i.e., “difficult”; Fig.
1B). Participants were instructed to stay focused on the center of the
images to avoid eye movements. Accuracy feedback was provided at the
end of each block.

Target detection tasks: d' analysis. For each participant and condition
(face low-effort, face high-effort, house low-effort, and house high-
effort), we computed the d’ value to evaluate performance. d’ is a mea-
sure of the difference between the mean sensory activity generated by a
signal-plus-noise trial versus a noise-alone trial, expressed in z-scores. A
2 X 2 repeated-measures ANOVAs with the factors Task (face vs house)
and Effort (low effort vs high effort) was performed on these d’ meas-
ures. Trials with no response were excluded from analysis (2.9%).

To explore the effects of cognitive fatigue (i.e., time-on-task) on
behavior, the behavioral data were split in early stages (i.e., first 180 tri-
als) and late stages (i.e., last 180 trials). The ANOVA on the d’ scores
was repeated with the additional factor Stage (early vs late).

Subjective rating task. To ensure that the high-effort conditions of
the target detection tasks were indeed perceived as more difficult than
the low-effort conditions and that participants indeed invested more
effort into it, a separate sample of 32 first-year psychology students was
recruited (27 females, 5 males; mean age,18.72 years; SD, 1.30; age
range, 18-23 years). All participants gave written informed consent and
were rewarded with one course credit. They were administered the same
target-detection tasks described above, outside the scanner, and with the
addition of two questions after each block of trials. One question probed
task difficulty: “How difficult did you find the previous block?” The
other probed invested effort: “How much effort did it take you to com-
plete the previous block?” Participants rated difficulty and effort invest-
ment on a horizontal line ranging from 0 (“not difficult at all” or “no
effort at all”) to 100 (“extremely difficult” or “extreme effort”). The ques-
tions were presented in random order after each block.

Subjective rating task analysis. The ratings of difficulty and effort
investment were averaged per participant and condition. These ratings
were subjected to a repeated-measures ANOVA with the factors Task
and Effort.
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Staircase procedure. Before the target detection task, participants per-
formed a linear adaptive one-up/two-down staircase outside the scanner
to determine the interpolation factor for each participant for the high-
effort blocks. This was done in two separate blocks for face and house
images. The trial procedure was similar to the main task, except for the
inclusion of feedback on accuracy (“correct” and “false”) and response
time (“too slow” when the response deadline of 1000 ms was exceeded).
Participants performed two blocks of 72 trials separated by a 10 s pause.
Based on pilot data, the initial interpolation level was set at 0.65 for each
block. The interpolation level dropped with one step after every incorrect
response and increased with one step after two consecutive correct
responses. For the first four reversals, the step size was set at 0.02 to
accelerate progressing through the staircase in the beginning. From the
fifth reversal, the step size was set to 0.01. The average interpolation level
on the last six reversals was taken as the participant’s interpolation fac-
tor. The mean interpolation level was 0.80 (SD, 0.02; range, 0.71-0.83)
for the face task and 0.77 (SD, 0.03; range, 0.70-0.82) for the house task.
Block order was counterbalanced between participants. Response config-
uration was kept identical between the staircase task and the target
detection task.

fMRI acquisition. Images were collected by means of a 3 tesla
Magnetom Trio MRI scanner system (Siemens Medical Systems), with a
64-channel radiofrequency head coil. Participants perceived stimuli pro-
jected onto a screen at the extremity of the magnet bore through a mir-
ror mounted on the head coil. Stimulus presentation was controlled by
PsychoPy version 1.85.4 (Peirce, 2007). First, a high-resolution T1-
weighted structural scan (MP-RAGE) was conducted (176 slices; 1 mm
slice thickness; TR, 2250 ms; TE, 4.18 ms; flip angle, 9°). This was fol-
lowed by two functional runs using a gradient echo echoplanar pulse
sequence. Functional images consisted of 38 axial slices (3.5 mm thick; 1
mm skip, 229 field of view), with TR = 2s, TE = 29 ms, flip angle = 90°,
and 3.5 X 3.5 x 3.5 mm in-plane resolution.

fMRI data analysis: data preprocessing. The fMRI data were prepro-
cessed and analyzed using SPM12 (http://www.filion.uclac.uk/spm/
software/spm12). Functional data were corrected for differences in ac-
quisition times between slices for each whole-brain volume, realigned
within runs, and coregistered with each participant’s anatomic scan. The
functional data were then segmented and spatially normalized to stand-
ard MNI space (2 mm isotropic voxels). Normalized data were spatially
smoothed (6 mm full-width at half-maximum) using a Gaussian kernel
filter. Six motion parameters were estimated using the Artifact Detection
Tool software package (ART; https://www.nitrc.org/projects/artifact_
detect). These parameters were used to check for outlier scans, which
were identified in the temporal differences series by assessing between-
scan differences using a z-threshold of 5.0 mm and a scan-to-scan move-
ment threshold of 0.9 mm. The motion parameters and outlier regres-
sors identified with ART were included in all first-level statistical
analyses as nuisance regressors.

