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Studies of selective attention typically consider the role of task goals or physical salience, but attention can also be captured by pre-
viously reward-associated stimuli, even if they are currently task irrelevant. One theory underlying this value-driven attentional
capture (VDAC) is that reward-associated stimulus representations undergo plasticity in sensory cortex, thereby automatically
capturing attention during early processing. To test this, we used magnetoencephalography to probe whether stimulus location
and identity representations in sensory cortex are modulated by reward learning. We furthermore investigated the time course of
these neural effects, and their relationship to behavioral VDAC. Male and female human participants first learned stimulus–
reward associations. Next, we measured VDAC in a separate task by presenting these stimuli in the absence of reward contingency
and probing their effects on the processing of separate target stimuli presented at different time lags. Using time-resolved multi-
variate pattern analysis, we found that learned value modulated the spatial selection of previously rewarded stimuli in posterior
visual and parietal cortex from ;260 ms after stimulus onset. This value modulation was related to the strength of participants’
behavioral VDAC effect and persisted into subsequent target processing. Importantly, learned value did not influence cortical sig-
natures of early processing (i.e., earlier than;200 ms); nor did it influence the decodability of stimulus identity. Our results sug-
gest that VDAC is underpinned by learned value signals that modulate spatial selection throughout posterior visual and parietal
cortex. We further suggest that VDAC can occur in the absence of changes in early visual processing in cortex.
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Significance Statement

Attention is our ability to focus on relevant information at the expense of irrelevant information. It can be affected by previously
learned but currently irrelevant stimulus–reward associations, a phenomenon termed “value-driven attentional capture” (VDAC). The
neural mechanisms underlying VDAC remain unclear. It has been speculated that reward learning induces visual cortical plasticity,
which modulates early visual processing to capture attention. Although we find that learned value modulates spatial signals in visual
cortical areas, an effect that correlates with VDAC, we find no relevant signatures of changes in early visual processing in cortex.

Introduction
Factors influencing selective attention have been traditionally
categorized as stemming either from task demands (e.g., a red
book will capture attention if one is searching for red books) or
from physical salience (e.g., a red book among blue books will
automatically capture attention; Desimone and Duncan, 1995;
Egeth and Yantis, 1997; Beck and Kastner, 2009). Recently,
reward history (e.g., the learned association of a red logo with a
rewarding experience) has also been shown to play an important
role in shaping attention (Awh et al., 2012; Anderson, 2013;
Chelazzi et al., 2013). This has been demonstrated in experiments
using an initial “training phase” in which visual stimuli are
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associated with different reward outcomes. During a later “test-
ing phase,” participants complete a new, formally unrelated task,
which reuses the previously reward-associated stimuli (Anderson
et al., 2011). Critically, these stimuli continue to capture atten-
tion even in the absence of any reward contingency, physical sali-
ence, or task relevance, a phenomenon termed value-driven
attentional capture (VDAC; Raymond and O’Brien, 2009;
Anderson et al., 2011; Theeuwes and Belopolsky, 2012; Chelazzi
et al., 2014). VDAC is a prime example of how attention is influ-
enced by prior experience; understanding its neural mechanisms
is therefore instrumental to bridging the fields of learning and
attention (Anderson, 2016; Le Pelley et al., 2016; Failing and
Theeuwes, 2018).

The behavioral effects of VDAC imply learning-related plas-
ticity, but the nature of these changes remains unclear (Chelazzi
et al., 2013; Anderson, 2016; Failing and Theeuwes, 2018). Some
have suggested that stimulus feature representations in sensory
cortex may undergo reward-mediated plasticity during learning
(Anderson, 2016; van Koningsbruggen et al., 2016; Hickey and
Peelen, 2017; Failing and Theeuwes, 2018). Strengthened cortical
representations could then rapidly capture attention during
early visual processing, potentially leading to the behavioral
effects of VDAC (Anderson, 2016; Failing and Theeuwes,
2018). However, evidence for the existence of this mechanism
is limited (Anderson, 2016; van Koningsbruggen et al., 2016).

Electroencephalography (EEG) studies of VDAC show vari-
ous types of value modulations in visual processing (Failing and
Theeuwes, 2018). The timing of these effects matters (Luck et al.,
2000). Early effects may indicate changes in how reward-associ-
ated stimuli are initially processed in sensory cortex, consistent
with the visual cortical plasticity account (Anderson, 2016; van
Koningsbruggen et al., 2016; Failing and Theeuwes, 2018). In
contrast, later effects may reflect attentional modulation trig-
gered by these stimuli, consistent with learned value signals origi-
nating elsewhere (Foxe and Simpson, 2002; Buffalo et al., 2010;
Itthipuripat et al., 2019). Hickey et al. (2010) and Luque et al.
(2017) both report an enhancement of the early sensory-evoked
P1 component for reward-associated stimuli, suggesting that
value modulates early visual processing of these stimuli. In con-
trast, Qi et al. (2013) report that reward-associated stimuli only
evoked the later N2pc component, reflecting an attentional shift
toward these stimuli. Others find that reward-associated dis-
tracters affect the processing of competing stimuli, reducing the
P1, N1, and N2pc (Itthipuripat et al., 2015; MacLean and
Giesbrecht, 2015a). Thus, existing evidence on the timing of
value effects during VDAC is mixed.

Comparison between studies is additionally challenging
because in some studies the task relevance, and therefore the
reward history, of stimuli changes across trials (Hickey et al.,
2010; Itthipuripat et al., 2015). In other studies, reward-associ-
ated stimuli are irrelevant and unrewarded for the entire task
(MacLean and Giesbrecht, 2015a; Qi et al., 2013). Further-
more, it is important to isolate effects related to the processing of
reward-associated stimuli from those related to the processing of
competing target stimuli (Hickey and Peelen, 2015; Itthipuripat
et al., 2019).

Finally, most prior studies have examined the spatial discrim-
inability of reward-associated stimuli, for example, by testing for
changes in the lateralized P1 and N2pc components (Hickey et
al., 2010). However, plasticity-induced strengthening of stimulus
representations could also manifest in altered neural discrimina-
bility of stimulus identity (Hickey and Peelen, 2015; Poort et al.,
2015; LeMessurier and Feldman, 2018). This has not been

demonstrated in the context of VDAC using time-resolved
methods. Hickey and Peelen (2015) used multivariate pattern
analysis (MVPA) to show that fMRI representations of previ-
ously reward-associated stimuli are indeed modulated in visual
cortex, although the use of fMRI precluded insight into the tim-
ing of these effects.

In the current study, we used time-resolved MVPA of magne-
toencephalography (MEG) data to probe stimulus location and
identity representations in sensory cortex during VDAC. After
participants learned stimulus–reward associations, we measured
VDAC in a separate task by presenting these stimuli in the ab-
sence of reward contingency, and probing their effects on the
processing of separate target stimuli. Critically, we included an
interval between previously reward-associated stimuli and the
imperative targets to isolate the neural processes triggered by the
reward stimuli, uncontaminated by target processing. Consistent
with VDAC, we found that learned value modulated the spatial
selection of previously rewarded stimuli in posterior visual and
parietal cortex. However, these effects only emerged from ;260
ms after stimulus onset, in contrast to previous evidence of early
effects. Moreover, learned value did not modulate identity repre-
sentations of the previously reward-associated stimuli in cortex.

Materials and Methods
Participants. All experiments were conducted under ethical approval
from the Central University Research Ethics Committee of the
University of Oxford and with informed consent from participants. We
aimed for a sample of 30 human participants from the Oxford commu-
nity for this experiment. Because of poor behavioral performance or
MEG acquisition artifacts, we recruited “replacement” participants as
needed, leading to a total sample of 37 participants (age range, 19–
34 years; mean= 24.6 years; SD= 4.2 years; 18 females). All participants
were right handed and had normal or corrected-to-normal vision. One
participant was excluded during MEG data acquisition due to inability
to follow task instructions, and six participants were excluded before
data analysis due to artifacts in the MEG data, leaving 30 participants for
analysis.

Study structure. Participants completed a reward learning task to
induce learning of stimulus–reward associations (training phase), and a
visual discrimination task (i.e., attention task) to test the effect of these
associations on visual attention (testing phase). To maximize learning
and increase task engagement, participants completed two sessions of
each task in an interleaved order on the same day. Participants were
compensated based on their winnings in the reward learning task and
were explicitly told that the attention task was not rewarded and was
simply a requirement to complete as part of the experiment.

