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Synaptic transmission has been studied
for decades to understand the fundamen-
tal properties underlying neural commu-
nication, yet some basic questions about
synaptic transmission remain unanswered.
Historically, ribbon synapses have been a
particularly important model because of
the massive amounts of vesicles released
during neurotransmission (Von Gersdorff
and Mathews, 1994). Preparations of rib-
bon synapses from various organisms
revealed the importance of calcium influx
on vesicle release exocytosis and also
showed acidification of the synaptic cleft
because of joint release of neurotrans-
mitters with protons (H1; DeVries, 2001;
Palmer et al., 2003; Hirasawa et al., 2012;
Wang et al., 2014; Vincent et al., 2018).
Although the necessity of calcium for
vesicle release has been confirmed across
synapse types, whether cleft acidification
occurs at all synapses remains unclear.
The current belief that transmitter release
acidifies the cleft is mostly based on rib-
bon synapses, which release 10 to 100
times more vesicles than a typical mam-
malian central synapse.

Whether central excitatory synapses
undergo acidification or alkalinization

during synaptic transmission is less clear
because of mixed results from different
groups. A previous study using rat hippo-
campal slices reported acidification in
the cleft during neurotransmitter release
(Krishtal et al., 1987), as observed at ribbon
synapses, while a different group showed
alkalinization after transmission in the
same preparation (Gottfried and Chesler,
1996; reviewed in Sinning and Hübner,
2013). These variations may have resulted
from technical limitations, since in both
studies the authors measured pH changes
with pH sensitive dyes filling the entire
extrasynaptic space, instead of directly
examining the pH shifts in the synaptic
cleft. Additionally, the pH shifts at ribbon
synapses are larger and easier to detect
than the pH shifts at central synapses.

A recent study (Stawarski et al., 2020)
published in The Journal of Neuroscience
addresses some of these weaknesses and
strengthens the support for alkalinization
of glutamatergic synaptic clefts by neuro-
transmitter release. The authors used a pH
fluorescent sensor called “pHusion-Ex” to
measure pH oscillations in the synaptic
cleft. pHusion-Ex was created by fusing a
pH-sensitive green fluorescent protein-
based sensor (pHluorin; Sankaranarayanan
et al., 2000) with a low-toxicity red fluores-
cent protein (FusionRed; Shemiakina et al.,
2012). This fusion protein was then
expressed at the cleft of the Drosophila larva
neuromuscular junction (NMJ). Ratio-
metric imaging in vivo in intact larvae

revealed alkalinization of the cleft in
response to locomotion. The authors then
measured pH transients in response to sin-
gle action potentials at the larval NMJ in ex
vivo preparations. Again, alkalinization was
measured at the cleft, albeit at a much
smaller magnitude than during locomotion
in vivo. The authors switched to using a
chemical indicator to detect pH transients
at the NMJ to strengthen the support for al-
kalinization, and this also indicated alkalini-
zation of the cleft.

To address the possibility that rapid
cleft acidification went undetected, high-
frequency (560 Hz) imaging was performed
at the cleft. No evidence of acidification was
found using the pHusion-Ex sensor. Yet, it
is possible that acidification occurs only im-
mediately proximal to active zones of vesicle
release. To test this, SE-pHluorin, another
pH sensor, was fused to voltage-gated cal-
cium channels to restrict its expression to
active zones in the presynaptic neuron.
Again, no evidence for any acidification was
seen: only alkalinization of the cleft was
observed.

Regulation of pH at the synapse is com-
plex (Chesler, 2003), but evidence points to
calcium transporters such as Ca21-ATPase
(PMCA) as key components in synaptic pH
homeostasis. These transporters can rapidly
exchange cytosolic Ca21 for external H1

(Makani and Chesler, 2010). Therefore,
Stawarski and colleagues hypothesized that
calcium, through the PMCA transporter,
drives cleft alkalinization. Simultaneous
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imaging with SE-pHluorin in the cleft and
jRGECO1a (intracellular calcium indicator)
in the postsynaptic neuron shows cross-cor-
relation between these transients. However,
these measurements are indirect and alone
do not support a causal role for the PMCA
transporter. An informative extension of
this work would be to block the PMCA
transporter using PMCA inhibitors such as
carboxyeosin (Makani and Chesler, 2010),
and measure if cleft alkalinization still
occurs.