fMRI data analysis: Target detection task. Using a general linear
model (GLM), blood oxygenation level-dependent (BOLD) responses
for all participants were modeled at each voxel. Initially, a hybrid design
modeling both transient trial responses and sustained block responses
was explored in one design (Visscher et al., 2003; Petersen and Dubis,
2012). However, the block regressors had to be dropped because of high
collinearity. The remaining design included four trial types, resulting
from the crossing of the factors Task (face vs house) and Effort (low
effort vs high effort). Trial regressors were convolved with a canonical
hemodynamic response function (HRF), including time and dispersive
derivatives. The event length was set at 0 s. The six motion parameters
and outlier regressors identified with ART were included as nuisance
regressors. A high-pass filter of 0.008 Hz was applied, and temporal
autocorrelations were accounted for using the default first-order autore-
gressive [AR(1)] model.

We first checked for task-specific effects by computing contrasts
between the face and house tasks for low-effort and high-effort condi-
tions. In a similar vein, contrasts were computed between low-effort and
high-effort conditions for face and house tasks to identify effort effects.
Individual contrast maps were subjected to second-level random-effects
models. Significance was tested through one-sample ¢ tests. Since FFA
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activity is generally more robust in right hemisphere than in left hemi-
sphere in right handers (Kanwisher et al., 1997; Willems et al., 2010), we
also applied a small volume correction in case bilateral activity was not
found in whole-brain analyses. Small volume correction was performed
with 10 mm bilateral spherical ROIs centered at the mean peak voxels
obtained from the localizer. To determine which regions were responsive
to high-effort demand across tasks, a conjunction analysis was per-
formed on the effort activation maps of the face and house conditions.
The conjunction null hypothesis was assessed (Nichols et al., 2005),
meaning that only regions significant in both contrasts survived.

To explore whether results were affected by response accuracy, we
also created a new GLM where we added parametric modulators for ac-
curacy (0= correct, 1=error). Because few errors were anticipated for
the low-effort condition, and, to not overparameterize the GLM, these
modulators were only applied to the high-effort conditions (FaceHE,
HouseHE). Further analyses were identical to the original GLM, with
additional one-sided t tests on the regressors for the parametric
modulation.

Results are reported at an uncorrected voxel-based threshold of
P <<0.001 and were cluster corrected to control the FWE at p =0.05. For
the visualization of results, statistical maps were projected onto 2D slices
using MRIcroGL (https://www.nitrc.org/projects/mricrogl) and on corti-
cal surfaces with the use of Surf Ice (https://www.nitrc.org/projects/
surfice).

fMRI data analysis: Functional connectivity. A generalized psycho-
physiological interaction (gPPI) analysis was conducted to assess
whether connectivity between effort-responsive regions (dACC) and
lower-level sensory cortices increased in a task-dependent way. This
analysis was conducted on unsmoothed volumes with the CONN
toolbox (http://www.conn-toolbox.org; Whitfield-Gabrieli and Nieto-
Castanon, 2012). To remove non-neural sources from the neural signal,
an anatomic component-based noise correction (aCompCor) strategy
was used (Behzadi et al, 2007). The six realignment parameters were
regressed out, and the BOLD signals from individual white matter and
CSF masks were used to remove noise components. Next, the gPPI
model was estimated according to the following:

y = By +B,S + B,FaceLE + B;FaceHE + ,HouseLE + S,HouseHE

+ B¢FaceLE x S + B,FaceHE x S + B;HouseLE x S + 8,;HouseHE x S,

where S is the averaged time series of the seed region; FaceLE, FaceHE,
HouseLE, and HouseHE are the psychological (block) regressors repre-
senting the four conditions; and FaceLExS, FaceHExS, HouseLEXS,
and HouseHEXS are the psychophysiological interactions between the
psychological regressors and the averaged time series of the seed.

Whereas the activity analyses were performed on trial level, the con-
nectivity analysis used the blocked structure of the design. This way,
both analyses leveraged specific assets of the design. In the activity analy-
ses, the task events of noninterest were excluded, resulting in a cleaner
BOLD signal. In the connectivity analysis, block regressors increased
power by stretching events across longer time periods (Gonzalez-
Castillo et al., 2015). Also, with block regressors, how exactly the seed
and task time series are deconvolved is of little influence, since blocked
regressors will saturate to look like a block independent of the deconvo-
lution method (O’Reilly et al., 2012; Di and Biswal, 2017). In the current
study, the psychological regressors were convolved with the hemody-
namic response function and the interactions were modeled on the raw
BOLD-level signal.