Reward learning task (training phase). The task was presented using
MATLAB (MathWorks) and Psychtoolbox-3 (Kleiner et al., 2007).
Participants sat 120 cm from the display, which was a Panasonic PT
D7700E translucent back-projection display (54.5� 43 cm; resolution,
1280� 1024 pixels; 60Hz refresh rate). After a 500–1000 ms (randomly
jittered) intertrial interval (ITI), two option stimuli (each sized
2.4°� 2.4° visual angle) appeared on screen (Fig. 1a,b). Participants were
instructed to maintain fixation until the fixation cross disappeared after
500ms. After the fixation cross offset, participants had 5000ms to indi-
cate their choice with a left or right button press. After the choice, a feed-
back display presented the outcomes of the chosen and unchosen
stimuli. To facilitate learning, the background brightness as well as a pre-
sented sound effect indicated the outcome reward magnitude.
Participants began the next trial with a button press.

There were 10 option stimuli that participants learned about across
trials: two high-reward stimuli (250 points), two low-reward stimuli (25
points), and six zero-reward stimuli (0 points; Fig. 1a). One thousand
points were equivalent to £1, with participants receiving their winnings
at the end of the experiment. A “points bar” at the bottom of the screen
indicated how many points they had accumulated for the next £1 and a
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pound (£) counter indicated the total money won thus far. Reward asso-
ciations were deterministic. To control for possible stimulus differences
between option stimuli, reward associations were counterbalanced
across participants using a Latin square design. There were 96 high-
reward versus low-reward, 96 high-reward versus zero-reward, and 192
low-reward versus zero-reward choice trials per session, with the latter
trial type doubled to equate selection frequency between high- and low-
reward stimuli. Option stimuli varied in both colors and shapes, so par-
ticipants could use either feature or a combination for learning. Trial
order was randomized once and presented consistently across partici-
pants to minimize differences in learning.

Attention task (testing phase). The hardware and software setup for
stimulus presentation was identical to the reward learning task. The task
began with a 500-1000 ms randomly jittered ITI, during which partici-
pants had to fixate on a central cross (Fig. 1c). Two of the previously
rewarded but currently task-irrelevant reward stimuli then appeared on
screen. These could be a pair of high-reward and zero-reward stimuli
(high-reward trials), low-reward and zero-reward stimuli (low-reward
trials), or two zero-reward stimuli (baseline trials). Following a randomly
selected delay of 0, 500, or 1000ms [the stimulus-onset asynchrony
(SOA)], two task-relevant oriented gratings (diameter, 1.2° visual angle;
the inner edge was positioned 5.4° away from center) appeared inside
each of the reward stimuli. The target grating was oriented to either 0°
or 90°. The participant’s task was to indicate this orientation with a but-
ton-press. The nontarget (distracter) grating was oriented obliquely at
20–70° or 110–160°, randomly selected from 10° bins. Gratings were

presented for 200ms, after which they offset together with the reward
stimuli. Participants had up to 1800ms after grating offset to make their
response. Auditory feedback was provided with a high-frequency tone
signifying correct trials and a low-frequency tone signifying incorrect
trials.

Critically, in high- and low-reward trials, the target grating appeared
inside either the high- or low-reward stimuli (congruent trials), or inside
the zero-reward stimulus (incongruent trials). In baseline trials, the tar-
get grating could appear in either zero-reward stimulus. Reward stimuli
and target locations varied randomly between left and right of the fixa-
tion cross.

In each session, there were 60 trials per cell in the reward (3) � con-
gruency (2) � SOA (3) condition matrix, with the exception of the base-
line condition in which congruency was not a factor. There were 1800
trials in total across both sessions. All trials were fully randomized across
participants. Each session was divided into 19 blocks, with 50 trials per
block, and each block taking ;2min to complete. Participants were
instructed to maintain fixation and minimize blinking throughout the
duration of a block but were able to take a short break after each block.

In addition to using the SOA as a tool to isolate the processing of
reward stimuli, some previous research suggested that VDAC may
decrease with increasing SOA duration (Le Pelley et al., 2013). We
manipulated the SOA duration in the current experiment to test for this
possibility. However, we found no evidence for an effect of SOA on
attentional capture at the behavioral level (in reaction time, our a priori
measure of interest; see Results; see Fig. 4a). The absence of an SOA

a

b c

Figure 1. Experimental task design. a, Stimulus set with example associated rewards. Stimulus–reward contingencies were counterbalanced across participants. H1, H2, L1, and L2 refer to
reward stimulus labels in the decoding schematics in Figure 3. b, Experimental design for the reward learning task (training phase). Each trial began with a fixation period (500–1000 ms, ran-
domly sampled), followed by the presentation of two option stimuli. After 500 ms, the fixation cross disappeared and participants were free to indicate their decision by button-press within
the time limit (5000 ms). Decisions were followed by a feedback display indicating the points obtained for the chosen stimulus, as well as the points that would have been awarded for the
unchosen stimulus. Participants initiated the next trial by button-press. Participants could track their earned points and money with on-screen counters. c, Experimental design for the attention
task (testing phase). Each trial began with a fixation period (500–1000 ms, randomly sampled), followed by the presentation of two reward stimuli from the previous task (now uninformative
and unrewarded). Each trial included one high-reward or low-reward stimulus together with a zero-reward stimulus, or two zero-reward stimuli (baseline trials). After a stimulus-onset asyn-
chrony (0, 500, or 1000 ms), gratings appeared inside the reward stimuli for 200 ms. One grating was always either vertically or horizontally oriented (the target), and the other was always ori-
ented obliquely, at one of 12 angles (the distracter). In congruent (incongruent) trials, the target grating appeared on the same (opposite) side as the high-reward or low-reward stimulus. In
trials with two zero-reward stimuli, the target could appear on either side. Reward stimuli and gratings disappeared together after 200 ms. Participants had an additional 1800ms to indicate
with a button-press whether the target is oriented vertically or horizontally. Note that task stimuli are enlarged for illustration purposes.
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effect is consistent with a pilot behavioral study that we conducted (not
reported here) and with some previous research (Failing and Theeuwes,
2015). We also found no evidence of neural differences between the 500
and 1000ms SOA conditions (data not shown). Therefore, we collapse
across these two conditions for all neural analyses (see below for decod-
ing methods).

MEG data acquisition and preprocessing. For both tasks, whole-head
MEG data were recorded in a magnetically shielded room using a 306-
channel Neuromag VectorView Scanner (102 magnetometers, 204 gradi-
ometers; Elekta) at the Oxford Center for Human Brain Activity
(OHBA). Four head position indicator (HPI) coils were placed behind
the ears and on top of the forehead to track head movements in the scan-
ner. A magnetic Polhemus Fastrak 3D digitizer pen (Vermont) was used
to register the HPI coils and three anatomic landmarks (nasion, and left
and right auricular points) and to digitize the head shape by marking
300 points along the scalp. MEG data were sampled at 1000Hz with
a 0.03–330Hz bandpass filter during signal digitization. Electro-
cardiography (EKG) and electrooculography (EOG) were recorded using
electrodes over the wrists and around the eyes (vertical and horizontal
for blinks and saccades), and a forehead ground electrode. Eye move-
ments were also recorded using an EyeLink 1000 infrared eye-tracker
(SR Research). Manual responses were collected using a four-button
fiber-optic response box.

MEG data were preprocessed using the OHBA Software Library
(OSL; https://ohba-analysis.github.io/) and Fieldtrip (Oostenveld et al.,
2011). Continuous MEG data were visually inspected to exclude seg-
ments containing severe artifacts (e.g., jumps) and to interpolate chan-
nels that contained frequent severe artifacts. The Elekta Maxfilter Signal
Space Separation algorithm was then applied, together with head move-
ment compensation based on the HPI coil data. In some participants,
the trigger signal used to indicate epochs of interest spread into the
MEG channels. Therefore, timepoints in the data corresponding to stim-
ulus triggers were linearly interpolated within a 15ms window around
trigger onset; to be consistent, this correction was performed in all par-
ticipants. Data were then bandpass filtered at 0.1–40Hz, downsampled
to 250Hz, and epoched from�2000 to 2000ms relative to grating onset.
Eye-blink- and cardiac-related variance were removed by performing in-
dependent component analysis (ICA) on the MEG data using the
FastICA algorithm and removing any components significantly corre-
lated (using a = 0.05) with vertical EOG and EKG time courses above a
threshold of Pearson’s r= 0.1. Horizontal EOG, EyeLink, and MEG data
were then visually inspected to reject trials containing saccades or other
muscle artifacts.

