Manganese exposure produces Parkinson’s-like neurologic symptoms, suggesting a selective dysregulation of dopamine transmission. It is unknown, however, how manganese accumulates in dopaminergic brain regions or how it regulates the activity of dopamine neurons. Our in vivo studies in male C57BLJ mice suggest that manganese accumulates in dopamine neurons of the VTA and substantia nigra via nifedipine-sensitive Ca2+ channels. Manganese produces a Ca2+ channel-mediated current, which increases neurotransmitter release and rhythmic firing activity of dopamine neurons. These increases are prevented by blockade of Ca2+ channels and depend on downstream recruitment of Ca2+-activated potassium channels to the plasma membrane. These findings demonstrate the mechanism of manganese-induced dysfunction of dopamine neurons, and reveal a potential therapeutic target to attenuate manganese-induced impairment of dopamine transmission.

Key words: dopamine neurons; L-type calcium channel; manganese; Parkinson’s disease; synaptic transmission

Significance Statement

Manganese is a trace element critical to many physiological processes. Overexposure to manganese is an environmental risk factor for neurologic disorders, such as a Parkinson’s disease-like syndrome known as manganism. We found that manganese concentration-dependently increased the excitability of dopamine neurons, decreased the amplitude of action potentials, and narrowed action potential width. Blockade of Ca2+ channels prevented these effects as well as manganese accumulation in the mouse midbrain in vivo. Our data provide a potential mechanism for manganese regulation of dopaminergic neurons.

Introduction

Manganese is a trace element critical to many physiological and developmental processes, including the regulation of macronutrient metabolism, blood glucose, cellular energy, reproduction, digestion, and bone growth (Greene and Madgwick, 1988; Erikson et al., 2005). Manganese is a cofactor for several enzymatic processes and a constituent of metalloenzymes, including arginase, pyruvate carboxylase, and manganese-containing superoxide dismutase (Aschner and Aschner, 2005; Aschner et al., 2007; Guilarte, 2010). Except in children on long-term parenteral nutrition or individuals with mutations in the metal transporter SLC39A8 gene, manganese deficiencies are seldom reported (Greene and Madgwick, 1988; Zogzas and Mukhopadhyay, 2017). In contrast, the toxic effects of manganese can be caused by occupational exposures (Bowler et al., 2006; Park et al., 2009), total parenteral nutrition (Hardy, 2009), drinking water with high manganese concentration (Bouchard et al., 2007; Katsoyiannis and Katsoyiannis, 2006), and exposure to air containing manganese concentrations >5 μg/m³ (Yin et al., 2010). Therefore, manganese exposure can occur under many conditions and throughout an individual’s lifespan. Excess manganese accumulation in the brain following environmental exposure is implicated in abnormalities related to the dopaminergic system, including Parkinson-like motor dysfunction (Jankovic, 2005), ataxia (Soriano et al., 2016), and hallucinations (Verhoeven et al., 2011). Animal models of manganism have shown that a single large exposure or prolonged moderate exposure to excess manganese is detrimental to the basal ganglia function (Olanow, 2004; Michalke and Fernsebner, 2014), albeit with less understood mechanisms.
Manganese can enter the CNS through the cerebral spinal fluid or by crossing cerebral capillary endothelial membranes (Aschner et al., 2007). Physiologic concentrations of manganese in the brain range from 20 to 53 μM (Bowman and Aschner, 2014) but can increase severalfold on overexposure both in humans (Kessler et al., 2003; Crossgrove and Zheng, 2004) as well as rodents (Liu et al., 2006). Existing studies have used a wide range (60-150 μM) of extracellular manganese to investigate manganese-associated neurotoxicity (Tuschl et al., 2013; Bowman and Aschner, 2014). Studies on manganese transport in mammalian systems have largely focused on influx mechanisms (Au et al., 2008). Manganese is transported into neurons, and possibly other CNS cell types, through a number of transporters, including divalent metal transporters (Gunshin et al., 1997), the transferrin receptor (Gunter et al., 2013), store-operated Ca²⁺ channels (Crossgrove and Yokel, 2005), the choline transporter (Lockman et al., 2001), the magnesium transporter (Goytain et al., 2008), and the NMDA receptor (Itoh et al., 2008). In addition, ZIP14 is known to uptake manganese in human neuroblastoma cells (Fujishiro et al., 2014). The clinical effects of manganese toxicity are primarily Parkinson-like in nature (Jankovic, 2005). This includes movement disorders characterized by tremor, rigidity, dystonia, and/or ataxia; psychiatric disturbances, including irritability, impulsiveness, agitation, obsessive-compulsive behavior, and hallucinations; and cognitive deficits, such as memory impairment, reduced learning capacity, decreased mental flexibility, and cognitive slowing (Josephs et al., 2005). Neuronal degeneration and altered neurotransmitter release occur in brain regions with abnormally high accumulation of manganese, including the dorsal striatum, internal globus pallidus, and substantia nigra (SN) pars reticulata (Crossgrove and Zheng, 2004; Perl and Olanow, 2007; Uchino et al., 2007; Guiltarte, 2010). In addition, neuronal loss and gliosis in the globus pallidus, SN pars reticulata, and striatum are reported with high accumulation of manganese (Olanow, 2004). More recently, mutations in the human metal transporter genes ZNT10 and ZIP14 were shown to cause manganese overload and motor dysfunction (Tuschl et al., 2013; Leyva-Illades et al., 2014). In addition to these clinical findings, previous studies show a correlation between elevated extracellular manganese levels in the brain and dysfunction of dopamine transmission (Madison et al., 2012; Dodd et al., 2013), where manganese reduced dopamine uptake and amphetamine-induced dopamine efflux (Roth et al., 2013). Manganese exposure in developing rats reduces both the levels and activity of striatal D₂ receptors (Seth and Chandra, 1984; Rogers et al., 2014), supporting the overarching hypothesis for manganese-mediated dysregulation of the dopaminergic system.

The mechanism by which manganese dysregulates dopamine neurons is poorly understood. One potential mechanism by which manganese can regulate cellular responses is through the modulation of Ca²⁺ concentrations, which not only regulates membrane potential but also serves as an important signaling molecule (Clapham, 2007). Manganese has been shown to regulate Ca²⁺ signaling in primary cultures of astrocytes where exposure to manganese results in mitochondrial sequestration of Ca²⁺, which in turn reduces the available pool of releasable Ca²⁺ within the endoplasmic reticulum (Tjalkens et al., 2006). This can affect the production of reactive oxygen species, free radicals, and toxic metabolites; alteration of mitochondrial function and ATP production; and depletion of cellular antioxidant defense mechanisms (Puskin and Gunter, 1973; Martinez-Finley et al., 2013). In astrocyte culture, manganese rapidly inhibits ATP-induced Ca²⁺ waves and Ca²⁺ transients (Streifel et al., 2013) as well as decreases the influx of extracellular Ca²⁺ induced by 1-oleoyl-2-acetyl-sn-glycerol, a direct activator of the transient receptor potential channel TRPC3 (Streifel et al., 2013).

The mechanistic relationship between manganese regulation of Ca²⁺ signaling and excitability of dopamine neurons has remained unclear. Recently, we have shown that changes in Ca²⁺ homeostasis in the dopamine neurons influence neuronal activity indirectly through Ca²⁺-activated potassium channels (Lin et al., 2016). In the current study, we report a mechanistic link between manganese regulation of the excitability of dopamine neurons and manganese modulation of Ca²⁺ channels. Here, we identified a cellular mechanism by which manganese accumulates in the midbrain, enters into dopamine neurons, and regulates the activity of dopamine neurons. Contrary to our initial hypothesis, we found that manganese does not block Ca²⁺ channels in dopamine neurons but acts as a substrate for Ca²⁺ channels. Manganese permeability through the nifedipine-sensitive Ca²⁺ channels was further supported by computational modeling, single-neuron analysis, and in vivo MRI experiments showing that blockade of Ca,1.2 channels decreased manganese regulation of dopaminergic neuronal activity and its accumulation in the midbrain. These data address the existing debate in the field regarding manganese regulation of Ca²⁺ channels in dopamine neurons. The mechanistic results reported here provide a clinically relevant therapeutic target that could attenuate the severity of manganese toxicity in patients exposed to excess manganese.

Materials and Methods

Drugs and reagents. The drugs and reagents used in this study were purchased from Sigma Millipore, unless otherwise stated. Chemical reagents and drugs used for primary neuronal culture are listed in Table 1. Antibodies used for Western blot analysis are listed in Table 2. The catalog number of the reagents and drugs used for electrophysiology and microscopy experiments are listed in Table 3.