The gPPI analysis was first conducted on whole-brain level, assessing
seed-to-voxel connectivity. The individual 8 values corresponding to
the interaction terms (84 to o) were subjected to a second-level ran-
dom-effects analysis, where we contrasted low-effort and high-effort
blocks within each task (i.e., FaceHE > FaceLE; HouseHE > HouseLE)
and assessed the difference between these two contrasts (i.e., [FaceHE >
FaceLE] vs [HouseHE > HouseLE]).

The whole-brain analysis was followed-up by an ROI-to-ROI analy-
sis, where we estimated the interaction terms (8¢ to By) using the
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averaged time series of individual FFA and PPA target ROIs (see
Localizer). The interaction terms were first subjected to multivariate F
tests to jointly evaluate whether the connectivity between the seed and
any of the target ROIs showed any significant effect of interest. This was
followed by false discovery rate (FDR)-corrected individual ¢ tests
between the seed and each of the target ROIs.

Two additional connectivity analyses were conducted. First, the ROI-
to-ROI analysis was replicated after extending the original gPPI analysis
with parametric modulators for accuracy (0 = correct, 1 = error). Second,
to explore whether connectivity was affected by cognitive fatigue (i.e.,
time-on-task), the ROI-to-ROI analysis was also replicated after extend-
ing the original gPPI with parametric modulators for Stage (i.e., 0 = early,
1 =late; see also Target detection tasks: d" analysis). Parametric modula-
tors were multiplied by the averaged time series of the seed to create the
relevant psychophysiological interaction regressors. Modulations were
applied only to the high-effort conditions (FaceHE, HouseHE) to not
overparameterize the model, because few errors were anticipated in the
low-effort conditions, and because the effects of cognitive fatigue were
mainly expected in the high-effort conditions. Both additional connec-
tivity analyses were conducted only through ROI-to-ROI analyses, as
these are the most powerful analyses to explore effects of accuracy and
cognitive fatigue on connectivity. Further analyses were identical to the
original ROI-to-ROI analysis, with additional F and ¢ tests on the regres-
sors for the respective parametric modulations.

fMRI data analysis: Localizer task. A functional localizer task was
administered after the main experiment to identify face-selective and
house-selective areas (i.e., FFA and PPA, respectively). Participants per-
formed a 1-back task where they had to press a button with the right
index finger for any immediate repetition of an image. The same face
and house images as in the target detection task were presented block-
wise in eight 18-trial blocks of each type (16 blocks in total). No noise
was added to the images. Face and house blocks alternated. Which block
was presented first was counterbalanced across participants. Image pre-
sentation within blocks was random. Images were displayed for 1500 ms
and separated by a 500 ms fixation cross. Mean accuracy on immediate
repetitions was 88.8% on face trials and 90.4% on house trials (t,9) =
—0.76, p = 0.46).

Blocks of face and house images were modeled by boxcar functions
convolved with the canonical HRF and its time derivative. The lengths
of the boxcars corresponded with the block lengths. To obtain individual
ROIs, the following procedure was implemented. First, a GLM was cre-
ated with regressors for face and house blocks. Individual contrast maps
were computed comparing face versus house and vice versa, using an
uncorrected voxel-based threshold of p <0.001 and cluster correction to
control the FWE at p=0.05. Second, FDR-corrected activation maps
were obtained from the Neurosynth database (http://www.neurosynth.
org; Yarkoni et al,, 2011) using the search terms “fusiform” (n=972),
“fusiform face” (n=143), “fusiform gyrus” (n=91), and “fusiform gyri”
(n=582) for FFA; and “parahippocampal” (n=602), “parahippocampal
cortex” (n=76), and “parahippocampal gyrus” (n=327) for PPA. These
maps were binarized and combined into two single-activation maps
(one for bilateral FFA, one for bilateral PPA). Finally, the intersections
between each Neurosynth activation map and the corresponding indi-
vidual contrast map from the localizer task were computed. Six milli-
meter spheres were created, centered on the peak voxel coordinates
within the remaining left and right clusters of the two intersection con-
trasts (i.e., face vs house and house vs face). This resulted in four ROIs
for each participant: left FFA, right FFA, left PPA, and right PPA
(Fig. 2).

Eye movement data analysis

Eye movements of 24 participants were recorded with a long-range
optics infrared eye tracker (EyeTrac 6, Applied Science Laboratories).
Eye data of six participants were not recorded due to technical difficul-
ties. Data were collected at a sampling rate of 120 Hz. Fixation epochs
were computed to determine whether participants refrained from eye
movements during trials. A fixation epoch started when six consecutive
samples fell within an SD of 0.5 visual degrees. It ended when three con-
secutive samples fell outside of a 1.5° ellipse around the original fixation
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x=-40,y=-55,z=-17
X =41, y=-55,2=+17

x=28,y=-45,z2=-10

Figure 2.  Location of FFA and PPA ROIs obtained from the functional localizer, averaged
across participants.

point. Trials that were completely within one fixation epoch were
marked as fixation trials.