Magnetic resonance imaging data acquisition. To create subject-spe-
cific forward models for MEG source reconstruction, existing structural
3 T magnetic resonance imaging (MRI) scans for 16 participants were
obtained from previous studies in accordance with data-sharing proce-
dures. In addition, new structural MRI scans were acquired for 19 partic-
ipants on a separate day at the Oxford Center for Functional MRI of the
Brain (FMRIB) using a Siemens Magnetom Prisma 3T scanner, with a
T1-weighted MP-RAGE sequence (1� 1 � 1 mm isotropic voxels; 256 -
� 234� 192 grid; echo time, 3.94ms; inversion time, 912 ms; recovery
time, 1900 ms). For these data, participants’ noses were included in the
field of view to improve registration with the Polhemus head shape and
MEG coordinates. MRI data from two participants were not acquired
due to early study exclusion and a scheduling issue, respectively. For the
latter participant, an average, age-matched (20–24 years old) brain tem-
plate was used instead (Richards et al., 2016).

Behavioral data analysis. Behavioral data were analyzed in MATLAB
and in R using RStudio (with the ez package; Lawrence, 2016). Accuracy
in the reward learning task (Fig. 2a) was quantified as the percentage of
choices of the higher reward option and in the attention task as the per-
centage of correct target-discrimination responses. Reaction time (RT)
analyses (Fig. 2b) were performed only on correct trials and using the
median as the subject-level summary statistic. Behavioral data were ana-
lyzed using repeated-measures ANOVA, followed by pairwise compari-
sons. Tests were corrected for multiple comparisons using the Holm–
Bonferroni method where relevant. Learning curves of accuracy and RT
in the reward learning task were computed by smoothing each

participant’s trialwise data with a 10-trial moving average window within
each session and concatenating sessions. Curves for high-reward choices
include both high-reward versus zero-reward and high-reward versus
low-reward trials.

Multivariate pattern analysis (decoding). For decoding analyses in
both tasks, the main epoch of interest was the 500ms after reward stimu-
lus onset, which provided a window to analyze early representations of
reward-associated stimuli (“options” in the reward learning task,
“reward cues” in the attention task) in task-relevant and irrelevant con-
texts. In the attention task, this epoch in the 500/1000ms SOA condi-
tions enabled us to examine the response to the reward stimuli
separately from the response to target processing. For completeness, we
also examined reward stimulus processing in the 0–500 ms after target
onset in the 500/1000 and 0ms SOA conditions.

Decoding was performed on broadband MEG gradiometer data. The
true spatial dimensionality of the MEG data after the Maxfilter prepro-
cessing algorithm is ;64 rather than the 204 gradiometer channels
(Woolrich et al., 2011). Therefore, to reduce the number of redundant
features for decoding, we first performed principal component analysis
on the data to extract a subset of dimensions (70) that explain nearly
100% of the variance. Note that this simply re-expresses the data using a
smaller set of features and does not reduce the number of informative
dimensions. Using the 70-feature � N-trial � T-time data matrix as
input, we conducted multivariate pattern analysis using Mahalanobis
distance with fivefold cross-validation, an approach closely related to lin-
ear discriminant analysis (LDA; Wolff et al., 2015, 2017; Walther et al.,
2016). Specifically, to discriminate between two classes, we split all of the
data into five random groups (“folds”) of trials, iteratively using one as a
testing set and the remaining as training data (and repeating the splitting
procedure 50 times to ensure stable results). We computed Mahalanobis
distances between left-out test trials at a given time point and the means
of class A and B from the training data at the same time point.
Mahalanobis distance is given by the following:

DistanceA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Class Amean � test trialð ÞTCov�1ðClass Amean � test trialÞ

q
;

where Cov�1 is the inverse feature covariance estimated on all training
data from both classes (per time point, across trials) using a shrinkage es-
timator (Ledoit and Wolf, 2004). The feature covariance captures the
correlated noise between sensors or voxels regardless of condition, and
thereby improves decoding reliability (Kriegeskorte et al., 2006; Walther
et al., 2016). We then computed the difference between the distances to
Class A and Class B, always subtracting the within-class distance from
the between-class distance, as follows:

Distance difference ¼ DistanceB � DistanceA; if test trial ¼ Class A
DistanceA � DistanceB; if test trial ¼ Class B

;

�

which leads to positive differences with better decodability (Wolff et al.,
2017). This was repeated for all trials and timepoints, and results were
smoothed across time with a Gaussian smoothing kernel (s = 16ms) to
obtain a measure of trialwise pattern decodability across time. Note that
although this distance measure can be binarized and converted to accu-
racy over trials (as in LDA), we preserved the parametric distance value
as a more informative measure of similarity/dissimilarity between train
and test patterns (Walther et al., 2016).

We quantified neural pattern separation for various task parameters
during the reward learning and attention tasks, as follows: reward stimu-
lus location (left vs right; location decoding); reward stimulus identity
(e.g., high-reward stimulus 1 vs high-reward stimulus 2; identity decod-
ing); and stimulus-independent value (high reward vs low reward; value
decoding). Location decoding was performed on data collapsed across
stimulus identity, and compared between high-reward and low-reward
trials. Identity decoding was performed separately for each location, with
the results averaged over location, and compared between high-reward
and low-reward trials. For value decoding, we used a cross-generaliza-
tion approach, in which we trained a classifier using one pair of reward
stimuli (e.g., high reward 1 vs low reward 1), and tested performance on
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another (e.g., high reward 2 vs low reward 2), collapsing across locations.
Value decoding was therefore independent of location and identity, and
was attributable only to the difference in value between stimuli.

For location and identity decoding in the reward learning task (Fig.
3a–c), the high-reward condition included both high-reward versus low-
reward and high-reward versus zero-reward trials. Value decoding anal-
ysis (Fig. 3b) excluded the high-reward versus low-reward trials to
ensure the interpretability of results; to obtain equal trial numbers
between high-reward versus zero-reward and low-reward versus zero-
reward trials, we subsampled the latter using an odd/even split.
Attention task decoding was performed separately on the 500/1000ms
and the 0ms SOA trials.

For statistical testing, we averaged pattern decodability across trials
for each participant and tested it at the group level against zero or
between conditions using cluster-corrected sign permutation tests, with
a cluster-forming threshold of a = 0.05 and 10,000 permutations.
Baseline data (i.e., before stimulus onset) were not included in permuta-
tion testing.

To test how location decoding evolved across trials during the reward
learning task as a function of reward (Fig. 3b), for each participant we
computed the Spearman rank correlation between trial number and
peak location decoding in each trial, separately for high and low reward.
We tested the average Fisher z-transformed correlation across partici-
pants against zero and between reward conditions using one-sample and
paired t tests, respectively. The time of peak decoding was defined based
on the group-level decoding results. Note that due to the rejection of tri-
als with artifacts, the number of trials included in this analysis is less
than in the learning curves presented in Figure 2

Median split analyses. To test the relationship between the observed
decoding and the attentional capture effect in behavior, we split partici-
pant decoding results based on the magnitude of their RT reward� con-
gruency interaction effect across all three SOAs. Decoding differences
between groups were tested using independent-samples t statistics and
cluster-corrected group permutation tests, in which observed group dif-
ferences were compared with a null distribution of differences generated
from random group partitions (cluster-forming a = 0.05; 10,000
permutations).

Time-resolved correlation analyses. To complement the median split
analyses, we performed time-resolved Spearman rank correlations
between the behavioral attentional capture effect and value modulation
in the decoding. Correlations were computed at each time point, with
statistical significance tested using cluster-corrected permutation tests in
which the observed correlation coefficients were compared with a null
distribution of coefficients generated from independent shuffles of be-
havioral and neural participant data (cluster-forming a = 0.05; 10,000
permutations). Additionally, we repeated these analyses after excluding
bivariate outliers using a robust multivariate projection method and the
box-plot rule (the skipped correlation method in the Robust Correlation
Toolbox; Pernet et al., 2012). Outliers were identified and excluded at
each time point and were also excluded during permutation testing. Post
hoc power was calculated using G*Power, assuming a null hypothesis of
no correlation (r =0), a= 0.05, a two-tailed test, and the current sample
size of n=30 (Faul et al., 2009).

Source reconstruction. Coregistration of MEG sensors and structural
MRI was performed using OSL (https://ohba-analysis.github.io/).
Structural MRI data were bias corrected and linearly registered to the
Montreal Neurologic Institute (MNI) space, enabling source reconstruc-
tion and analysis to be completed in this common reference space. The
MRI scalp surface was extracted and smoothed, and fiducial points were
manually marked. MRI fiducials were registered to the MEG fiducials
using linear transformation and subsequently refined using the iterative
closest point algorithm applied to the entire MRI scalp surface and set of
Polhemus head shape points. Source reconstruction on MEG gradiome-
ter data were performed in Fieldtrip using a single-shell volume conduc-
tion model (based on a mesh of the brain–skull boundary; Nolte, 2003),
a leadfield matrix generated from a 10 mm-spaced template grid, and
linearly constrained minimum variance (LCMV) beamforming (Van
Veen et al., 1997). To obtain whole-brain virtual channel data, beam-
forming filters were applied to time-domain data, and, for each

gridpoint, the three-direction dipole data were projected to the direction
explaining the most variance using singular value decomposition.