Animals. Midbrain neuronal cultures were obtained from RFP::TH C57BL/6 mice (provided by Douglas McMahon, Vanderbilt University), a transgenic mouse strain where the dopamine neurons are rendered fluorescent by expressing the RFP under the TH promoter (Zhang et al., 2004). Mice of the C57BL/6j genetic background conditionally expressing GCaMP6f in dopaminergic neurons were generated by crossing animals expressing Cre recombinase under control of the Slc6a3 restriction (B6.SJ-LacI-EGFPm1 Cre;Kbln1 Fl/J; The Jackson Laboratory, stock #006660) to animals expressing GcaMP6f under control of the LoxP promoter (B6;129-Gt(Rosa)26Sortm951; CAG-GCaMP6f Hze1 Fl/J; The Jackson Laboratory, stock #024105). Mice were housed in the animal care facilities at the University of Florida in accordance with the Institutional Animal Care and Use Committee, under guidelines established by National Institutes of Health. Food and water were available ad libitum in the home cage. Animals were housed under standard conditions at 22°C-24°C, 50%-60% humidity, and a 12 h light/dark cycle.

Manganese concentrations used in this study. The physiological concentration of manganese in the human brain is estimated to be between 5.32 and 14.03 ng manganese/mg protein, equivalent to 20.0-52.8 μM (Bowman and Aschner, 2014). Average cellular manganese content in animal models of chronic manganese exposure is as high as 10.95 μg g⁻¹ (200 μM), which has been shown to decrease the viability of dopamine neurons (Higashi et al., 2004). Using this information, we first performed concentration response experiments (see Figs. 1, 2) and found that 100 μM manganese is a suitable concentration to study manganese regulation of intrinsic firing behavior of dopamine neurons.

Mice were injected intraperitoneally with manganese (II) chloride tetrahydrate (70 mg/kg, MnCl₂·4H₂O) based on a published protocol shown to increase manganese concentrations in the basal ganglia (Dodd et al., 2005).
Neuronal and cell culture. Primary neuronal culture was performed as previously described (Saha et al., 2014; Lin et al., 2016; Sambo et al., 2017). Briefly, mouse midbrain dopamine neurons from 0- to 2-d-old pups of either sex were isolated and incubated in a dissociation medium (in mM) as follows: 116 NaCl, 5.4 KCl, 26 NaHCO3, 25 glucose, 2 NaH2PO4, 1 MgSO4, 1.3 cysteine, 0.5 EDTA, 0.5 kynurenate containing 20 units/ml papain at 34°C–36°C under continuous oxygenation for 2 h. Tissue was triturated with a fire-polished Pasteur pipette in glial medium (in %, v/v): 50 minimum essential media, 38.5 heat-inactivated FBS, 7.7 D-glucose 25 Millipore Sigma, G8270 and solubilized in 0.2% SDS 0.2M NaOH for 1 h. Radioactivity was measured colorimetrically with BCA reagent (Thermo Fisher Scientific). Results were expressed as counts per minute per mg total protein.

Electrophysiological recordings. Spontaneous firing activity of midbrain dopamine neurons was examined via whole-cell current-clamp recordings as previously described (Saha et al., 2014; Lin et al., 2016; Sambo et al., 2017). The neurons were continuously perfused with ACSF containing the following (in mM): 126 NaCl, 2.5 KCl, 26 NaHCO3, 1.25 NaH2PO4, 2 MgSO4, 10 dextrose, equilibrated with 95% O2/5% CO2; pH was adjusted to 7.4 at 37°C. Patch electrodes were fabricated from borosilicate glass (1.5 mm outer diameter; World Precision Instruments) with the P-2000 puller (Sutter Instruments). The tip resistance was in the range of 3-5 MΩ. The electrodes were filled with a pipette solution containing the following (in mM): 120 potassium-glucuronate, 20 KCl, 2 MgCl2, 10 HEPES, 0.1 EGTA, 2 ATP, and 0.25 GTP, with pH adjusted to 7.25 with KOH. All experiments were performed at 37°C. To standardize action potential (AP) recordings, neurons were held at their resting membrane potential (see below) by DC application through the recording electrode. AP was recorded if the following criteria were met: a resting membrane potential <−35 mV and an AP peak amplitude of >60 mV. AP half-width was measured as the spike width at the half-maximal voltage using Clampfit 10 software (Axon Instruments). Steady-state basal activity was recorded for 48 h after transfection (Sigma Millipore). For 54Mn uptake experiments, following a 48 h transfection, the cells were washed with HBSS and incubated at 37°C in serum-free DMEM containing 40 μM MgCl2 and 54Mn at 0.18 μCi/ml (PerkinElmer). In some experiments, cells were pretreated with 10 μM nifedipine 30 min before 54Mn treatment. After incubation with 54Mn for the times indicated, cells were washed with a chelating buffer (10 mM EDTA, 10 mM HEPES, and 0.9% NaCl) and solubilized in 0.2% SDS 0.2M NaOH for 1 h. Radioactivity was measured by γ-ray solid scintillation spectrometry. Protein content was measured colorimetrically with BCA reagent (Thermo Fisher Scientific).

Table 1. Chemical reagents and drugs for primary neuronal culture

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Concentration (μM)</th>
<th>Manufacturer, catalog #</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>116</td>
<td>Millipore Sigma, 57653</td>
</tr>
<tr>
<td>KCl</td>
<td>5.4</td>
<td>Millipore Sigma, P9541</td>
</tr>
<tr>
<td>NaHCO3</td>
<td>26</td>
<td>Millipore Sigma, 55761</td>
</tr>
<tr>
<td>D-(-)Glucose</td>
<td>25</td>
<td>Millipore Sigma, 68270</td>
</tr>
<tr>
<td>NaH2PO4</td>
<td>2</td>
<td>Millipore Sigma, 71505</td>
</tr>
<tr>
<td>MgSO4</td>
<td>1</td>
<td>Millipore Sigma, M7506</td>
</tr>
<tr>
<td>Cysteine</td>
<td>1.3</td>
<td>Millipore Sigma, C6645</td>
</tr>
<tr>
<td>EDTA</td>
<td>0.5</td>
<td>Millipore Sigma, E9884</td>
</tr>
<tr>
<td>L-glutamine</td>
<td>0.90%</td>
<td>Millipore Sigma, S7653</td>
</tr>
<tr>
<td>Poly-L-lysine</td>
<td>100 μg/ml</td>
<td>Millipore Sigma, P1399</td>
</tr>
<tr>
<td>Laminin</td>
<td>5 μg/ml</td>
<td>Millipore Sigma, L2020</td>
</tr>
<tr>
<td>Insulin</td>
<td>0.025 g/ml</td>
<td>Millipore Sigma, L6243</td>
</tr>
<tr>
<td>Apotransferrin</td>
<td>50 ml/ml</td>
<td>Millipore Sigma, T0178</td>
</tr>
<tr>
<td>GDNF</td>
<td>1 ng/ml</td>
<td>Millipore Sigma, S7653</td>
</tr>
</tbody>
</table>

Table 2. Antibodies for immunofluorescence staining and Western blot

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Host species</th>
<th>Dilution</th>
<th>Manufacturer, catalog #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caveolin-1.2 antibody</td>
<td>Mouse IgG2b κ</td>
<td>1:1000</td>
<td>Millipore, MAB13170</td>
</tr>
<tr>
<td>Anti-(Ca/3) α subunit antibody</td>
<td>Rabbit</td>
<td>1:500</td>
<td>Millipore, ABN11</td>
</tr>
</tbody>
</table>

Table 3. Chemical reagents and drugs for electrophysiological and TIRF recordings

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Concentration (μM)</th>
<th>Manufacturer, catalog #</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>126</td>
<td>Millipore Sigma, 57653</td>
</tr>
<tr>
<td>KCl</td>
<td>2.5</td>
<td>Millipore Sigma, P9541</td>
</tr>
<tr>
<td>Cav2.2</td>
<td>2</td>
<td>Millipore Sigma, 223506</td>
</tr>
<tr>
<td>NaHCO3</td>
<td>26</td>
<td>Millipore Sigma, 55761</td>
</tr>
<tr>
<td>NaH2PO4</td>
<td>1.25</td>
<td>Millipore Sigma, 71505</td>
</tr>
<tr>
<td>MgSO4</td>
<td>2</td>
<td>Millipore Sigma, M7506</td>
</tr>
<tr>
<td>Dextrose</td>
<td>10</td>
<td>Millipore Sigma, D9434</td>
</tr>
<tr>
<td>Potassium gluconate</td>
<td>120</td>
<td>Millipore Sigma, P1847</td>
</tr>
<tr>
<td>MgCl2</td>
<td>2</td>
<td>Millipore Sigma, M8266</td>
</tr>
<tr>
<td>HEPES</td>
<td>10</td>
<td>Millipore Sigma, H3315</td>
</tr>
<tr>
<td>EGTA</td>
<td>0.1</td>
<td>Millipore Sigma, E3889</td>
</tr>
<tr>
<td>ATPNa2</td>
<td>2</td>
<td>Millipore Sigma, A2383</td>
</tr>
<tr>
<td>GDPNa</td>
<td>0.25</td>
<td>Millipore Sigma, G8877</td>
</tr>
<tr>
<td>CaMgSO4</td>
<td>110</td>
<td>Millipore Sigma, C1246</td>
</tr>
<tr>
<td>Cesium chloride</td>
<td>1</td>
<td>Millipore Sigma, 289329</td>
</tr>
<tr>
<td>Tetrathlaumon</td>
<td>10</td>
<td>Millipore Sigma, T2265</td>
</tr>
<tr>
<td>Tetrodotoxin</td>
<td>0.0005</td>
<td>Cayman, 14964</td>
</tr>
<tr>
<td>4-Aminopyridine</td>
<td>1</td>
<td>Millipore Sigma, 275875</td>
</tr>
<tr>
<td>Manganese chloride</td>
<td>0.1</td>
<td>Thermo Fisher Scientific, M87-100</td>
</tr>
<tr>
<td>Paxilline</td>
<td>0.01</td>
<td>Tocris Bioscience, 2006</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>15 mg/kg</td>
<td>Millipore Sigma, N7634</td>
</tr>
<tr>
<td>BAPTA-AM</td>
<td>10</td>
<td>Millipore Sigma, A1076</td>
</tr>
<tr>
<td>NMDA</td>
<td>0.1</td>
<td>Millipore Sigma, M3262</td>
</tr>
<tr>
<td>Cadmium chloride</td>
<td>0.1</td>
<td>Millipore Sigma, M20908</td>
</tr>
<tr>
<td>Fura-2 AM</td>
<td>0.005</td>
<td>Thermo Fisher Scientific, 1201</td>
</tr>
<tr>
<td>Caffeine</td>
<td>20</td>
<td>Millipore Sigma, C0750</td>
</tr>
</tbody>
</table>
Manganese concentration-response experiments were individually examined for concentration of 10, 30, 50, 100, 200, 300, and 400 μM. Since the maximal spontaneous firing activity at each concentration of Mn applications appeared at 3 min, all recordings including baseline, drug application, and washout, were done within 10 min. The relationship between Mn concentration and neuronal firing frequency was fitted according to a Hill equation:

\[E = E_{\text{max}} \frac{Mn^n}{EC_{50}^n + Mn^n} \]

where \(E \) is the predicted effect of Mn, \(E_{\text{max}} \) is the maximum effect, \(n \) is the slope factor, and the \(n \)th root of \(EC_{50} \) gives an estimate of the midpoint of the activation curve.

Recording from HEK cells expressing GFP α subunits. HEK293 cells stably expressing GFP α subunits where generous gift from Robert Brenner (University of Texas Health Science Center at San Antonio). Cell culture was performed as described previously (Goodwin et al., 2009; Wang et al., 2009; Saha et al., 2014). The cells were plated on glass coverslips (Electron Microscopy Sciences). GFP expression was used to identify α subunit-expressing cells. Electrophysiology experiments were performed 3 d after plating the cells. Macropatch recordings were performed using the excised inside-out patch-clamp configuration at 22°C-23°C. Patch pipettes were pulled to a final tip resistance of 1.5-3 MΩ and

Figure 1. Manganese increases the spontaneous firing activity of dopamine neurons. Top, Representative recording showing the concentration-dependent effect of Mn\(^{2+}\) on the spontaneous firing activity of dopamine neurons and firing rate following washout period. Bottom, Histogram of firing frequency obtained from above trace.

Figure 2. Analysis of spontaneous firing activity and properties of AP following manganese exposure. A, Representative AP trace before (baseline, black trace) and after bath application of 100 μM Mn\(^{2+}\) (red trace). B, Concentration-response relationships of the spontaneous firing frequency of dopamine neurons following Mn\(^{2+}\) exposure. An EC\(_{50}\) of 80.2 μM was obtained by fitting the concentration-dependent curve using a Hill equation. C, Mn\(^{2+}\) did not significantly change membrane potential. D, Mn\(^{2+}\) suppressed the amplitude of AP (as measured as the half-amplitude) at all concentrations examined (baseline: 37.2 ± 1.1 mV; 10 μM manganese: 31.1 ± 1.1 mV; \(t_{10} = 3.6, p = 0.03 \), two-tailed Student’s t test; \(n = 11 \) vs 6). E, Mn\(^{2+}\) did not change the half-width of AP at 10-50 μM, but it significantly narrowed the half-width at 100 μM (baseline: 1.5 ± 0.1 ms; 100 μM manganese: 1.15 ± 0.1 ms; \(t_{10} = 2.2, p = 0.04 \), two-tailed Student’s t test; \(n = 10 \) vs 7). F, Mn\(^{2+}\) concentration-dependently decreased the CV of interspike intervals (baseline: 1.2 ± 0.1; 200 μM manganese: 0.7 ± 0.1; \(t_{22} = 3.4, p = 0.003 \), two-tailed Student’s t test; \(n = 11 \) vs 13).
fluorescence intensity of areas of the image that excluded puncta. The mean background-subtracted fluorescent puncta intensity was then calculated by subtracting the mean background intensity from the mean fluorescence intensity measured at the puncta.

fura-2 calcium imaging. For fura-2 calcium imaging, midbrain neuronal cultures were used. Neurons were washed twice in HBSS (Invitrogen) followed by 30 min treatment in 5 μM fura-2 AM (Thermo Fisher Scientific). Cells were then washed twice with HBSS followed by 30 min incubation in HBSS. Cells were then imaged on a Nikon Ti Eclipse inverted microscope. Fluorescence was monitored using dual excitation wavelengths (340/380 nm) and a single emission wavelength (510 nm). fura-2 bound to free calcium is excited at 340 nm, whereas unbound fura-2 is excited at 380 nm. Baseline images were taken for 30 s to 1 min followed by addition of vehicle, 100 μM manganese, or 20 μM caffeine as the positive control group. The concentration of caffeine used in this study was selected based on a previous study examining caffeine regulation of Ca²⁺ mobilization in the midbrain dopamine neurons (Y. M. Choi et al., 2006). Images were acquired for 4 min after treatment. For analysis, ROIs were drawn along the cell body of each neuron. The method for the selection of ROIs is based on previously published reports (Zipfel et al., 2003; Tian et al., 2009). Ca²⁺ changes were determined as the fluorescence normalized to the average fluorescence of the first 30 s of baseline imaging for each neuron. Mean fluorescence change over baseline was calculated as follows: \(\% \Delta F/F_0 = (F_{\text{max}} - F_0)/F_0 \times 100 \), where \(F_{\text{max}} \) is the maximal fluorescent value after treatment and \(F_0 \) is the average fluorescence at baseline. Images were presented as the ratio of 340/380 imaging.

Total internal reflection fluorescence (TIRF) microscopy. For these experiments, HEK293 cells expressing GFP α subunits were plated onto 35 mm glass-bottom dishes to 60%-80% confluence. Ti Eclipse inverted microscope (Nikon) equipped with a multilane solid-state laser source (470, 514, 561 nm) was used for all TIRF microscopy imaging. Lasers were guided through a 60 × 1.4 NA objective. Images were detected digitally using a CCD camera. Image exposure time was coupled with stimulation duration at 100 ms, and laser intensity was maintained at 40%. For quantification of fluorescence intensity at the cell surface, experimenter-defined ROIs were created for each cell to exclude both cell membrane overlap between adjacent cells and measurement of intensity at the peripheral edges of cells. Background fluorescence was subtracted from all images. Mean intensity over time for each ROI was recorded continuously before and after the application of 100 μM manganese to the bath solution. Experiments were performed in the isotonic, isosmotic external solution described above for each neuron. The percent fluorescence change over baseline was calculated as follows: \(\% \Delta F/F_0 = (F_{\text{max}} - F_0)/F_0 \times 100 \), where \(F_{\text{max}} \) is the maximal fluorescent value after treatment and \(F_0 \) is the average fluorescence at baseline. Images were presented as the ratio of 340/380 imaging.

MRI scans. Seventeen adult male mice (35- to 40-d-old male WT C57BL/6 mice) were randomly assigned to two groups either receiving manganese only or manganese plus the L-type Ca²⁺ channel inhibitor nifedipine (15 mg/kg). The systemic injection of 15 mg/kg nifedipine has been shown to cross the blood–brain barrier (Cain et al., 2002) and inhibits the L-type Ca²⁺ channels (Jinna et al., 1999). The treatment doses were based on the previously published protocols (Jinna et al., 1999; Cain et al., 2002; Dodd et al., 2003). Both experimental groups received manganese (II) chloride tetrahydrate (70 mg/kg) via intraperitoneal injection, but one group received manganese injection after 30 min nifedipine (15 mg/kg, i.p.) injection. Magnetic resonance (MR) scanning was performed 24 h after manganese exposure. On the scanning day, mice were anesthetized using 3%-4% isoflurane delivered in medical grade 70% nitrogen/30% oxygen after anesthetic induction, and i.v. anesthesia was maintained at 1.0%-1.5% isoflurane during MRI scanning. Core body temperature and spontaneous respiratory rates were
continuously recorded during MRI scanning (SA Instruments). Mice were maintained at normal body temperature levels (37°C-38°C) using a warm water recirculation system. The manganese-enhanced MRI (MEMRI) scans were collected in a 4.7T/33 cm horizontal bore magnet (Magnex Scientific) at the Advanced Magnetic Resonance Imaging and Spectroscopy facility in the McKnight Brain Institute of the University of Florida. The MR scanner consisted of a 11.5 cm diameter gradient insert (Resonance Research) controlled by a VnmrJ 3.1 software console (Agilent Technologies). A quadrature transmit/receive radiofrequency coil tuned to 200.6 MHz \(^{1}\)H resonance was used for B1 field excitation and radiofrequency signal detection (airmri). The MEMRI included a multiple repetition time sequence to calculate parametric T1 maps for each group using a fast spin echo sequence with a total of four TRs (0.5, 1.08, 2.33, 5.04 s), and TE = 6.02 ms with the following geometric parameters: 16 \(\times\) 16 mm\(^2\) in plane, 14 slices at 0.8 mm thickness per slice, data matrix = 128 \(\times\) 128 (125 mm in-plane resolution).