The percentage of fixation trials per participant and condition was
computed. These percentages were subjected to a 2 X 2 repeated-meas-
ures ANOVA with the factors Task (face vs house) and Effort (low effort
vs high effort) to check for differences in eye movements between
conditions.

Results

Behavior

Target detection task: d’'

Effects are displayed in Figure 3A. An ANOVA was conducted
on d’ scores with the factors Task (face vs house) and Effort (low
vs high). A main effect of Task was found, with higher d" scores
on the face task (mean, 2.46) than on the house task (mean, 2.15;
F(120y=23.21; p < 0.001; 1% = 0.100). A main effect of Effort was
also present, with higher d’ scores in the low-effort condition
(mean,3.72) than in the high-effort condition (mean,0.89),
F(120) = 846.56, p<0.001, n* = 0.901. An interaction between
Task and Effort was found (F(; 29)=5.06; p =0.032; 1% = 0.032),
indicating that the difference between low-effort and high-effort
conditions was larger on the face task (mean, 3.96 vs 0.97) than
on the house task (mean, 3.50 vs 0.82). Importantly, the d’ scores
of all four conditions differed from zero (p values < 0.001),
including the high-effort face condition (9 =11.72; p < 0.001;
d=2.140) and the high-effort house condition (f(9)=13.68;
P <0.001; d=2.498). This indicates that participants were engaged
in the task and able to discriminate between target-present and tar-
get-absent trials, also on the high-effort blocks.

To explore the effects of cognitive fatigue (i.e., time-on-task),
the analysis of the d’ scores was repeated after splitting the data
in half. The original ANOVA was extended with the factor Stage
(early vs late). Because the split halved the number of trials in
each cell, some participants had a miss rate or false alarm rate of
0 in some conditions. This was corrected using log-linear trans-
formations following recommendations of Hautus (1995). The
only significant effect that involved Stage was the three-way
interaction among Task, Block, and Stage (F(j,9)=6.65; p=
0.015; ° = 0.011). To decompose this interaction, post hoc
paired-samples ¢ tests were conducted comparing the early to the
late stage in each condition. This revealed that performance
deteriorated over time in the low-effort face condition (mean d’
in early stage= 3.60; mean d’ in late stage=3.42; f9)=2.27;
p=0.031; d= 0.451). No effects of Stage were found in the other
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conditions (p values >0.17. Note that because many subjects
had nearly perfect scores in the low-effort conditions, a few slips
in the second stage of the task may already have led to a signifi-
cant difference with the early stage, offering a possible explana-
tion for the observed effect.

Subjective rating task

The subjective ratings are displayed in Figure 3, B and C. A main
effect of Effort on difficulty rating was found, with higher ratings
in the high-effort condition (mean,71.2) than in the low-effort
condition (mean, 23.2; F; 31y =157.62; p < 0.001; 1% =0.710; Fig.
3B). No other effects on difficulty rating were found (p values
>0.43. A main effect of Effort on effort investment rating was
also found, with higher ratings in the high-effort condition
(mean, 59.0) than in the low-effort condition (mean, 28.7; F(; 31)=
58.02; p < 0.001; > = 0.422; Fig. 3C). No other effects on effort
investment rating reached significance (p values > 0.37).

fMRI results

Task-specific effects

Table 1 displays task-specific activation patterns in the low-effort
and high-effort conditions. As anticipated, areas related to the
processing of faces, such as right FFA and superior temporal sul-
cus showed increased activation in the low-effort condition of
the face task (vs the low-effort house condition). After small vol-
ume correction, increased activity was also found in left FFA for
this contrast. On the low-effort house task (vs the low-effort face
task), areas responsive to house images, such as bilateral PPA,
showed increased activation. In the high-effort face task (vs the
high-effort house condition), activation in bilateral FFA was
found after small volume correction. In the high-effort house
condition (vs the high-effort face condition), bilateral PPA was
activated. This shows that FFA and PPA were involved in the
low-effort and high-effort condition, even despite the minor per-
ceptual evidence in the high-effort condition.

Effort-specific effects

To investigate brain areas that are involved in effort investment in
a task-general way, we first mapped areas responsive to high-effort
demands in both tasks. In the face task, this revealed stronger acti-
vation when effort was high (vs low) in a network constituting
dACC (extending into pre-SMA), bilateral Al, bilateral IPS, bilat-
eral middle occipital gyrus (MOG), right inferior frontal gyrus
(IFG), left cerebellum, and right dorsolateral PFC (dIPFC; Table 2,
Fig. 4A). In the house task, we found effort-induced activation in
right dJACC (extending into pre-SMA), bilateral Al, right IPS, and
bilateral MOG (Table 2, Fig. 4B). Next, a conjunction analysis was
performed on the two contrasts. This revealed that voxels in right
dACC, bilateral Al and right IPS were conjointly activated (Table
2, Fig. 4C), showing that activation in these areas scaled with
effort, independent of the task at hand.