Source-space searchlight decoding. To visualize brain regions involved
in decoding, we performed searchlight decoding on whole-brain virtual
channel data in source space in 50ms steps, from 250 to 500 ms (loca-
tion decoding), 0 to 500 ms (identity decoding), and 300 to 500 ms
(value decoding) after cue onset. Specific time steps were chosen because
running the full-time course was computationally intensive and difficult
to visualize in both the spatial and temporal domains. These time steps
were chosen as they were evenly spaced points corresponding approxi-
mately to the significant value modulation of decoding in sensor space
or, in the case of identity decoding, to the entirety of the cue epoch. An
;23-mm-radius searchlight sphere was used to define features (grid
points) for decoding. The sphere was enlarged at the edges of the brain
to maintain an approximately constant number of grid points per sphere
(across all spheres, mean= 62 grid points, SD=6 grid points). To reduce
extensive computation time, the same feature covariance estimate was
used for decoding at each time point, which was computed on base-
line data (averaged from �100 to �50 ms relative to cue onset).
Additionally, the fivefold split into training and testing data was repeated
10 times to obtain stable results. All other aspects of decoding were iden-
tical to that described above. For statistical testing, the resultant distance
differences were converted into t statistics and were cluster corrected at
the whole-brain level using threshold-free cluster enhancement (TFCE)
with 10,000 permutations, as implemented in the FSL randomize tool
(Smith and Nichols, 2009; Winkler et al., 2014). For visualization,
thresholded t value maps were first interpolated to a 2 mmMNI volume
using linear interpolation and then interpolated to the Conte69 inflated
surface using trilinear interpolation in Fieldtrip (Marcus et al., 2011;
Oostenveld et al., 2011).

Univariate analysis of event-related fields. To complement the decod-
ing analyses and for comparability with prior research, we conducted
univariate analysis of the N2pc and P1 components. Data were baseline
corrected using a 200ms prestimulus window. To be optimally sensitive
to the potential value modulation of evoked components, we first
selected sensors for each component using an orthogonal contrast—ac-
tivity averaged across high and low reward, and across all SOA condi-
tions—and then tested the value modulation within those sensors of
interest (MacLean and Giesbrecht, 2015a; Donohue et al., 2016; Luque et
al., 2017).

For the N2pc analysis, we identified sensors of interest for each par-
ticipant, by computing event-related averages for left and right reward
cue trials. We then combined planar gradiometers using the root mean
square (rms) approach and computed the difference wave between the
cue sides at each sensor. Finally, we identified the five posterior sensors
in each hemisphere showing the largest N2pc amplitude averaged within
a 200–325 ms poststimulus time window of interest (Itthipuripat et al.,
2015). Using these sensors, we compared the strength of the reward–
cue-related N2pc between high- and low-reward conditions for the com-
bined 500/1000ms SOA and the 0ms SOA conditions. For each reward
condition, we computed averages separately for left and right reward cue
trials, combined planar gradiometers using rms, averaged across reward
cue sides within contralateral and ipsilateral sensors, and computed the
sensor-averaged difference between contralateral and ipsilateral condi-
tions (i.e., the N2pc). We then compared the N2pc amplitude, averaged
within the 200–325 ms window, between high- and low-reward condi-
tions using a paired t test.

Identifying sensors for the P1 analysis were similar to those described
above, except we additionally allowed for variation of the P1 latency
across participants by calculating the difference wave for each sensor
within a time window identified specifically for that sensor and partici-
pant (MacLean and Giesbrecht, 2015a). To identify the individual P1
latencies, we computed an average across all trials; combined planar gra-
diometers using rms; and, for each sensor, used the findpeaks function
from the MATLAB Signal Processing toolbox to identify the latency of
the largest peak within a 75–200 ms window (MacLean and Giesbrecht,
2015a; Luque et al., 2017). If no peak was present, we took the latency of
the maximum value within that window. The final time window was a
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50ms window around the identified peak (MacLean and Giesbrecht,
2015a; Luque et al., 2017). The mean P1 latency (averaged across sensors
and participants) was 156ms (SD= 16 ms; similar to Luque et al., 2017).
We tested for the value modulation of the P1 in a manner identical to
that for the N2pc, except that we compared the P1 difference averaged
within a 50ms window around the individual peaks identified earlier.

Data availability. Analysis scripts and data are available at https://osf.
io/6ky8b/.

Results
Reward learning task: learning stimulus–reward
contingencies
We first confirmed that participants learned the stimulus–reward
contingencies in the reward learning task. Participants won an
average of £44.67 (SD = £2.89) of a possible £48. Choice accuracy
was sensitive to the value difference between options, with a sig-
nificant main effect of choice type [high vs zero (H-Z); high vs
low (H-L); low vs zero (L-Z)] on accuracy (F(2,58) = 7.43,
p=0.006). Participants were more accurate on H-Z than L-Z tri-
als (t(29) = 4.36, p, 0.001, Cohen’s d= 0.8; Fig. 2a). There was no
difference between H-Z and H-L (t(29) = 1.37, p= 0.18) or H-L
and L-Z trials (t(29) = 2.06, p=0.1). RT was similarly sensitive to
value difference, with a significant main effect of choice type on
RT (F(2,58) = 41.4, p, 0.001). Participants were faster on H-Z
and H-L choices than L-Z choices (t(29) = 7.69, p, 0.001,
Cohen’s d= 1.4; and t(29) = 6.07, p, 0.001, Cohen’s d = 1.1,
respectively; Fig. 2b). There was no difference between H-Z and
H-L choices (t(29) = 1.14, p=0.26).

Previous work has dissociated the effects of irrelevant reward
history and reward-independent selection history on attentional
capture (MacLean and Giesbrecht, 2015b). The latter phenom-
enon reflects findings showing that merely selectively attending
to a stimulus can affect subsequent attention to it, regardless of
reward associations (Awh et al., 2012; MacLean and Giesbrecht,
2015b). To control for selection history, we doubled the number
of low-reward versus zero-reward trials to match the frequency
of choosing low-reward options with that of high-reward
options. We confirmed that choice frequency (i.e., how often
participants selected a given reward option) did not differ
between high- and low-reward options (note that this is

correlated with but not identical to trial-type frequency, which
was fixed across participants). There was a main effect of stimu-
lus value on choice frequency (F(2,58) = 721.05, p, 0.001). Parti-
cipants chose the high- and low-reward options more frequently
than the zero-reward stimuli (high vs zero: t(29) = 35, p, 0.001,
Cohen’s d = 6.39; low vs zero, t(29) = 28.26, p, 0.001, Cohen’s
d= 5.15). There was no difference between high- and low-reward
options (t(29) = 0.6, p=0.55; Fig. 2c), demonstrating the absence
of a choice frequency (i.e., selection history) effect.

Reward learning task: reward stimulus processing in a
task-relevant context
Next, we tested the feasibility of time-resolved decoding of
reward stimulus representations in the reward learning task, a
context in which these stimuli (i.e., options for decision-making)
are relevant and rewarded. These analyses focused on the fixation
epoch, in which participants saw the options but were not yet
able to respond.

We applied multivariate pattern analysis to discriminate
between trials in which the higher valued option appeared on the
left versus the right of the fixation cross, separately for the high-
and low-reward trials (location decoding; Fig. 3a). Given the
obvious perceptual differences between left and right option tri-
als, we expected the decoding analysis to reflect this. Crucially,
however, these perceptual differences should be identical in
high- and low-reward trials, and therefore any differences in
decoding between these conditions are attributable solely to the
reward associated with each type of option. As expected, for both
high- and low-reward options, we could decode the option loca-
tion from ;104 and ;136 ms onward, respectively (each
p, 0.001, cluster-corrected permutation test), which is in line
with the clear perceptual difference between left and right cue
presentation trials. Critically, the decoding was significantly
stronger for the high-reward options than the low-reward
options from ;184 ms onward (p, 0.001), indicating that
learned value modulated location decodability in this task-rele-
vant context (Fig. 3a). This is consistent with an effect of reward
on spatial attention (Anderson, 2016; MacLean et al., 2016;
Moore and Zirnsak, 2017).