MRI postprocessing. Whole-brain masks were obtained via automatic segmentation with PCNN using high-resolution anatomic scans to remove nonbrain voxels. All cropped data were used to create templates for each cohort using Advanced Normalization Tools (http://stnava.github.io/ANTs/). The templates were then registered to an atlas of the mouse brain using the FMRIB Software Library linear registration program flirt (Jenkinson et al., 2002). The atlas was then transformed back to each individual dataset with the registration matrices from Advanced Normalization Tools. To generate parametric T1 maps, multi-TR images were fit to the equation \(S_{TR} = S_0(1 - e^{-TR/T1})\) using nonlinear regression in QuickVol II for ImageJ (Schmidt et al., 2004). From T1 maps, the T1 relaxation rate (\(R_1\) in ms\(^{-1}\)) is calculated and exported from ROIs. These methods allowed the measurement of the amount of activity, along with the location of manganese uptake in both the control and drug-exposed groups.

Experimental design and statistical analysis. The data were analyzed under blind condition. We have repeated each experiment from start to finish in multiple animals, multiple sets of neuronal cultures, and multiple set of cell cultures. For primary culture experiments, one coverslip represents one technical replicate. On average, 1-3 coverslips were used from one midbrain primary culture preparation. Each coverslip is used once. Each midbrain tissue provides 1 or 2 slices. Each slice is used once (i.e., 1 or 2 technical replicates). Therefore, \(n=8\) from four biological replicates means we have used 4 animals and a total of 8 slices or coverslips. All statistical analyses performed on data presented in the manuscript are stated in the figure legends and detailed in Materials and Methods and Results. For each experiment, statistical tests were chosen based on the structure of the experiment and dataset. No outliers were removed during statistical analysis. Sample sizes estimates were based on published studies in the field that used similar models and techniques as those used in this study. The electrophysiology data were acquired using the ClampEx 10 software (Molecular Devices). The data were analyzed offline using pClamp 10. For all experiments, the data are presented as mean \(\pm\) SEM. \(N\) denotes the number of neurons or cells for in vitro experiments, or mice for in vivo experiments. Statistical significance was assessed using two-tailed Student’s \(t\) test or one-way ANOVA. If

Figure 3. Mn\(^{2+}\) induces release of FFN200 from dorsal striatum. **A,** Time lapse images of a striatal slice loaded with FFN200 following nomifensine (A, top) or 100 \(\mu\)M Mn\(^{2+}\) treatments (A, bottom). Mn\(^{2+}\) treatment decreased FFN200 puncta intensities (yellow arrows). **B, C,** Quantification of FFN200 puncta fluorescence normalized to the averaged intensity of first 60 s for each experimental condition. Scale bar, 10 \(\mu\)m. \(\uparrow p < 0.01\).
ANOVA showed statistical significance, all pairwise post hoc analysis was performed using a Tukey’s post hoc test. Differences were considered significant at $p < 0.05$. The coefficient of variation (CV) is a measure of the relative spread of the data. It is computed as the SD divided by the mean times 100. SigmaPlot 11 was used for all statistical analysis.

Results

We exploited multiple complementary approaches to identify dopamine neurons for the electrophysiological recordings, as described previously (Lin et al., 2016). A total of 149 midbrain dopamine neurons meeting the criteria, as described in Materials and Methods, were recorded and analyzed. The average resting membrane potential was $-48.3 \pm 1.1 \text{ mV}$; input resistance was $252.5 \pm 21.9 \text{ M\Omega}$; membrane time constant was $826.9 \pm 52.5 \text{ ms}$; and membrane capacitance was $64.1 \pm 3.3 \text{ pF}$.

Manganese altered the intrinsic firing behavior of midbrain dopaminergic neurons

Spontaneous firing activity of dopamine neurons was measured before and after manganese application at concentrations of 10, 30, and 100 μM (Fig. 1). Lower concentrations of 10 and 30 μM are within the normal range of intracellular manganese (Bowman and Aschner, 2014), whereas 100 μM falls within the pathologic range (Gandhi et al., 2018). Acute exposure to manganese increased the spontaneous firing frequency and suppressed the amplitude of APs (red arrows) in a concentration-dependent manner. Superimposed representative traces of spontaneous spikes before (black trace) and after 100 μM manganese (red trace) exposure revealed that manganese increased the firing frequency of dopamine neurons and truncated AP amplitudes (Fig. 2A). The EC$_{50}$ for the manganese-mediated increase in firing frequency of dopamine neurons was determined to be 80.2 μM by fitting a concentration-dependent curve using a Hill equation (Fig. 2B). While manganese induced a modest membrane depolarization at lower concentrations (10 μM: $-44.3 \pm 2.0 \text{ mV}$ vs 50 μM: $-46.3 \pm 1.5 \text{ mV}$), it significantly depolarized membrane potential at the highest concentration tested in this study (400 μM), which is consistent with the reported manganese concentration for in vitro studies (Bowman and Aschner, 2014) (Fig. 2C; baseline: $-48.1 \pm 1.2 \text{ mV}$; 400 μM manganese: $-41.8 \pm 3.1 \text{ mV}$; $t_{(15)} = -2.2$, $p = 0.045$, two-tailed Student’s t test; $n = 7$ vs 10). Although manganese markedly suppressed AP amplitude at the lowest concentration of 10 μM (baseline: 37.2 $\pm 1.1 \text{ mV}$; 10 μM manganese: $31.1 \pm 1.1 \text{ mV}$; $t_{(15)} = 3.6$, $p = 0.03$, two-tailed Student’s t test; $n = 11$ vs 6), higher concentrations of manganese did not further suppress AP amplitude (Fig. 2D). In contrast, manganese did not influence AP half-width at low concentrations, but it significantly narrowed AP width at 100 μM (Fig. 2E; baseline: $1.5 \pm 0.1 \text{ ms}$; 100 μM manganese: $1.15 \pm 0.1 \text{ ms}$; $t_{(15)} = 2.2$, $p = 0.04$, two-tailed Student’s t test; $n = 10$ vs 7). Manganese progressively decreased the CV, indicating a reduction in firing variation evident by the small interspike interval (Fig. 2F; baseline: 1.2 ± 0.1; 200 μM manganese: $0.7 \pm 0.1 \text{ ms}$; $t_{(22)} = 3.4$, $p = 0.003$, two-tailed Student’s t test; $n = 11$ vs 13). These results
suggest that manganese regulates the intrinsic firing behavior of dopamine neurons at both physiological and pathophysiological concentrations in a concentration-dependent manner. To address the pathologic effects of manganese, 100 μM manganese increased firing rate, even in the combined absence of extracellular and intracellular Ca2+. After Mn2+ washout, the firing rate decreased under Ca2+-free conditions (baseline: 0.9 ± 0.2 Hz vs 100 μM manganese: 6.9 ± 1.7 Hz, F(2,26) = 13.2, p = 0.003, one-way ANOVA followed by Tukey’s test; n = 10/group). B, The combination of extracellular Ca2+-free and intracellular BAPTA-containing solution depolarized the membrane potential. After Mn2+ washout, the membrane potential returned to the baseline level (Ca2+-free conditions) (baseline: −54.9 ± 1.3 mV vs 100 μM manganese: −49.6 ± 1.9 mV, F(2,26) = 2.5, p = 0.028, one-way ANOVA followed by Tukey’s test; n = 9/group). C, The half-width was measured at the half-maximal voltage of APs. The half-width was broadened significantly in the combination of extracellular Ca2+-free + intracellular BAPTA-containing solution in the absence or presence of Mn2+ (baseline: 1.37 ± 0.2 ms vs 100 μM manganese: 2.50 ± 0.3 ms, F(2,26) = 3.5, p = 0.009, one-way ANOVA followed by Tukey’s test; n = 10/group). D, Half-amplitude of AP was significantly depressed in extracellular Ca2+-free solution combined with intracellular BAPTA in the absence or presence of Mn2+ (baseline: 37.5 ± 1.4 mV vs 100 μM manganese: 29.0 ± 1.7 mV, F(2,24) = 6.0, p = 0.001, one-way ANOVA followed by Tukey’s test; n = 9/group). G, The CVs of the interspike intervals were not significantly different among the experimental groups. *p < 0.05, **p < 0.01, n = 9 or 10 per group.