Finally, no significant activation was found for the interaction
between Task and Effort, indicating that, although activation of
task-sensitive areas appeared to be stronger in the low-effort (vs
high-effort) conditions, these differences did not survive statisti-
cal thresholding. Assuming stronger bottom-up activation of
task-specific areas on perceptually strong low-effort trials (vs am-
biguous high-effort trials), an interaction may have been
expected. An opposite interaction would also have been plausi-
ble, if high-effort trials (vs low-effort trials) had elicited stronger
top-down activation of task-specific areas. Note that because the
two mechanisms operate in opposite directions, they may have
countered each other.
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Table 1. Summary of the task-specific activation clusters

Peak-level statistics

Cluster-level
statistics MNI coordinates
Region Side Size p(FWE) tvalue x y z
Low effort: face > house
Superior temporal sulcus R 427  <0.001 5.77 58 —58 10
Fusiform face area R 128 0.018 524 42 —60 —20
Precuneus R 279  <0.001 4.94 2 =50 4
Fusiform face area* L 21 0.013 4.69 —42 —62 —18
Low effort: house > face
Parahippocampal place area R 457 <0.001 8.0 24 —42 —10
Parahippocampal place area L 288  <<0.001 6.72 —24 —46 —10
Occipito-temporal cortex R 495 <<0.001 6.21 38 —78 14
Occipito-temporal cortex L 303 <<0.001 5.43 —32 88 12
High effort: face > house
Fusiform face area* R 74 0.002 5.45 40 —46 —18
Fusiform face area* L 55 0.003 5.20 —40 —46 —18
High effort: house > face
Parahippocampal place area R 256 0.001 7.09 34 —40 -8
Parahippocampal place area L 213 <0.001 6.82 —-26 —44 —-10

L, Left; R, right.
*After small volume correction using a sphere with 10 mm radius centered at the peak voxel coordinates
obtained from the localizer (Fig. 2).

To explore whether activity profiles were affected by response
accuracy, we created a new GLM with additional parametric
modulators for versus incorrect trials. These modulators show
which voxels responded differently on incorrect (vs correct) tri-
als. No modulation of brain activity by accuracy was found, sug-
gesting that brain responses did not differ between correct and
incorrect trials.

Functional connectivity
For the gPPI analysis, the dACC cluster that showed activation
in the high-effort versus low-effort conjunction analysis was
used as a seed. When comparing high-effort to low-effort
demand in the face task, increased connectivity was found
between dACC and multiple regions, including bilateral FFA
(Table 3, Fig. 5A). The same contrast on the house task showed
activation in several regions including right PPA and right FFA
(Fig. 5B). An interaction contrast comparing effort effects
between the face and house task (i.e., [FaceHE > FaceLE] vs
[HouseHE > HouseLE]) revealed no significant activation.

To further investigate these connectivity patterns, we con-
ducted an ROI-to-ROI gPPI analysis with the same dACC seed

face house

E low effort E high effort

A, d’ scores on the target detection task. B, Subjective difficulty ratings. C, Subjective effort investment ratings.

and the participant-specific (left and right) PPA and FFA ROIs
obtained through the localizer task. This showed increased
connectivity between dACC and the set of target ROIs (left
PPA, right PPA, left FFA, and right FFA) when effort demands
were high (vs low) in the face task (F4,6)=6.84; p<<0.001).
Specifically, increased connectivity was found from dACC to left
FFA (B = 0.17; t(30)= 4.54; p < 0.001) and right FFA (8 = 0.16;
t29)=4.63; p < 0.001; Fig. 6A). When effort demands were high
(vs low) in the house task, increased connectivity between dACC
and the set of target ROIs was also observed (F(46)=445;
p=0.007). Specifically, this connectivity was from dACC to left
PPA (B = 0.11; fz9)=2.78; p=0.015), right PPA (B = 0.13;
ta0)=3.65; p=0.004), and right FFA (B = 0.11; t@0)=2.70;
p=0.015; Fig. 6B). Crucially, the interaction contrast comparing
effort effects between the face and house task (i.e., [FaceHE >
FaceLE] vs [HouseHE > HouseLE]) showed directly that con-
nectivity patterns differentiated between tasks (F4.6)=7.44;
p < 0.001; Fig. 6C). Effort-increased connectivity from dACC to
left FFA was larger on the face task (8 = 0.16; f9)=3.65;
p=0.004), while effort-increased connectivity from dACC to left
PPA (B = —0.12; f29) = —2.29; p=0.040) and right PPA (8 =
—0.12; 29y = —2.83; p = 0.017) was larger on the house task.