a b c

Figure 2. Behavioral results in the reward learning task (training phase). a, Grand-average learning curves for high-reward (high vs zero, high vs low) and low-reward (low vs zero) choice
trials. Dotted line indicates the boundary between sessions 1 and 2. Error shading reflects SEM. Inset, Average percentage correct as a function of choice type. The central mark within each box
indicates the median, the box edges indicate the 25th and 75th percentiles, the whiskers indicate the most extreme data points not considered outliers, and the gray points indicate outliers.
Asterisks indicate p, 0.05 in a paired t test. b, Grand-average trialwise reaction time. Same conventions as in a. Inset, Average reaction time as a function of choice type. Same convention as
in a. c, Selection frequency as a function of stimulus value. Same conventions as in a.
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Figure 3. Decoding reward option location, identity, and value in the reward learning task. a, Decoding the location of the reward-associated stimuli involved discriminating between trials
in which the higher reward stimulus appeared on the left versus right, collapsing across stimulus identities. Curves depict decoding averaged across trials and participants for high- and low-
reward options. Bars indicate significant decoding (p, 0.05, cluster-based permutation test across time) for each reward condition (orange, blue bars) and between reward conditions (black
bar). Shaded regions indicate SEM. b, Correlation between location decoding at peak and trial number in the high- and low-reward conditions. Scatter plots show ranked peak decoding across
trials for one example participant, together with the corresponding trend lines. Bar plot shows mean Fisher z-transformed Spearman correlation for each condition, across all participants.
Asterisks indicate p, 0.05 in a one-sample and paired t-test. c, Decoding the identity of reward-associated stimuli involved discriminating between trials with distinct stimulus identities for
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Given that participants gradually learned to locate and select
the higher reward stimulus, we examined how location decoding
emerged across trials as a function of associated reward. We
extracted trialwise distance differences from the peak time point
of maximal decoding in the trial-averaged data in the high- and
low-reward conditions (Fig. 3a) and tested for a relationship
with trial number. In line with participants’ learning, location
decoding significantly increased over trials in the high-reward
condition (t test on the participant-wise, Fisher z-transformed
Spearman rank correlations; t(29) = 8.68, p, 0.001; Fig. 3b, top),
but not in the low-reward condition (t(29) = 1.95, p= 0.06; see
also Fig. 3b, bottom). Correlations were stronger in the high-
reward compared with the low-reward condition (t(29) = 5.7,
p, 0.001; Fig. 3b, inset). Thus, the emergence of location decod-
ing across trials also differed as a function of associated reward,
consistent with the idea that reward learning gradually shapes
selective attention (Chelazzi et al., 2013; Anderson, 2016).

Next, we applied a similar multivariate pattern analysis to dis-
criminate between the two stimulus identities within each reward
condition (e.g., high reward 1 vs high reward 2; identity decod-
ing; Fig. 3c). Identity could be decoded from ;80 and ;104 ms
onward for high- and low-reward stimuli, respectively (p ,
0.001, cluster-corrected permutation test), but with no difference
between reward conditions (p=0.417), suggesting that learned
value did not modulate the sensory representations of these stim-
uli in this task (Fig. 3c).

Last, we sought to decode a reward value signal, independent
of location or identity. We used a cross-generalization approach,
in which we trained a classifier using one pair of reward stimuli
(e.g., high 1 vs low 1) and tested performance on another (e.g.,
high 2 vs low 2), collapsing across locations (Kahnt et al., 2010).
Any significant decoding that emerges is therefore independent
of location and identity, and so attributable to the difference in
value between stimuli (value decoding; Fig. 3d). We found a sig-
nificant value signal from ;260 ms onward (p=0.001, cluster-
corrected permutation test), representing the available reward
independently of stimulus location or identity (Fig. 3d).

Attention task: attentional capture by stimuli associated with
reward history
Next, we probed how stimulus–reward associations learned in
the reward learning task captured attention in the attention task
and whether attentional capture was modulated by reward value
and/or by the SOA. We ran a repeated-measures ANOVA on RT
with the following three factors: reward (high, low), congruency
(congruent, incongruent), and SOA (0, 500, 1000ms). There was
a main effect of congruency (F(1,29) = 12.46, p= 0.001) and a con-
gruency � reward interaction (F(1,29) = 8.9, p= 0.006). Parti-
cipants were significantly slower in the high-reward incongruent
condition relative to the congruent condition (t(29) = 3.77,
p=0.002, Cohen’s d = 0.69), with no such difference between the
low-reward incongruent and congruent conditions (t(29) = 1.77,
p=0.087, Cohen’s d = 0.32). Importantly, although there was a
main effect of SOA (F(2,58) = 44.33, p, 0.001; indicative of a

general preparatory effect), there were no interactions between
SOA and reward or congruency (all F(2,58) , 1, p. 0.3). Thus,
VDAC effects in reaction time were consistent across SOAs. For
completeness, we tested for reward � congruency effects in each
SOA. Across SOA conditions, participants were slower in the
high-reward incongruent trials than the congruent trials (0ms
SOA: t(29) = 4.55, p= 0.001, Cohen’s d = 0.83; 500ms SOA: t(29) =
3.15, p= 0.019, Cohen’s d = 0.57; 1000ms SOA: t(29) = 2.8,
p= 0.036, Cohen’s d = 0.51; Fig. 4a). There was no difference
between low-reward incongruent and congruent trials (all t(29) ,
2, p. 0.2; Fig. 4a).

A congruency effect on reaction time could be driven both by
faster responses in congruent trials, and/or slower responses in
incongruent trials, compared with baseline. Figure 4a suggests
that both might be the case, and we next tested this explicitly.
Given the absence of interactions with SOA, we collapsed across
this condition and performed one-sample t tests for each congru-
ency and reward condition. In high-reward trials, participants
showed both a congruent effect (t(29) = 3.14, p=0.004, Cohen’s
d= 0.57) and an incongruent effect (t(29) = 2.59, p=0.015,
Cohen’s d= 0.47), suggesting that they were respectively sped up
or slowed down by the presence of a congruent or incongruent
high-reward stimulus. These effects were not present in the low-
reward conditions (t(29) = 1.2, p=0.238; and t(29) = 1.38,
p= 0.178, respectively).

We then tested whether the effect of congruency on RT
decayed over trials, as participants repeatedly encountered the
unrewarded and irrelevant stimuli. This would reflect an extinc-
tion of the stimulus–reward association as reward becomes
unavailable, as widely observed in learning paradigms (Todd et
al., 2014). Focusing on the high-reward condition and collapsing
across SOAs, we split trial data into two halves per session and
computed a difference between congruent and incongruent RTs
as an aggregate measure of attentional capture for each half. A
session � half repeated-measures ANOVA showed no signifi-
cant main effects or interactions (all F(1,29) , 2.8, p. 0.11), sug-
gesting that the effect did not reliably extinguish across trials
within the timeframe of this experiment (Fig. 4b).

We also analyzed accuracy difference scores. There was a sig-
nificant main effect of congruency (F(1,29) = 9.25, p=0.005), a
main effect of SOA (F(2,58) = 3.17, p=0.049), a reward� congru-
ency interaction (F(1,29) = 20.11, p=0.0001), and a reward� con-
gruency � SOA interaction (F(2,58) = 3.21, p=0.047). In the
high-reward 500 and 1000ms SOA conditions only, participants
were less accurate in the incongruent than in the congruent trials
(t(29) = 3.75, p=0.005, Cohen’s d = 0.68; and t(29) = 3.45,
p= 0.009, Cohen’s d = 0.63). There were no differences in the
0ms SOA or in any low-reward condition (all t(29) , 2, p. 0.9).
Thus, attentional capture also influences accuracy, at least in the
longer SOA conditions, with no evidence of a speed–accuracy
trade-off.

Reward cue location is decodable in a task-irrelevant context
and modulated by value
Next, we probed the neural correlates of the attentional capture
effect we observed in behavior. We aimed to identify neural sig-
natures of task-irrelevant reward history, independently of target
processing. Similar to the analysis of the reward learning task
data, we performed time-resolved decoding of the location and
identity of the reward cues, as well as a stimulus-independent
value signal. This enabled us to probe the time course of any
effects of reward history, such as modulations in early visual
processing. Our primary focus was the cue epoch, before the

/

each reward value, within each location with results averaged across (only one location
depicted in schematic). Conventions are the same as in a. d, Decoding reward value involved
using one pair of high- and low-reward stimuli as training data and a different pair as test-
ing data (collapsing across location); any signal that generalizes across pairs is independent
of stimulus identity or location and can therefore be attributed to the difference in value
between high- and low-reward stimuli. Curve depicts decoding averaged across trials and
participants. Bar indicates significant decoding (p, 0.05, cluster-based permutation test
across time). Shaded regions indicate the SEM.
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onset of task-relevant gratings, as this period allowed for the
analysis of task-irrelevant reward cue processing without the in-
terference of target processing. We specifically focused on the
first 500ms after reward cue onset as this allowed us to collapse
across the 500 and 1000ms SOA trials.