Manganese stimulation of neuronal activity increased the release of fluorescent false neurotransmitter (FFN200)

Next, we asked whether manganese stimulation of firing frequency of dopamine neurons leads to increased neurotransmitter release. To do this, we used FFN200, a fluorescent substrate of monoamine vesicular transporter (DAT) decreases firing activity of dopamine neurons (Saha et al., 2014; Lin et al., 2016), theoretically, it should decrease the destaining rate or even increase the fluorescent punctate due to accumulation of FFN200-filled synaptic vesicles in the terminal regions. As shown in Figure 3, treatment with DAT inhibitor nomifensine (5 μm) produced a plateau in the fluorescent signal followed by increased fluorescent levels, suggesting inhibition of neurotransmitter release. These data further support the findings that manganese treatment increases the activity of dopaminergic neurons.

Removal of extracellular Ca2+ did not prevent manganese stimulation of spontaneous spike frequency

Our observed broad APs and slow autonomous pacemaking activities are consistent with known electrophysiological features in dopamine neurons (Bean, 2007). Numerous studies have shown that slow rhythmic spiking is accompanied by large oscillations in intracellular Ca2+ concentrations that are driven by the opening of voltage-dependent Ca2+ channels (Nederhaard et al., 1993; Mercuri et al., 1994; Puopolo et al., 2007; Guzman et al., 2009). Therefore, next we measured manganese regulation of the spontaneous firing activity of dopamine neurons in Ca2+-free extracellular solution. Unexpectedly, removal of extracellular Ca2+ did not prevent manganese stimulation of the firing frequency.
Combined application of Ca\(^{2+}\)-free external solution and chelation of intracellular Ca\(^{2+}\) did not prevent manganese stimulation of firing frequency
Since excluding extracellular Ca\(^{2+}\) (Ca\(^{2+}\)-free external solution) did not decrease the effect of manganese on the spontaneous firing activity of dopamine neurons, AP half-width, amplitude, and CV (Fig. 4), we asked whether manganese promotes neuronal activation by increasing intracellular Ca\(^{2+}\) mobilization ([Ca\(^{2+}\)]\(_i\)) (Tjalkens et al., 2006). To test this hypothesis, neurons were pretreated with BAPTA-AM (10 μM), a membrane-permeable Ca\(^{2+}\) chelator, to deplete [Ca\(^{2+}\)]\(_i\), followed by application of manganese in the presence of Ca\(^{2+}\)-free external solution. Consistent with previous reports (Benedetti et al., 2011; Torkkeli et al., 2012), BAPTA pretreatment before bath application of manganese in Ca\(^{2+}\)-free external solution (shown in blue) depolarized the membrane potential (Fig. 5D; baseline: −54.9 ± 1.3 mV vs 100 μM manganese: −49.6 ± 1.9 mV; F\(_{1,24}\) = 2.5, p = 0.002, one-way ANOVA followed by Tukey’s test; n = 9/group) and broadened the AP half-width (Fig. 5E; baseline: 1.37 ± 0.2 ms vs 100 μM manganese: 2.50 ± 0.3 ms; F\(_{1,24}\) = 3.5, p = 0.009, one-way ANOVA followed by Tukey’s test; n = 10/group). Interestingly, we found that manganese treatment in Ca\(^{2+}\)-free external solution (shown in red) still increased the spontaneous firing activity of the neurons (Fig. 5A,C; baseline: 0.9 ± 0.2 Hz vs 100 μM manganese: 6.9 ± 1.7 Hz; F\(_{1,24}\) = 13.2, p = 0.003, one-way ANOVA followed by Tukey’s test; n = 10/group) and truncated the amplitude of APs (Fig. 5B,F; baseline: 37.5 ± 1.4 mV vs 100 μM manganese: 29.0 ± 1.7 mV; F\(_{1,24}\) = 6.0, p = 0.001, one-way ANOVA followed by Tukey’s test; n = 9/group). Washout of extracellular manganese in neurons pretreated with BAPTA and recorded in Ca\(^{2+}\)-free external solution (shown in green) exhibited a significant decrease in the firing frequency (Fig. 5G; 0.4 ± 0.8 Hz), a broadening of AP half-width (Fig. 5E; 2.4 ± 0.4 ms, F\(_{1,24}\) = 4.3, p = 0.029, one-way ANOVA followed by Tukey’s test; n = 9/group), and truncated AP amplitude (Fig. 5B,F; 31.7 ± 2.1 mV, F\(_{1,24}\) = 6.0, p = 0.028, one-way ANOVA followed by Tukey’s test; n = 9/
Manganese does not affect intracellular Ca\(^{2+}\) homeostasis in midbrain dopamine neurons

To directly examine the effect of manganese exposure on intracellular Ca\(^{2+}\) levels \([\text{Ca}^{2+}]_i\), in dopamine neurons, we measured Ca\(^{2+}\) responses in the midbrain slices from mice expressing GCaMP6f in dopaminergic neurons. Brain slices were continuously perfused with ACSF-containing manganese or NMDA equilibrated with 95% O\(_2\)/5% CO\(_2\). Since NMDA receptors are normally perfused with ACSF-containing manganese or NMDA, we hypothesized that manganese can potentially interact with the Ca\(^{2+}\) channels. To examine this possibility, next we tested whether manganese augments the spontaneous activity of dopamine neurons by interacting with Ca\(^{2+}\) channels expressed on dopamine neurons. We examined the effect of a nonselective Ca\(^{2+}\) channel blocker, cadmium (Cd\(^{2+}\), 100 \(\mu\)M) on the intrinsic firing behaviors of dopamine neurons following manganese exposure. As shown in Figure 8, nonselective blockade of Ca\(^{2+}\) channels by bath application of Cd\(^{2+}\) suppressed the spontaneous firing rate of dopamine neurons (Fig. 6A). Unexpectedly, we found that, under this condition, manganese application failed to enhance the firing frequency (Fig. 8A,C; \(F_{(2,18)} = 8.3, p = 0.002\), one-way ANOVA followed by Tukey’s test, \(n = 7\) group). Treatment with Cd\(^{2+}\) alone or the coadministration of Cd\(^{2+}\) and manganese did not change the membrane potential (Fig. 8D), AP half-width (Fig. 8B,E), and AP half-amplitude (Fig. 8F), but significantly increased the CV (Fig. 8G; \(F_{(2,18)} = 4.6, p = 0.024\), one-way ANOVA followed by Tukey’s test, \(n = 7\) group). These findings group). These results suggest manganese enhancement of firing frequency of dopamine neurons (Figs. 1, 2, 4) is not due to the release of Ca\(^{2+}\) from intracellular stores.

Cadmium (Cd\(^{2+}\)) blockade of voltage-gated Ca\(^{2+}\) channels inhibited manganese stimulation of spontaneous firing activity of dopamine neurons

Thus far, above data suggest that manganese enhances the spontaneous activity of midbrain dopamine neurons, but it is not due to changes in extracellular Ca\(^{2+}\) influx or cytosolic Ca\(^{2+}\) release from intracellular stores. Ca\(^{2+}\) channels are also permeant to other divalent cations, such as barium (Bourinet et al., 1996). Therefore, as a divalent ion with a smaller ionic radius than Ca\(^{2+}\) (see Fig. 14), we hypothesized that manganese can potentially interact with the Ca\(^{2+}\) channels. To examine this possibility, next we tested whether manganese augments the spontaneous activity of dopamine neurons by interacting with Ca\(^{2+}\) channels expressed on dopamine neurons. We examined the effect of a nonselective Ca\(^{2+}\) channel blocker, cadmium (Cd\(^{2+}\), 100 \(\mu\)M) on the intrinsic firing behaviors of dopamine neurons following manganese exposure. As shown in Figure 8, nonselective blockade of Ca\(^{2+}\) channels by bath application of Cd\(^{2+}\) suppressed the spontaneous firing rate of dopamine neurons (Fig. 6A). Unexpectedly, we found that, under this condition, manganese application failed to enhance the firing frequency (Fig. 8A,C; \(F_{(2,18)} = 8.3, p = 0.002\), one-way ANOVA followed by Tukey’s test, \(n = 7\) group). Treatment with Cd\(^{2+}\) alone or the coadministration of Cd\(^{2+}\) and manganese did not change the membrane potential (Fig. 8D), AP half-width (Fig. 8B,E), and AP half-amplitude (Fig. 8F), but significantly increased the CV (Fig. 8G; \(F_{(2,18)} = 4.6, p = 0.024\), one-way ANOVA followed by Tukey’s test, \(n = 7\) group). These findings
suggest that, despite observations that manganese-mediated increase in firing activity of dopamine neurons is not dependent on extracellular or intracellular Ca2+ flux, it is dependent on Ca2+ channels expressed on dopamine neurons.