To explore whether ROI-to-ROI connectivity profiles differed
between correct and incorrect trials, we created a new gPPI
model with additional parametric modulators for correct versus
incorrect responses. Modulation was only applied to the high-
effort conditions (FaceHE, HouseHE). These modulators show
in which ROIs the task-specific connectivity with dACC was dif-
ferent on incorrect (vs correct) trials. No association between
connectivity and response accuracy was found in any of the
ROIs in the high-effort face condition (F426) = 0.42; p =0.795) or
in the high-effort house condition (F(4z6=0.83; p=0.519).
Thus, connectivity between dACC and target ROIs was not
affected by errors.

Finally, an exploratory analysis was also conducted to test for
effects of cognitive fatigue (i.e., time-on-task) on brain connectiv-
ity. An ROI-to-ROI analysis was performed after extending the
original model with parametric modulators for Stage (early vs late)
applied to the high-effort conditions (FaceHE, HouseHE). These
modulators show ROIs in which the task-specific connectivity
with dACC was different during the late (vs the early) stage of the
task. No association was found between connectivity and Stage in
any of the ROIs in the high-effort face condition (F(4,s)=0.80;
p=0.538) or in the high-effort house condition (F(.s) =1.39;
p=0.264). Thus, connectivity between dACC and target ROIs was
not affected by cognitive fatigue (i.e., time-on-task).
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Table 2. Summary of the activation clusters on the high-effort versus low-effort contrasts

Peak-level statistics

Cluster-level
statistics MNI coordinates
Region Side Size p(FWE) t value X y z
Face task: high effort > low effort
Anterior insula R 546 <<0.001 8.63 32 20 —4
Dorsal anterior cingulate cortex R 919 <0.001 8.07 8 24 40
Anterior insula L 406 <0.001 7.62 —34 20 -2
Intraparietal sulcus (extending into middle occipital gyrus) R 2084 <0.001 7.56 38 —78 12
Middle occipital gyrus L 1085 <0.001 6.93 =30 —82 14
Intraparietal sulcus L 209 0.002 6.12 —28 —50 50
Inferior frontal gyrus R 361 <0.001 5.89 48 10 22
Cerebellum L 164 0.006 5.87 —6 —74 —28
Dorsolateral prefrontal cortex R 108 0.043 5.54 40 36 18
House task: high effort > low effort
Anterior insula R 675 <0.001 6.69 38 20 -2
Dorsal anterior cingulate cortex R 309 0.001 5.77 4 22 44
Anterior insula L 359 <0.001 523 -30 26 -2
Intraparietal sulcus (extending into middle occipital gyrus) R 392 <0.001 5.01 24 —62 30
Middle occipital gyrus L 202 0.002 4.56 —30 —88 22
Conjunction (high effort > low effort in face task and house task)
Anterior insula R 526 <0.001 6.11 36 20 —4
Anterior insula L 306 <0.001 5.52 —34 20 —4
Dorsal anterior cingulate cortex R 276 0.001 5.04 6 24 40
Intraparietal sulcus R 247 0.002 4.97 24 —62 30

L, Left; R, right.

Face task

t-value

8.0

Figure 4. A, B, Brain activation in the high-effort versus low-effort demand condition on the face task (4) and the house task (B). , Conjunction analysis showing mutual activation for the
high-effort versus low-effort demand condition on both the face and house tasks.

Eye movements (F1.23 <0.01; p=0.98 1> < 0.001). These findings were con-
Analysis of the eye movement data revealed no main effect of  firmed through the computation of Bayes factors (BF;), which
Task (F(;,23)=0.05; p=0.83; n? = <0.001), Effort (F123y=2.01;  showed evidence in favor of the null hypothesis and not in favor
p=0.17; »* = 0.005), or an interaction between Task and Effort  of a Task effect (BFy, = 4.71) or of an Effort effect (BF,; = 1.38).
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Table 3. Summary of the activation clusters from the gPPI analysis

Peak-level
statistics

Cluster-level MNI

statistics coordinates

Cluster t
Region Side size p(FWE)  value  x y z
Face task
Occipital pole L 670 <0.001  6.67 12 —9% -1
Fusiform face area L 89 0.026 572 -4 -5 =20
Fusiform face area R 222 <0.001 5.67 36 —48 -2
Occipital pole R m 0.008 4.64 18 —84 12
House task
Temporo-occipital, R 1425 <0.001 636 36 —86 8
including PPA and
FFA
Lateral occipital superior L 881 <0.001 5.97 —-28 78 22
Precentral gyrus L/R 116 0.006 5.02 0 -8 66
SMA L 191 <0.001 492 =32 -1 43
Lateral occipital inferior L 79 0.045 3.86 —46 —74 -8
L, Left; R, right.

There was also more evidence for the null model compared with
a model with both Task and Effort (BF,; = 6.49), and compared
with a full model that included both effects and their interaction
(BFg; = 32.0). On average, participants fixated on 33.2% of the
trials, meaning they generally adhered poorly to the instruction
to refrain from eye movements but did so in every condition
equally.