We first looked at location decoding as the most direct corre-
late of the spatially specific attentional capture that would subse-
quently impact target processing and related behavior. As before,
we found significant decoding of the cue location for both high-
reward cues (p, 0.001, cluster-corrected permutation test) and
low-reward cues (p, 0.001; Fig. 5a). Critically, this decoding
was modulated by reward value, with stronger decoding for
high-reward cues compared with low-reward cues starting from
;260 ms (p, 0.001; Fig. 5a). This effect is solely attributable to
the reward history that these stimuli acquired during the reward
learning task; in the current context, these stimuli are unre-
warded and irrelevant.

We sought to determine the anatomic source of this value
modulation. We projected the sensor-space data onto a source-
space grid using a LCMV beamformer, and ran the same location
decoding analysis within a searchlight sphere across the brain, in
50ms bins from 250 to 500 ms after cue onset. Value modulation
began around the right posterior parietal cortex (PPC), followed
by the inferior temporal and visual cortex, and more widespread
modulation in posterior parietal cortex, and along the temporal
lobe (p, 0.05, whole-brain cluster-corrected using TFCE; Fig.
5b).

We then tested whether this value modulation was related to
the value modulation of the behavioral attentional capture effect.
We conducted a median split of the participants based on the
extent to which their attentional capture was modulated by
reward value (i.e., the strength of the reward� congruency inter-
action effect on RT; Fig. 5d, top). Strong capture participants
(i.e., with stronger value modulation of the attentional capture
effect) showed accompanying value modulation of the location
decoding during the cue epoch starting from ;244 ms (p ,

0.001, cluster-corrected permutation test; Fig. 5c, bottom), while
weak capture participants did not (p= 0.206; Fig. 5c, top), with a
significant difference between these two groups (p= 0.025, inde-
pendent-samples, cluster-corrected permutation test; Fig. 5d,
bottom). A time-resolved Spearman rank correlation analysis
between the behavioral VDAC effect and the neural value modu-
lation across participants mirrored these results (cluster from
348 to 408 ms; average within-cluster: r = 0.504, p= 0.031, clus-
ter-corrected permutation test). We also confirmed that these
results were not driven by outlying participants using a skipped
rank correlation that formally excludes bivariate outliers (cluster
from 352 to 416 ms; average within-cluster r = 0.508, p=0.004;
for details, see Materials and Methods; Pernet et al., 2012).
Finally, we note that according to post hoc power calculations,
with the current sample size of n=30 and a =0.05, there is 80%
power to detect a correlation of r =0.5.

We defined the above strong and weak capture groups based
on the extent to which reward value modulates the behavioral
effects of attentional capture, but they might also differ in how
they learn reward associations (Jahfari and Theeuwes, 2017). We
therefore compared their learning curves from the reward learn-
ing task, but did not find any significant differences (p=0.410,
independent-samples, cluster-corrected permutation test across
trials; Fig. 5d, middle).

Next, we tested whether the cue location decoding persisted
into the target epoch, which would suggest that participants
maintain traces of the irrelevant reward cue location even while
discriminating the oriented gratings. We repeated the location
decoding on 500 and 1000ms SOA trial data, now time locked to
the grating onset. We again found significant decoding of cue
location for both high-reward cues (p, 0.001, cluster-corrected
permutation test) and low-reward cues (p, 0.001), which was
also modulated by reward value (p, 0.001; Fig. 6a). Note that
the significant decoding before grating onset (the typical “base-
line” period) occurs because this period overlaps with the pre-
ceding cue epoch. As above, we tested whether this value

a b

Figure 4. Value-driven attentional capture as measured by behavior in the attention task. a, Mean RT difference scores (with baseline condition subtracted out) as a function of reward, con-
gruency, and SOA. Gray lines indicate individual participant data. Positive and negative values indicate RTs slower and faster than baseline, respectively. Asterisks indicate p, 0.05 in a paired
t test. Error bars indicate SEM. b, RTs for each condition across trials, averaged within 150-trial bins.
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Figure 5. Decoding reward cue location in the attention task during the cue epoch of the 500 and 1000ms SOA conditions. a, Decoding of reward cue location during the cue epoch for
high- and low-reward stimulus trials. Curves depict decoding averaged across trials and participants for high- and low-reward options. Bars indicate significant decoding (p, 0.05, cluster-
based permutation test across time) for each reward condition (orange, blue bars) and between reward conditions (black bar). Shaded regions indicate SEM. b, Significant value modulation of
location decoding in a source-space searchlight analysis. Maps depict t statistics at selected time points during the cue epoch, and are thresholded at p, 0.05, whole-brain cluster-corrected
using TFCE. c, Same decoding as a but performing a median split on the participant-level data according to each participant’s reward � congruency behavioral effect (i.e., value-modulated
attentional capture effect; see Fig. 5d). Top, The “weak capture” group. Bottom, The “strong capture” group. d, Behavioral and decoding comparison of each participant group from c. Top,
Histogram of participants’ reward � congruency behavioral effect (weak capture in gray, strong capture in black). Middle, Learning curves for each group. Same color conventions as above.
Bottom, Differences between high- and low-reward location decoding (orange minus blue lines) for each group from c. Same color conventions as above. Red bar indicates significant difference
between groups (p, 0.05, independent-samples cluster-based permutation test across time).
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Figure 6. Decoding reward cue location in the attention task during the target epoch. a, Decoding of reward cue location in the target epoch in the 500 and 1000ms SOA trials. Note that
significant decoding in the baseline period is due to the temporal overlap with the cue epoch. Curves depict decoding averaged across trials and participants for high- and low-reward options.
Bars indicate significant decoding (p, 0.05, cluster-based permutation test across time) for each reward condition (orange, blue bars) and between reward conditions (black bar). Shaded
regions indicate SEM. Vertical dashed lines respectively indicate onset of gratings and offset of gratings and reward cues. b, Same decoding as a but performing a median split on the partici-
pant-level data according to each participant’s reward � congruency behavioral effect (see Fig. 5c,d for details). c, d, Same analysis as a and b but for the 0 ms SOA condition (simultaneous
cue and target onset). Vertical dashed lines respectively indicate onset and offset of gratings and reward cues.
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Figure 7. Value modulation of evoked responses. a, Value modulation of the N2pc in the 500/1000 ms SOA trials. Left, middle, ERFs from combined planar gradiometer sensors contralateral
and ipsilateral to the reward cues, for high- and low-reward trials (orange and blue lines) in the 500/1000 ms SOA condition. The difference between contralateral and ipsilateral lines is the
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modulation during the target epoch related to the behavioral
attentional capture effect. A median split analysis (described
above) showed no significant difference in value modulation of
location decoding between strong and weak capture participants
(p=0.283, independent-samples, cluster-corrected permutation
test). Strong capture participants showed significant value modu-
lation (p=0.002, cluster-corrected permutation test), as did weak
capture participants (p= 0.049; Fig. 6b). A complementary time-
resolved correlation analysis (as above) also showed no signifi-
cant effects during this time period (Spearman rank correlation:
p=0.336, cluster-corrected permutation test; skipped rank corre-
lation: no data exceeded the cluster-forming threshold).

We also performed the same location decoding analysis in the
0ms SOA condition, in which reward cues and gratings are pre-
sented simultaneously. We found significant decoding of the cue
location for high-reward cues (p, 0.001, cluster-corrected per-
mutation test), but not for low-reward cues (p= 0.121), and a sig-
nificant value modulation from ;224 ms (p=0.024; Fig. 6c). As
before, we conducted a median split analysis (described above).
However, we did not find value modulation of the location
decoding when analyzing each group separately (strong capture
participants, p= 0.123; weak capture participants, p=0.519; Fig.
6d). A complementary time-resolved correlation analysis (as
above) also showed no significant effects (Spearman rank corre-
lation, p= 0.175; skipped rank correlation, p= 0.427). Note that
these analyses should be interpreted with caution because of si-
multaneous cue and target processing in this condition as well as
the reduced within-subject power, with half as many trials here
as in the combined 500 and 1000ms SOA decoding.

We have used here linear multivariate methods as a sensor-
and amplitude-agnostic method of analyzing cue-related activity.
To ensure that the above results are not specific to our method,
and for comparability with prior research, we also conducted
univariate analysis of the event-related field (ERF) responses.
Based on prior research on VDAC, we focused on value modula-
tion of the early sensory-evoked P1 and the later N2pc compo-
nents (Hickey et al., 2010; Qi et al., 2013; Itthipuripat et al., 2015;
MacLean and Giesbrecht, 2015a; Luque et al., 2017). To be opti-
mally sensitive to value effects, we performed these analyses
within time windows of interest based on prior research, and in
sensors identified for each participant using an orthogonal con-
trast (for details, see Materials and Methods; Itthipuripat et al.,
2015; MacLean and Giesbrecht, 2015a; Donohue et al., 2016;
Luque et al., 2017). Consistent with the location decoding results,
we found a value modulation of the N2pc in the 500 and
1000ms SOA condition (high-reward vs low-reward N2pc

amplitude: t(29) = 2.186, p= 0.037; Fig. 7a) and in the 0ms SOA
condition (high-reward vs low-reward N2pc amplitude: t(29) =
2.362, p = 0.025; Fig. 7b). In contrast, we did not observe any
value modulation of the P1 component in the 500 and 1000ms
SOA conditions (high-reward vs low-reward P1 lateralization:
t(29) = 0.621, p=0.54; Fig. 7c) or in the 0ms SOA condition
(high-reward vs low-reward P1 lateralization: t(29) = 0.176,
p= 0.861; Fig. 7d). Thus, the timing of value modulation effects
is consistent across multivariate and univariate analyses, with an
absence of value modulation in early time windows (i.e., the
evoked P1 component) but with the presence of value modula-
tion in later time windows (i.e., the N2pc component).