The Ca2+ current involved in pacemaking activity is partly due to L-type currents, which are activated at subthreshold potential and potentially contribute to the tonic firing of the neuron (Putzier et al., 2009). To investigate the possible role of these channels, we asked whether nifedipine blockade of L-type Ca2+ (Ca\textsubscript{v}1.1) channels inhibited manganese stimulation of spontaneous firing activity of dopamine neurons. As shown in Figure 9, we found that nifedipine inhibited manganese stimulation of spontaneous firing activity. Consistent with the results in Figures 4 and 5, the firing frequencies were increased in the presence of manganese and Ca2+-free condition. Similar to the Cd2+ inhibition of manganese stimulation of firing activity of dopamine neurons, coapplication of nifedipine inhibited the manganese stimulation of firing activity (Fig. 9A,C; F\textsubscript{(2,18)} = 44.4, p = 0.0006, one-way ANOVA followed by Tukey’s test, n = 7 group). Similar to Cd2+, the manganese in Ca2+-free solution condition or the coadministration of manganese plus nifedipine in Ca2+-free solution did not change the membrane potential (Fig. 9D) or AP half-width (Fig. 9B,E), but both manganese in Ca2+-free solution and additional application of nifedipine truncated AP amplitudes (Fig. 9A,F; F\textsubscript{(2,18)} = 11.80, p = 0.001, one-way ANOVA followed by Tukey’s test, n = 7 group). The coadministration of manganese in Ca2+-free solution with nifedipine significantly increased the CV (Fig. 9G; F\textsubscript{(2,18)} = 14.11, p = 0.0016, one-way ANOVA followed by Tukey’s test, n = 7 group). These unexpected results support the interpretation that manganese may enter the dopamine neuron through the nifedipine-sensitive voltage-gated Ca2+ channels.

Single-neuron recording revealed manganese competes with Ca2+ influx and generates Ca2+ channel-like currents

Because the blockade of voltage-gated Ca2+ channels prevented the manganese-mediated increases in the spontaneous firing activity of dopamine neurons independent of the presence of intracellular or extracellular Ca2+, we then examined the hypothesis that voltage-gated Ca2+ channels on dopamine neurons are directly permeable to extracellular manganese. Since maximum spontaneous firing appeared ~3 min after Mn application (Fig. 1), we have matched this time point for Ca2+ current recording. After replacing external Ca2+ with equimolar manganese, we observed that manganese induced a Ca2+ channel-mediated current, which was evoked by a series of 200 ms depolarizing steps from −60 to 85 mV in 5 mV increments (Fig. 10A). The currents were composed of a rapidly inactivating transient component and a slowly inactivating persistent component. The current–voltage relationship of the manganese current is shown in Figure 10B. The manganese currents were activated at voltages at ~20 mV and peaked at ~30 mV. Next, we asked whether the activity of Ca2+ channels in midbrain dopamine neurons is affected by these manganese-mediated currents. Since there is little information on whether manganese modulates Ca2+ currents in dopamine neurons, we focused on the action of manganese on whole-cell Ca2+ currents. Total Ca2+ currents (Fig. 10A2,C) were activated at voltages of ~20 mV and peaked at ~45 mV.
Bath application of 100 μM manganese suppressed the peak amplitude of total Ca\(^{2+}\) currents (Fig. 10A, C; \(p < 0.05\), two-tailed Student’s \(t\) test; \(n = 7/\text{group}\)). These data suggest that, in dopamine neurons, manganese might compete with Ca\(^{2+}\) influx and generate Ca\(^{2+}\) channel-gated-like currents that in turn alter the activity of the neurons. To our knowledge, these are the first reported findings that Ca\(^{2+}\) channels may be permeable to manganese and may represent a distinct action of manganese in regulating neuronal activity.

Manganese-enhanced MRI provides evidence for a Ca\(^{2+}\) channel dependent mechanism in the midbrain in vivo

Next, we asked whether manganese can enter the neuron through the Ca_{1.2} and Ca_{1.3} channels and whether nifedipine can block this. To examine this hypothesis, we performed MEMRI in animals pretreated with saline or manganese. Intraperitoneal injections of 70 mg/kg manganese have previously been shown to significantly increase manganese levels in the basal ganglia (Dodd et al., 2005), and also this dose is used for contrast in MRI (Poole et al., 2017). Manganese frequently serves as a neuronal contrast agent to enhance functional brain mapping at a higher spatial resolution than typical fMRI studies (Lee et al., 2005). In this study, we used MEMRI and \(T_1\) mapping to study basal levels of brain activity before and after nifedipine blockade of voltage-gated Ca\(^{2+}\) channels (Figs. 11, 12). A commonly used dose of nifedipine (15 mg/kg) (Giordano et al., 2010; Morellini et al., 2017) was intraperitoneally injected 30 min before manganese exposure. As expected, we found that \(T_1\) relaxation (quantified as \(R_1\) or the rate of \(T_1\) relaxation in \(s^{-1}\)) following manganese treatment exhibited predominantly higher (faster) \(R_1\) in VTA and SN compared with other cortical and subcortical regions (Fig. 12; \(F(8,72) = 2.35, p = 0.026, \text{one-way ANOVA followed by Tukey’s test, } n = 8/\text{group}\)). This reflects a shortening of VTA and SN \(T_1\) relaxation time due to accumulation of the paramagnetic manganese. Importantly, and consistent with single-neuron recordings (Figs. 8-10), we observed that nifedipine blockade of L-type Ca\(^{2+}\) channels reduced \(T_1\) shortening effects of manganese in the midbrain region, which is significantly enriched with dopamine neurons (Nair-Roberts et al., 2008) (Fig. 11; VTA: \(t_{(15)} = -2.2, p = 0.04, \text{two-tailed Student’s } t\) test; SN: \(t_{(15)} = -2.7, p = 0.015, \text{two-tailed Student’s } t\) test; \(n = 8/\text{group}\)). This was observed as a slower rate \(R_1\) in the nifedipine/manganese group relative to manganese only. Therefore, both in vitro (single-neuron recording) and in vivo studies suggest that nifedipine decreases manganese stimulation of neuronal activity and its accumulation in the multiple brain regions, including the dopamine neuron–enriched midbrain.

Manganese can enter the cell via a nifedipine-sensitive Ca_{1.2} channel-mediated mechanism

Our data so far support the interpretation that manganese may enter the cell via nifedipine-sensitive Ca\(^{2+}\) channels. To further support this idea, we measured \(^{54}\)Mn uptake in HEK cells that
were transiently transfected with either a control (empty vector) or Cav1.2 or Cav1.3 cDNA. Western blot analysis confirmed the expression of Cav1.2 or Cav1.3 in the transfected cells (Fig. 13A). Overexpression of Cav1.2 increased the uptake of 54Mn at 5 and 15 min after the addition of 54Mn, while there was no difference observed between the Cav1.3-expressing and control cells (Fig. 13B). Uptake of 54Mn by HEK cells overexpressing Cav1.2 was inhibited when the cells were pretreated with nifedipine (Fig. 13C). These findings further support the interpretation that manganese can enter the cell via a nifedipine-sensitive Cav1.2 channel-mediated mechanism.

In silico modeling supports the possibility that manganese can interact with the Ca$^{2+}$ binding site in the Cav1 channel

Because the crystal structure for Cav1.2 is not available, Cav1.1 was used for homology modeling studies to investigate whether the putative structure of Cav1.2 could inform us about the manganese cation transport. First, the available electron microscopy structure for the homologous Cav1.1 channel was used to build a homology model using the SWISS-MODEL program (Fig. 14) (Waterhouse et al., 2018). The helical regions of the mouse Cav1.1 structure (Wu et al., 2016) and the helical regions for the Cav1.2 model were compared by protein BLAST (Altschul et al., 1990) and found to be 72% identical and 81% similar. Further, when all amino acids within 7 Å of the bound Ca$^{2+}$ atom found in the Cav1.1 structure were selected and compared with amino acids in the model structure for Cav1.2, we found 100% identity in this region, including the carboxylate ligands for the Ca$^{2+}$ atom. We conclude the Cav1.2 channel has an extremely similar structure and presumably cation-binding capability compared with Cav1.1. Because the ionic radius of Mn$^{2+}$ is smaller than for Ca$^{2+}$ (Persson, 2010), it should be adequately accommodated by the channel. Together, the structural features of the Cav1.2 channel and our experimental findings argue for the possibility of the Cav1.2 channel conducting a manganese ion. While these data collectively suggest that manganese produces a Ca$^{2+}$-channel-mediated current in dopamine neurons, which increases rhythmic firing activity of dopamine neurons, the connection between manganese-mediated current and increased firing activity of dopamine neurons remains unclear. The next set of experiments were designed to determine the potential mechanism.