Discussion
Effort investment is thought to be implemented in a hierarchical
manner with a crucial role for dACC at the top of this hierarchy
(Holroyd and Yeung, 2012; Shenhav et al., 2013; Verguts et al,,
2015). In this study, we investigated how this effort investment is
implemented in the brain. We used a face detection task and a
house detection task with different effort levels, and showed that
increased effort investment is reflected in a general increased
activation of dACC and related areas, independent of the task at
hand. Importantly, we also showed an effort-induced strengthen-
ing of connectivity between dACC and specialized lower-level
perceptual areas, depending on the performed task. The
increased functional connectivity between dACC and lower-level
areas emerged in the high-effort condition, where effort invest-
ment was rated higher. This connectivity was also task specific:
stronger dACC-FFA connectivity was found when high-effort
versus low-effort faces had to be detected, while stronger dACC-
PPA connectivity was found when high-effort versus low-effort
houses had to be detected. This fits with the proposed hierarchi-
cal position of dACC, allocating resources to task-relevant areas.
One interpretation of the connectivity findings is that dACC
amplifies the signal in task-relevant areas to increase perform-
ance in difficult conditions (i.e., effort-production account). In
the present study, the signal-to-noise ratio of images in the high-
effort conditions was low, meaning that they lacked strength to
elicit robust bottom-up activation of FFA or PPA. Such activa-
tion is needed to make accurate decisions on the content of the
presented image (Heekeren et al, 2004; Lamichhane and
Dhamala, 2015; Tremel and Wheeler, 2015). The increased con-
nectivity between dACC and perceptual areas may serve as a
compensatory mechanism for the lack of clear perceptual
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Figure 5.  Whole-brain connectivity with dACC. A, B, The connectivity values are con-
trasted between high-effort and low-effort demands in the face task (4) and the house task
(B).

evidence present in the stimulus. Since participants knew before-
hand what type of stimulus they had to detect, increased input
from dACC may function to optimize neural processing of the
stimulus by specialized areas (FFA or PPA).

The exact neural mechanism underlying this optimization
may be explained by response sensitization of task-relevant areas.
There are several ways this might be implemented. For example,
it has been proposed that stimulus-induced dynamics in cortical
areas can be augmented by increasing their background activity
(Chawla et al., 1999; Kastner et al., 1999; Beck and Kastner,
2009). This may result in an increased synchronization of the
neurons representing a stimulus (Fries et al, 2001; Buschman
and Kastner, 2015). In addition, top-down influences may also
decrease noise correlations between neurons in a region.
Decreased noise correlations lead to an increase of the signal-to-
noise ratio and hence the amount of information encoded by the
neuronal ensemble (Gilbert and Li, 2013; Ramalingam et al.,
2013). Yet another explanation may be a top-down-induced
increase in neural gain in task-relevant regions (Aston-Jones and
Cohen, 2005). Increasing gain suppresses weak activation (typi-
cally, noise) and increases strong activation (typically, signal),
thus functionally increasing the signal-to-noise ratio. Processes
like these can give a cortical area an advantage in subsequent
stimulus processing.

On a neural level, cognitive effort production may thus be
seen as an attempt to overcome a compromised signal in a popu-
lation of neurons. This idea can also be applied to neuronal fa-
tigue, where adaptation may lead to a reduced signal-to-noise
ratio in a brain area, as a result of repeatedly performing a cogni-
tive action. To compensate for this neuronal fatigue, effort may
be implemented as a stronger control signal that establishes the
necessary signal-to-noise ratio in the relevant neural population
(Miiller and Apps, 2019). If this is correct, then one would expect
stronger connectivity between effort-producing areas (dACC)
and task-specific regions toward the end of the task. However,
the current results lend no support for such a mechanism, as ex-
ploratory brain connectivity analyses showed no effects of time-
on-task. Response sensitization of task-relevant areas is also in
accordance with the proposed role of dACC in specification of
the effort allocation signal. From this perspective, JACC would
be involved in the decision about which control signal to apply
(i.e., whether to focus on faces or houses) and with what level of
intensity (Shenhav et al., 2013). This explanation is consistent
with increased connectivity with FFA and PPA, initiated by
dACC.
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C Face vs. House task

dACC dACC

FFA

ROI-to-ROI connectivity results with dACC as seed, and bilateral FFA and PPA as target regions. A, B, Effort-induced connectivity on the face task (4) and the house task (B). C,

Difference between A and B: difference in effort-increased connectivity between the face task and house task. Red, Increased connectivity on face task; blue, increased activity on house task.

Width of the lines corresponds to the strength of the effects.

A second interpretation of the connectivity findings is also
possible (effort requirement account). It has been suggested that
dACC monitors the current circumstances and tracks how well
the cognitive system is meeting task demands (Botvinick et al,,
2004; Shenhav et al.,, 2013). In the current experiment, this would
imply that dACC may be informed by task-related areas about
the greater effort required to solve the task. For example, the
smaller perceptual difference between target-present and target-
absent trials in the high-effort condition may have triggered
response conflict. This conflict may have served as the indicator
to allocate additional cognitive effort, reflected in conflict-
induced activation of dACC in the high-effort condition
(Botvinick et al., 2001; Braver, 2012). This explanation would be
compatible with an increased connectivity in the opposite direc-
tion: from task-relevant areas to dACC.