No evidence that reward cue identity decoding is modulated
by value in a task-irrelevant context
In addition to the location decoding of the reward cues (i.e.,
reflecting spatial selection), it is possible that decoding of the cue
identities (putatively reflecting visual feature representations)
would be modulated by learned value (Anderson, 2016; Failing
and Theeuwes, 2018). Although we did not observe an effect of
reward value on identity decoding during the reward learning
task, we nevertheless explored this possibility during the atten-
tion task. Although we could reliably decode identity for each
type of reward cue (high reward, from ;128 ms, p, 0.001; low
reward, from ;124 ms, p, 0.001), this was not modulated by
value (p=0.115; Fig. 8a). When we performed a median split
analysis by behavior (described above), the strong capture partic-
ipants did not show any significant value modulation (p=0.065;
Fig. 8b, bottom). Weak capture participants also did not show
any value modulation (p=0.353; Fig. 8b, top). A time-resolved
correlation analysis (as above) also showed no significant effects
(Spearman rank correlation, p= 0.228; skipped rank correlation,
p= 0.334). A similar pattern was observed when decoding in the
0ms SOA trials, with significant decoding of stimulus identity in
high- and low-reward trials (for both, p, 0.001), but no signifi-
cant value modulation (no data exceeded the cluster-forming
threshold; Fig. 8c). Likewise, neither strong nor weak capture
participants showed significant value modulation (for both, no
data exceeded the cluster-forming threshold candidates; Fig. 8d).
A time-resolved correlation analysis (as above) also showed no
significant effects during this time period (Spearman rank corre-
lation, p= 0.241; skipped rank correlation, p=0.158).

It is possible that any effect of reward history on identity
decoding is confined to a specific anatomic region (e.g., within
the ventral visual stream), which our whole-brain sensor-space
analysis may have missed. To test this, we repeated the analysis
using source-space searchlight decoding across the brain in
50ms time steps from cue onset and tested for significant clus-
ters. This approach enabled a more fine-grained subselection of
potentially informative signals (i.e., within a searchlight region of
interest), relative to the whole-brain sensor-space decoding anal-
ysis. There were no significant differences between high- and
low-reward trials anywhere in the brain (500 and 1000ms SOA,
p. 0.1; 0ms SOA, p. 0.209; whole-brain cluster-corrected
using TFCE). Thus, we did not find any evidence that reward
history modulates stimulus identity representations in either a
task-relevant or a task-irrelevant context in the current experi-
ment. Moreover, any hint of an effect is in the opposite direction
to that expected, with slightly worse decoding in the high-reward
condition.

Decoding stimulus-independent reward value in a
task-irrelevant context
Finally, we sought to decode a location- and identity-independ-
ent value signal during the attention task, which would provide

/

N2pc. Gray shading indicates the 200–325 ms time window of interest for the analysis.
Vertical dashed lines indicate reward cue onset and offset. Right, N2pc amplitude (the differ-
ence between contralateral and ipsilateral ERFs) for high- and low-reward conditions, aver-
aged within the time window of interest indicated in gray. Asterisk indicates p, 0.05. Box
plots follow the same conventions as Figure 2. b, Value modulation of the N2pc in the 0 ms
SOA trials. Vertical dashed lines indicate target grating onset and target grating/cue offset.
All other conventions are identical to a. c, No evidence of value modulation of the P1 in the
500/1000ms SOA trials. Left, middle, ERFs from combined planar gradiometer sensors con-
tralateral and ipsilateral to the reward cues, for high- and low-reward trials (orange and
blue lines) in the 500/1000ms SOA condition. Faded gray shading indicates the mean 6 1
SD of the P1 peak latency across participants (averaged across sensors). Vertical dashed lines
indicate reward cue onset and offset. Right, P1 lateralization (the difference between contra-
lateral and ipsilateral ERFs) for high- and low-reward conditions, averaged within a 50ms
window around a sensor- and subject-specific P1 peak. Box plots follow same conventions as
Figure 2. d, No evidence of value modulation of the P1 in the 0 ms SOA trials. Vertical dashed
lines indicate target grating onset and target grating/cue offset. All other conventions identi-
cal to those in c.
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additional evidence that value information continues to be repre-
sented in a task-irrelevant context. Using the same cross-general-
ization approach as before, we found significant value decoding
in the cue epoch, emerging from ;336 ms (p= 0.003, cluster-
corrected permutation test; Fig. 9a). In a median split analysis
based on participants’ behavior (described above), neither the

strong nor the weak capture group showed significant decoding
by itself (strong capture, p= 0.086; weak capture, p= 0.143),
although the strong capture participants appeared to be driving
the overall effect (Fig. 9b). The difference between groups was
not significant (no data exceeded the cluster-forming threshold,
independent-samples, cluster-corrected permutation test). The

a b

c d

Figure 8. Decoding reward cue identity in the attention task. a, Decoding of reward cue identity during the cue epoch in the collapsed 500 and 1000ms SOA conditions. Curves depict
decoding averaged across trials and participants for high- and low-reward options. Bars indicate significant decoding (p, 0.05, cluster-based permutation test across time) for each reward
condition (orange, blue bars). Shaded regions indicate SEM. Vertical dashed line indicates onset of reward cues. b, Same decoding as in a but performing a median split on the participant-level
data according to each participant’s reward � congruency behavioral effect (for details, see Fig. 5c,d). c, d, Same analysis as a and b, but for the 0 ms SOA condition. Vertical dashed lines
respectively indicate onset and offset of gratings and reward cues.
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absence of significant decoding in either of the two subgroups,
together with significant decoding across the entire sample, is
most likely explained by a lack of statistical power in the former
analysis, rather than a true null effect. A time-resolved correla-
tion analysis (as above) also showed no significant effects during
this time period (Spearman rank correlation, p= 0.361, cluster-
corrected permutation test; skipped rank correlation, p= 0.480).
Source-space searchlight decoding of this value signal across the
brain showed significant clusters in bilateral visual, left inferior
temporal, and left inferior frontal cortex (p, 0.05, whole-brain
cluster-corrected using TFCE; Fig. 9c). In the 0ms SOA condi-
tion, we found no significant value decoding at any time point
(p=0.210, cluster-corrected permutation test).

Discussion
We recorded brain activity using MEG as participants completed
a reward learning task to establish stimulus–reward associations,
followed by an attention task to measure VDAC. First, we
showed a spatially specific behavioral VDAC effect, with reward-
associated stimuli respectively speeding or slowing RT in congru-
ent and incongruent trials, consistent with attentional costs and
benefits (Posner, 1980; Failing and Theeuwes, 2014). This effect
was modulated by reward value, suggesting that it is the associ-
ated value that is driving capture, rather than a reward-inde-
pendent selection history (MacLean and Giesbrecht, 2015b).
VDAC was robust even with a delay between reward-associated
stimuli and targets (see also Failing and Theeuwes, 2015), allow-
ing us to isolate the processing of reward-associated stimuli.
Using MVPA, we found that location decoding of task-irrelevant
reward cues was modulated by value from;260 ms after stimu-
lus onset. This neural effect was related to behavior: participants
who had strong VDAC also had larger value modulation of loca-
tion decoding. Further, we found that this value modulation
extended into the target epoch, consistent with the behavioral
effects of VDAC observed in the long SOA conditions (500 and
1000ms). We found an additional value signal in the long SOA
conditions, which was independent of the location or identity of
the reward stimuli. In contrast, although we could decode the
identity of reward cues, this decoding was not modulated by
value. This was the case regardless of SOA condition, whether we
focused our analysis on participants showing a strong VDAC
effect or whether we performed decoding on whole-brain data or
with searchlight analysis.