Blockade of large-conductance Ca$^{2+}$-activated potassium (BK) channels decreased the spontaneous firing activity and prevented manganese stimulation of firing frequency

Previously, we have shown that paxilline blockade of BK channels reduces the spontaneous firing activity, broadens the width, and enhances the amplitude of APs in midbrain dopamine neurons (Lin et al., 2016). Since Mn increased the firing frequency and decreased the width and the amplitude of APs (Fig. 1), we
Chen et al., 2014 found that manganese did not reverse paxilline-induced membrane depolarization. Consistent with our previous reports, paxilline suppressed the firing frequency of midbrain dopamine neurons (Fig. 15A,B). Pretreatment with paxilline abolished the manganese-induced increase in firing frequency (Fig. 15A,C; baseline: 1.5 ± 0.2 Hz vs Mn + paxilline: 0.51 ± 0.1 Hz; \(F_{(2,20)} = 11.2, p = 0.0005 \), one-way ANOVA followed by Tukey’s test; \(n = 8 \)/group) and inhibited manganese’s modulation of AP amplitude (Fig. 15A,F). Comparison of the firing frequency after treatment with paxilline alone or paxilline + manganese treatment revealed a further reduction in the firing frequency (Fig. 15C; paxilline: 0.81 ± 0.1 Hz). Consistent with our previous report (Lin et al., 2016), blockade of BK channels depolarized membrane potential (Fig. 15D; baseline: \(-45.1 ± 1.6 \text{ mV vs paxilline: } -40.1 ± 1.8 \text{ mV; } F_{(2,21)} = 3.5, p = 0.04 \), one-way ANOVA followed by Tukey’s test; \(n = 8 \)/group), broadened AP half-width (Fig. 15B,E; baseline: 1.3 ± 0.1 ms vs paxilline: 1.8 ± 0.2 ms; \(F_{(2,21)} = 5.9, p = 0.009 \), one-way ANOVA followed by Tukey’s test; \(n = 8 \)/group), increased AP amplitude (Fig. 15B,F; baseline: 28.1 ± 1.6 mV vs paxilline: 32.6 ± 1.1 mV; \(F_{(2,21)} = 6.6, p = 0.005 \), one-way ANOVA followed by Tukey’s test; \(n = 8 \)/group), and increased the CV (Fig. 15G; baseline: 1.8 ± 0.2 vs paxilline: 2.8 ± 0.3; \(F_{(2,21)} = 2.8, p = 0.015 \), one-way ANOVA followed by Tukey’s test; \(n = 8 \)/group). After pretreatment with paxilline, we found that manganese did not reverse paxilline-induced membrane depolarization (Fig. 15D), but it did diminish the effects of paxilline on the AP half-width (Fig. 15E), amplitude (Fig. 15F), and CV (Fig. 15G). These results suggest that the manganese stimulation of spontaneous spike activity of dopamine neurons is possibly due to BK channel activation.

Manganese increases membrane expression of BK α subunits

The BK α subunit is the pore-forming unit of the BK channel (Knaus et al., 1994). There is a direct relationship between BK channel regulation of neuronal excitability and the level of BK α subunits at the surface membrane (Shruti et al., 2012; Chen et al., 2013; Cox et al., 2014). Since blockade of BK channels abolished the effect of manganese stimulation of the spontaneous firing frequency of dopamine neurons, we examined the possibility that manganese-mediated enhancement of neuronal excitability is due to increased BK α subunit levels at the plasma membrane.

To test this, we used TIRF microscopy to monitor fluorescently tagged BK channel trafficking. The TIRF profile of GFP α subunits was examined in HEK293 cells expressing GFP α subunits in the presence or absence of 100 μM manganese. As shown in Figure 16, the GFP α subunits’ fluorescence signal at the membrane remained stable in the vehicle (external solution)-treated control group. The TIRF profile of GFP α subunits was markedly increased following manganese treatment (\(F_{(1,164)} = 163.8, p < 0.01 \), one-way ANOVA followed by Tukey’s test; \(n = 7 \), Mn = 8). Because TIRF microscopy detects fluorophores at or near the plasma membrane, these results indicate that manganese’s stimulation of neuronal excitability is, in part, due to...
manganese-induced increases in surface BK channel expression and thus activity. To test this possibility, we used excised inside-out patches to record currents in response to test voltage steps. Figure 17 shows representative BK currents in response to test voltage steps in the absence or presence of manganese. The I–V curves of these recordings demonstrate manganese significantly increased peak amplitude of BK currents (p, 0.05, two-tailed Student’s t test, n = 6/group). Together, these results suggest manganese enhances BK channel activity that we have previously shown increases firing activity of dopamine neurons (Lin et al., 2016).

Discussion

Prolonged exposure to low levels of manganese or single large exposure results in its accumulation in multiple brain regions, leading to dysfunction of CNS and extrapyramidal motor disorder referred to as manganism (Aschner et al., 2009). In this study, we used multiple complementary approaches to examine the manganese regulation of dopaminergic excitability and to determine the potential mechanisms involved. We found that manganese increased the spontaneous firing activity of dopamine neurons, decreased the amplitude and half-width of APs, and reduced the variation of interspike interval. Unexpectedly, neither the removal of extracellular Ca2+ nor the chelation of intracellular Ca2+ modulated the manganese stimulation of spontaneous firing frequency of dopamine neurons. Live cell two-photon imaging of GCaMP6f-expressing dopamine neurons support the electrophysiology data showing no change in intracellular Ca2+ levels after manganese application. In contrast, we found that manganese regulation of dopamine neurons was blocked by Cd2+, a nonselective Ca2+ channel blocker, or by nifedipine, an L-type Ca2+ channel blocker, suggesting that manganese can potentially enter the neuron through voltage-gated Ca2+ channels. Furthermore, we identified a Ca2+ channel-mediated manganese current that reduced voltage-gated Ca2+ currents, supporting the idea that manganese may compete with Ca2+ influx, leading to activation of BK channels and increased spontaneous firing activity of dopamine neurons.

Manganese competes with Ca2+ entry through voltage-gated Ca2+ channels to enhance excitability of dopamine neurons

Numerous studies demonstrated the neuronal expression of Ca2+ channels, such as Cav1.2 and Cav1.3, during neurodevelopment (Desarmenien and Spitzer, 1991; Gruol et al., 1992; Spitzer et al., 1995; Carey and Matsumoto, 1999; Kamijo et al., 2018). In addition, Ca2+ transients are observed in embryonic mouse neural crest (Carey and Matsumoto, 1999). Maladaptive Ca2+ influx, through mutated Cav1.2, disrupts radial migration of immature neurons (Kamijo et al., 2018). Calcium waves propagate through radial glial cells in the proliferative cortical ventricular zone (Weissman et al., 2004), whereas other reports have shown that calcium signals trigger a variety of developmental events (e.g., Desarmenien and Spitzer, 1991; Gruol et al., 1992; Spitzer et al., 1995). Postnatal dopamine neurons express Cav1.2 and Cav1.3, and they provide a suitable model system to identify manganese regulation of biophysical properties of dopamine neurons. It
should be noted that the maturation of primary neuronal culture far exceeds the rate of neuronal maturation in vivo, and the time point of recordings in these cultures (8-10 d) yields neurons that express the markers and electrophysiological properties of mature neurons.

The AP of dopamine neurons is slow and broad, which maximizes Ca$^{2+}$ entry and promotes slow rhythmic activity (Bean, 2007). The slow, rhythmic activity (2-10 Hz) in these neurons is autonomously generated and accompanied by slow oscillations in intracellular Ca$^{2+}$ concentration that are triggered by the opening of plasma membrane Ca$_{v}$1.2 (Ca$_{v}$1.2, Ca$_{v}$1.3) Ca$^{2+}$ channels and release of Ca$^{2+}$ from intracellular, endoplasmic reticulum stores (Nedergaard et al., 1993; Puopolo et al., 2007; Guzman et al., 2009; Morikawa and Paladini, 2011). Thus, we tested the hypothesis that manganese increases Ca$^{2+}$ entry into the neuron and/or releases Ca$^{2+}$ from intracellular Ca$^{2+}$ stores. Our data support neither of these possibilities (Figs. 3–9).

Unexpectedly, application of manganese in Ca$^{2+}$-free solution did not significantly alter the membrane potential (Fig. 4); in contrast, BAPTA pretreatment before bath application of manganese in Ca$^{2+}$-free external solution depolarized the membrane potential (Fig. 5D). This is consistent with previous reports showing that, under certain conditions, BAPTA induces membrane depolarization (Benedetti et al., 2011; Torkkeli et al., 2012). Consistently, a side-by-side comparison of firing activity of dopamine neurons in Figures 3 and 4 suggests that BAPTA facilitated the effect of manganese on the spontaneous spike activity of dopamine neurons. We found performing the experiments in either extracellular Ca$^{2+}$-free condition or chelation of intracellular Ca$^{2+}$ did not impair manganese stimulation of firing frequency or reduction of AP amplitude. Consistently, live cell two-photon Ca$^{2+}$ imaging showed that manganese did not alter intracellular Ca$^{2+}$ concentration in the midbrain dopamine neurons. Thus, although manganese has been previously shown to regulate Ca$^{2+}$ homeostasis in astrocytes (Xu et al., 2009), this effect is not present in dopamine neurons. Previous studies suggest that manganese can enter cells through a number of transporters (Gunshin et al., 1997; Lockman et al., 2001; Crossgrove and Yokel, 2005; Goytain et al., 2008; Itoh et al., 2008; Gunter et al., 2013). In addition, as a divalent cation, manganese may potentially target Ca$^{2+}$ channels, which are also permeant to other divalent cations, such as barium (Bourinet et al., 1996). Therefore, if manganese competes with Ca$^{2+}$ entry at the level of voltage-gated Ca$^{2+}$ channels, then a nonselective Ca$^{2+}$ channel blocker, such as Cd$^{2+}$ or an L-type Ca$^{2+}$ channel nifedipine, should block the effect of manganese on the firing frequency of dopamine neurons and AP morphology. As shown in
Figure 15. Blockade of BK channels inhibited manganese stimulation of the spontaneous firing activity in dopamine neurons.