In the effort requirement account, dACC tracks the adequacy
of the implemented effort. When performance deteriorates, for
example because of inadequate filtering of distraction or conflict,
an increased need for effort will be signaled. This mechanism
can be extended to conditions where dACC monitors and speci-
fies behavior to maximize value (Shenhav et al,, 2017). In that
case, dACC integrates effort costs and reward values and is
involved in the decision whether or not it is worthwhile to invest
a given level of effort (Klein-Flugge et al.,, 2016; Chong et al.,
2017). This role of dACC in effort-based decision-making is sup-
ported by the finding that inactivation of dACC in rats reduced
the willingness to invest effort, yet did not affect performance on
cognitively demanding tasks (Hosking et al., 2014). In the pres-
ent study, however, no reward was offered and no cost-benefit
decision had to made. Still, increased dACC activity was found,
indicating that dACC also operates whenever more effort is
required, regardless of cost-benefit decision-making (but see
Vassena et al., 2014; Engstrom et al., 2015).

The effort production and effort requirement accounts are
not mutually exclusive and are in fact proposed to be integrated
by dACC (Shenhav et al., 2013). They are also both compatible
with the present results, given that connectivity analyses cannot
attest to directionality.

We also found that activity in dACC scaled with the level of
effort investment, independent of the task. In the high-effort
conditions, larger dACC activity was found than in the low-effort
conditions. Conjunction analysis showed that this was true for

both the face-detection and house-detection task, with jointly
activated dACC, bilateral Al and right IPS. These areas thus
constitute a task-independent network of brain regions involved
in effortful behavior. Within this network, the importance of
dACC for effortful behavior converges with model simulations
showing that dACC-lesioned rats are less likely to engage in
effortful behavior (Holroyd and Mcclure, 2015), and by the fact
that dACC lesions are associated with a lack of motivation or
anergia (Cohen et al, 1999; Walton et al., 2002; Holroyd and
Yeung, 2012). It is also consistent with studies relating dACC ac-
tivity to self-reported effort investment (Mulert et al., 2005), will
to persevere (Parvizi et al., 2013), and anticipation of effortful
tasks (Croxson et al., 2009; Prevost et al., 2010; Kurniawan et al.,
2013). However, the exact way in which dACC is involved in
effort-based decision-making, effort production, or effort
requirement is a topic that warrants future consideration.

Another function often ascribed to dACC is the monitoring
of errors (Gehring et al., 1993; Bush et al., 2000). In the current
study, however, no error-related effects on brain activity or con-
nectivity were found. Indeed, the current paradigm offered not
much opportunity for error monitoring for two reasons. First,
participants did not receive trial feedback. Second, it is hard to
become metacognitively aware of an error in the high-effort con-
dition because there is never clear evidence in favor of one of the
two response options. In addition, participants had to withhold
their responses for 1 s. This is different from speeded response
tasks where participants occasionally slip and make an error
while the correct response is readily available. In such cases, par-
ticipants often do become aware of the error they made, even
without feedback.

Together with dACC activity, we also observed effort-induced
activity in bilateral AI and right IPS on both tasks. These regions
are often conjointly activated, together with dIPFC, on a wide
range of cognitive tasks that demand attention, working memory,
or cognitive control (Corbetta and Shulman, 2002; Dosenbach et
al., 2006; Menon and Uddin, 2010; Nelson et al., 2010). Anterior
insula has traditionally been related to the detection of salient
events (Downar et al., 2002; Menon and Uddin, 2010) and atten-
tional control (Nelson et al., 2010). In the present study, saliency
of the presented stimuli was constant. The function of Al therefore
seems more consistent with accounts postulating that Al subserves
maintenance of a task-set (Dosenbach et al, 2006) or tonic
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alertness (Sadaghiani and D’Esposito, 2015). Such processes may
have been more profound in the high-effort conditions. For exam-
ple, a (tonic) activation of Al in high-effort conditions may alert
the system that the demand to detect a target is higher (Han et al,,
2019). This way, dACC may also be informed to intensify its con-
trol signal to task-relevant areas.

In conclusion, we showed increased effort-induced connectiv-
ity between dACC and lower-level perceptual areas (FFA or
PPA), specific to the performed task. dACC was part of a broader
network consisting also of Al and IPS that is more strongly acti-
vated when effort demands are high, independent of the task at
hand. We conclude that dACC, Al and IPS constitute a general
effort-responsive network and that the neural implementation of
cognitive effort may involve dACC-initiated response sensitiza-
tion of task-dependent areas.
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