Value signals and spatial attention
The timing of the value modulation of location decoding is con-
sistent with a lateralized N2pc signal for reward-associated stim-
uli, and indeed we found a value modulation of the N2pc in a
univariate analysis (Hickey et al., 2010; Qi et al., 2013;
Itthipuripat et al., 2015). This suggests an effect of value on spa-
tial attention (Woodman and Luck, 1999; Chelazzi et al., 2014;
MacLean et al., 2016; Moore and Zirnsak, 2017). Moreover,
localization of this effect to the PPC is in line with theories pro-
posing that regions in this area [e.g., the lateral intraparietal area
(LIP) in monkeys] integrate diverse signals, including task infor-
mation and physical salience, to compute the overall attentional
priority of stimuli (Bisley and Goldberg, 2010; Zelinsky and
Bisley, 2015). Single-unit recording and fMRI studies suggest
that learned reward value is similarly integrated in the PPC
(Gottlieb and Snyder, 2010; Anderson et al., 2014; Barbaro et al.,
2017; Ghazizadeh et al., 2018). For example, LIP neurons encode
learned value despite its interference with goal-oriented behav-
ior, and such biases transfer to a task-irrelevant context after
extensive training (Peck et al., 2009). Interestingly, after the onset
of task-irrelevant reward cues, LIP neurons show sustained
increases in firing rate for at least 800ms (Peck et al., 2009). This
dovetails with our findings that value modulation of location
decoding extends into the target epoch and that behavioral
VDAC effects are also present at long SOAs. The role of learned
value in these effects is demonstrated by the relatively weaker
location decoding of low-reward cues in both the cue and target
epochs, a pattern that mirrors the behavioral results.

The spatial resolution of source localization in the current
study was insufficient to confidently distinguish parietal subre-
gions (Corbetta and Shulman, 2002). Our findings are also con-
sistent with studies showing that ventral parts of the PPC (e.g.,
inferior parietal lobule) are involved in the detection of salient
events and attentional orienting (Corbetta and Shulman, 2002;
Husain and Nachev, 2007). The processing of reward history in
this and other parietal subregions remains an important open
question (Frank and Sabatinelli, 2012).

Value signals, VDAC, and the stimulus-onset asynchrony
Although we observed a relationship between the VDAC RT
effect and the value modulation of location decoding in the 500/
1000ms SOA condition, this was not apparent in the 0ms SOA
condition. We suggest that this discrepancy stems from practical

a b c

Figure 9. Value decoding in the attention task during the cue epoch of the 500 and 1000ms SOA conditions. a, Value decoding during the cue epoch in the collapsed 500 and 1000ms SOA
conditions. Curve depicts decoding averaged across trials and participants. Bar indicates significant decoding (p, 0.05, cluster-based permutation test across time). Shaded regions indicate
SEM. b, Same decoding as in a but performing a median split on the participant-level data according to each participant’s reward� congruency behavioral effect (for details, see Figure 5c,d).
c, Significant value decoding in a source-space searchlight analysis at selected time points. Conventions are the same as those used in Figure 5b.
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differences between conditions. Namely, the 0ms SOA condition
involves simultaneous processing of reward cue and target stim-
uli, which may hamper decoding, and is the primary reason that
we included an SOA in the paradigm. Moreover, the 0ms SOA
condition has half as many trials as the combined 500/1000ms
SOA condition, decreasing within-subject power for decoding.
Consistent with this interpretation, we did not observe that the
VDAC RT effect differed between SOA conditions (Failing and
Theeuwes, 2015).

More broadly, we note that cross-subject brain–behavior cor-
relations need to be interpreted with caution (Yarkoni, 2009).
Nevertheless, our finding of a link between value modulation of
stimulus-driven activity and VDAC effects in RT is consistent
with previous studies reporting similar effects using fMRI
(Hickey and Peelen, 2015) and EEG (Hickey et al., 2010; Qi et al.,
2013).

The latency of value signals and VDAC
The latency of observed value signals is too late to suggest a
causal role in modulating visual processing. Attentional modula-
tions arising from frontal and parietal cortex—the putative
effects of VDAC—have been shown to already occur by ;250
ms (Foxe and Simpson, 2002; Buffalo et al., 2010; Anderson,
2016). Indeed, robust behavioral effects are also observed when
targets are presented simultaneously to the reward stimuli (e.g.,
0ms SOA condition; but see also Anderson et al., 2011). In these
trials, it is likely that any value signal would have to occur earlier
than ;200 ms to causally influence visual processing (Foxe and
Simpson, 2002; Buffalo et al., 2010). It is possible that there is an
early cortical effect that we cannot detect due to a lack of power
or due to the relative insensitivity of MEG to radially oriented
dipoles compared with EEG (Ahlfors et al., 2010). As described
earlier, some EEG studies have reported value modulation earlier
than ;200 ms (Hickey et al., 2010; MacLean and Giesbrecht,
2015a; Luque et al., 2017).

Differences in task design may explain the discrepancies
between studies. Hickey et al. (2010) observed a P1 effect using
an intertrial priming paradigm in which the reward history and
task relevance of stimuli changed across trials (see also
Itthipuripat et al., 2015). Notably, MacLean and Giesbrecht
(2015a) did find a P1 effect days after reward learning, but it only
occurred in trials in which the reward-associated stimulus
directed attention toward the target, suggesting an interaction
with task relevance. Similarly, the P1 effect in Luque et al. (2017)
occurred in the outcome phase of a reinforcement learning task
in which stimuli are task relevant. In contrast, in the current
study and in the study by Qi et al. (2013), who also did not find a
P1 effect, the reward-associated stimuli were entirely irrelevant
in the attention task. Therefore, it is possible that early cortical
value signals may only be present, or at least detectable, when
they coincide with current or recent task-related attentional
modulation (Failing and Theeuwes, 2018).

Implications for the visual cortical plasticity account
The visual cortical plasticity account of VDAC posits that value
may be directly encoded in cortex via plasticity of stimulus repre-
sentations in the ventral visual stream (Anderson, 2016; van
Koningsbruggen et al., 2016; Failing and Theeuwes, 2018). High-
level object, perceptual, and category learning are known to
induce plasticity throughout the ventral visual stream and
higher-order areas (Miyashita, 1988; Schoups et al., 2001; Op de
Beeck and Baker, 2010; Srihasam et al., 2014; LeMessurier and
Feldman, 2018). Such changes may underlie the value modulation

of early visual processing during VDAC (e.g., the aforemen-
tioned P1 effects), although in the current study we did not find
evidence for such early value modulation. Increased decodability
of reward-associated stimuli (Hickey and Peelen, 2015) has also
been taken as supporting evidence (Failing and Theeuwes, 2018).
Importantly, Hickey and Peelen (2015) were decoding object cat-
egories. In the current study, we focused on within-category
stimulus identity and did not observe the value modulation of
identity decoding in either the reward learning or attention task.
Moreover, in line with previous research on VDAC (Anderson
et al., 2011; Hickey and Peelen, 2015), reward learning in the cur-
rent study was conducted over a shorter timescale than percep-
tual learning studies, which typically require multiday training
(Schoups et al., 2001). It remains unclear whether visual cortical
plasticity can occur under the same timescale as VDAC.

Value signals outside the cortex
Alternatively to the visual cortical plasticity account, VDAC may
be explained by plasticity in subcortical regions (Anderson, 2016;
Hikosaka et al., 2019), to which MEG is relatively insensitive
(Hillebrand and Barnes, 2002). One route may be a recently
identified circuit involved in rapid orienting to reward-associated
stimuli, which includes the tail of the caudate nucleus, the
substantia nigra pars reticulata, and the superior colliculus
(Yamamoto et al., 2012, 2013; Yasuda and Hikosaka, 2015;
Griggs et al., 2018; Hikosaka et al., 2019). Learned value modu-
lates neural activity in each of these regions, which can ultimately
affect visual cortical processing via the thalamus (Hikosaka et al.,
2019).

Value information can affect selective attention via multiple
parallel pathways (Hikosaka et al., 2019). Models of corticobasal
ganglia interactions suggest that value may first be encoded in
the basal ganglia, which gradually establishes stimulus–value
associations in the cortex (Houk and Wise, 1995; Hélie et al.,
2015). Consistent with this, value coding in LIP and extrastriate
cortical neurons shifts earlier (e.g., earlier than 200ms) after days
of training (Peck et al., 2009; Frankó et al., 2010). It is therefore
possible that with longer training we would have observed earlier
cortical value signals in the current study. Other candidate
regions for reward-related plasticity include the amygdala and
hippocampus, both of which show learning-driven value coding
(Paton et al., 2006; Peck and Salzman, 2014; Chau et al., 2015;
Wimmer et al., 2018).

Conclusion
Overall, our results suggest that VDAC is underpinned by
learned value signals that modulate spatial selection throughout
posterior visual and parietal cortex. However, despite previous
studies suggesting an important role for early cortical plasticity,
we suggest that VDAC can occur in the absence of changes in
early processing in cortex.
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