A. Top, Representative spontaneous firing activities of a dopamine neuron exposed to paxilline followed by Mn^{2+} treatment. Firing rate returns to baseline after washout with ACSF solution. Bottom, Rate histogram of above trace.

B. Superimposed traces of representative single AP shown in A: baseline (black trace), paxilline (green trace), Mn^{2+} (red trace), and washout (blue trace).

C. Paxilline reduced the spontaneous firing rate; Mn^{2+} treatment did not attenuate the paxilline-induced reduction of firing activity.

D. Paxilline and concomitant Mn^{2+} + paxilline applications significantly depolarized the membrane potential.

E. Half-width is measured at half-maximal voltage of AP. The half-width was broadened after paxilline application but returned to baseline after coadministration of Mn^{2+} and paxilline.

F. Paxilline increased the amplitude of AP but diminished the effect of Mn^{2+} on the AP amplitude.

G. Blockade of BK channels exhibited larger CVs of the interspike interval. *p < 0.05, **p < 0.01. n = 8 per group.

Figure 16. Membrane localization of BK GFP α subunit is increased following manganese exposure.

A. Representative TIRF microscopy images of GFP α subunit following vehicle or 100 μM Mn^{2+} treatments.

B. Analyses of relative fluorescence intensities at the surface membrane following vehicle or 100 μM Mn^{2+}. Scale bar, 20 μm. *p < 0.01.
Manganese increases BK currents.

![BK currents](image)

Figure 17. Manganese increases BK currents. **A.** Representative traces of outward currents in response to voltage steps (5 mV, 250 ms) from -60 mV to 85 mV in a bath solution containing $0.5 \mu \text{M} \text{TTX}, 35 \mu \text{M} \text{TEA},$ and $1 \text{ mM} \text{CsCl. A,}$ In cells expressing BK α subunits, families of outward currents were evoked by voltage steps from -60 mV to 85 mV for 250 ms with 5 mV increments every 5 s from the holding potential of -70 mV, before (A) and after (B) Mn$^{2+}$ administration. **C.** Peak current–voltage relationships ($I-V$ curves) before (baseline) and after Mn$^{2+}$ application.

Figures 8 and 9, both Cd$^{2+}$ and nifedipine suppressed manganese stimulation of spontaneous firing activities, which is consistent with recent reports showing that dihydropyridine L-type channel inhibitors slow pacemaker activity of dopamine neurons at submicromolar concentrations (Nedergaard et al., 1993; Puopolo et al., 2007).

Blockade of L-type Ca$^{2+}$ (Ca$_1$) channels decreases manganese influx

Since the 1980s, manganese has been used as a tool to increase the signal-to-noise ratio in MRI (Lauterbur, 1980). Consistent with previous reports (Aoki et al., 2004; Lee et al., 2005), following systemic manganese administration, manganese is accumulated in multiple brain regions, including dopaminergic neuron-enriched brain regions, such as SN and VTA (Figs. 11, 12). Here we found that nifedipine blockade of L-type Ca$^{2+}$ channels decreased manganese accumulation in several brain regions as well as manganese uptake in the Ca$_{1,2}$-expressing HEK cells. Concentration-response experiment for manganese in Ca$^{2+}$-free buffer revealed a very small current after replacing 2 mM CaCl$_2$ with manganese (Fig. 10A$_2$); therefore, steady-state amplitude of Ca$^{2+}$ channel-mediated Mn$^{2+}$ currents at different concentrations was difficult to discriminate.

Nevertheless, these data support the interpretation that manganese might be permeable through the Ca$^{2+}$ channels. Consistent with this idea, the chemical properties of aqueous Ca$^{2+}$ and Mn$^{2+}$ ions and the smaller ionic radius of Mn$^{2+}$ than for Ca$^{2+}$ also support the hypothesis that manganese might be accommodated by the Ca$_{1}$ channels. While the crystal structure of Ca$_{1,2}$ is yet to be determined, in *silico* analyses of the homology model of the helical regions of the mouse Ca$_{1,1}$ structure and the helical regions for the Ca$_{1,2}$ were found to be 72% identical and 81% similar for Ca$_{1,2}$; therefore, it is possible that Mn$^{2+}$ enters Ca$_{1}$-expressing cells. Whether manganese is permeable to other Ca$^{2+}$ channels in dopamine or other neuronal types requires further examination. Furthermore, the possibility that manganese, enters the cell and leads to disruption of mitochondrial function, loss of ATP production, subsequent depolarization due to reduced activity of Na$^+/K^+$ ATPase, and increased open probability for high-voltage-activated Ca$^{2+}$ channels require further investigation.

Manganese permeability through L-type Ca$^{2+}$ channels was further supported by our MEMRI data. It should be noted that both neuronal and glial cells express Ca$_{1}$ channels; therefore, the MEMRI and the nifedipine inhibition of this response reported in our studies do not distinguish the cell type. While the effect of manganese on Ca$_{1,2}$ is consistent across other CNS cell types requires further investigation, our observations of manganese accumulation in the dopamine-enriched brain region and in *vitro* studies on the effects of manganese on dopaminergic neurons could establish a biological basis for movement disorders associated with manganism, which typically include symptoms related to dysregulation of the dopaminergic system. Furthermore, although the MEMRI data suggest that acute manganese exposure can be detected in multiple brain regions, dopaminergic brains regions, specifically the VTA and SN, displayed a greater enhancement of MRI signal by manganese compared with other brain regions observed in this study. Overall, we found that blockade of Ca$_{1,2}$ can decrease manganese regulation of dopamine neuron activity and its accumulation in the brain.

Manganese increases membrane expression of BK channel α-subunit leading to enhanced BK channel activity

While it is well established that calcium currents drive the main pacemaking activity of midbrain dopamine neurons (Puopolo et al., 2007; Guzman et al., 2009), sodium currents have also been shown to affect the frequency and pattern of firing of multiple neuronal types (Enomoto et al., 2006; Vervaeke, et al., 2006). In contrast, potassium currents have been shown to exert a major role in AP repolarization (Mitterdorfer and Bean, 2002; Storm, 1987). Under our experimental condition, we found that manganese narrowed the half-width of APs (Fig. 2), suggesting that manganese may regulate potassium channels in dopamine neurons. Furthermore, we and others have shown that activation of BK channels can truncate the amplitude of APs (Van Goor et al., 2001; Petrik et al., 2011; Lin et al., 2016). Consistent with these reports, we found that lower concentrations of manganese truncated the amplitude of APs (Figs. 1, 2), and inhibition of BK channels blocked the manganese modulation of AP amplitude (Fig. 15). Structurally, BK channel complexes contain the pore-forming α subunit (four α subunits form the channel pore) and the regulatory β subunits (Knaus et al., 1994; Brenner et al., 2000; Lu et al., 2006). The intrinsic gating properties of BK channels are dynamically modulated by various kinases (White et al., 1991; Weiger et al., 2002) that regulate BK channel trafficking to the membrane (Chae and Dryer, 2005; Toro et al., 2006).
Recently, we have shown that PKC activation decreases membrane expression of GFP α subunits of BK channels (Lin et al., 2016). These data, combined with reports showing manganese activation of protein kinase δ triggers apoptosis in dopaminergic neurons (Kizawa et al., 2005), led us to ask whether Mn increases GFP α subunit membrane expression. We found that manganese enhanced surface trafficking of BK channels (Fig. 16) and increased BK channel activity (Fig. 17). These data collectively describe a cellular mechanism for the paxilline blockade of Mn-stimulated increases in firing frequency as well as its effect on the AP morphology. Therefore, it is possible that manganese may directly increase cell-surface redistribution of the BK α subunit (Fig. 16) to enhance the activity of dopamine neurons. Future studies will determine the PKC subtype(s) involved in Mn-induced trafficking of GFP α subunit of BK channels and the potential involvement of other BK channels subunits, such as regulatory β subunits. Collectively, these findings reveal the cellular mechanism for manganese regulation of dopamine neurons and reveal unique therapeutic targets to attenuate the untoward consequence of manganese exposure.

References

Rogers K, Beabrun I, Catapane E, Carroll M (2014) The toxic effects of manganese on dopamine D2 receptor activation is not due to inactivation of the phospholipase c receptor signal transduction component (1143.7). FASEB J 28:1143.7.