To extend these conclusions past the
Drosophila NMJ, Stawarski et al. (2020)
examined the Calyx of Held synapse in
acute brain slices from mice. Extracellular-
facing pHusion-Ex revealed alkalinization
of the cleft during an action potential train.
In contrast, acidification of the presynaptic
cytosol was seen using cytosolic facing
pHusion-Ex. The magnitude of the acidifi-
cation appeared larger and more persistent
than the cleft alkalinization. As expected,
the cleft alkalinization was reduced by
increasing extracellular buffering capacity,
whereas cytosolic acidification was unaf-
fected. Together these results provide the
strongest evidence to date for cleft alkalini-
zation of excitatory synapses using the
Drosophila NMJ and the mouse Calyx of
Held synapse.

One likely effect of alkalinization of the
cleft at glutamatergic synapses is altering
the action of pH-sensitive potassium
channels in neurons. Since most two-
pore acid sensitive K1 (TASK) channels
are impaired by cleft acidification and
enhanced by cleft alkalinization (Ma et al.,
2012), repeated neuronal firing would
increase outward K1 currents, lowering
neuronal excitability. Although these ion
channels are not broadly expressed, both
TASK-1 and TASK-3 are present in the
rodent spinal cord (García et al., 2019).
These TASK channels play an antinoci-
ceptive role by reducing overall firing rate
induced by formalin injection. These
results fit together nicely, suggesting that
in vivo firing of a glutamatergic spinal
afferent may lead to cleft alkalinization
and increase outward K+ currents, homeo-
statically lowering excitability.

It is well accepted that pH homeostasis
is critical for neural communication,
although no direct role has been identified
for physiological pH changes during syn-
aptic transmission (Chesler, 2003). The
most frequently hypothesized role of phys-
iological pH changes at the synaptic cleft
is to affect short term synaptic plasticity by
altering the sensitivity of neurotransmitter
receptors. While numerous studies have
examined the pH-dependence of various

neurotransmitter receptors, including the
ionotropic glutamate receptors AMPA
and NMDA, the magnitude of the differ-
ences are often small at physiological pH
ranges (Traynelis and Cull-Candy, 1991).
Also, many short-term plasticity mecha-
nisms are well accounted for by calcium
signaling pathways affecting presynaptic
release (Jackman and Regehr, 2017), sug-
gesting pH may not be involved in short-
term plasticity. While it is possible that pH
may play a complementary role in short-
term synaptic plasticity, it may play a key
role in other cellular processes involved in
neurotransmitter release, such as regulat-
ing endocytosis and vesicle refilling.

Acidification of glutamatergic presyn-
aptic terminals and alkalinization of the
cleft may play a role in the regulation of
the synaptic vesicle cycle. The rate of vari-
ous steps of the synaptic vesicle cycle is
regulated by neurotransmitter transport-
ers, the H+ electrochemical gradient, and
the actin cytoskeleton. Previous work has
demonstrated how acidic pH facilitates
glutamate uptake into vesicles through an
allosteric mechanism (Eriksen et al.,
2016). The recently published structure of
VGLUT2 identified pH sensitive residues
that are critical for transporter function
(F. Li et al., 2020), further supporting the
regulation of glutamate loading by pH.
Recently, the regulation of the H+ gradient
by cation/H+ exchangers (Na+/H+ and K+/
H+), which facilitate the vesicle refill pro-
cess of glutamatergic synapses (Goh et al.,
2011), was shown to be very important for
high-frequency spiking neurons (D. Li et
al., 2020). These exchangers may contrib-
ute to acidification of the presynaptic ter-
minal, which can enhance the rate of
glutamate loading into vesicles. Additi-
onally, actin dynamics have been shown to
be important for mediating endocytosis
(Boulant et al., 2011), and actin polymer-
ization has been shown to be enhanced by
acidic conditions (Crevenna et al., 2013).
Therefore, acidification of the presynaptic
cytosol (Stawarski et al., 2020) could link
vesicle release to vesicle endocytosis, and
the magnitude of acidification of the pre-
synaptic terminal could determine the rate
of endocytosis.

The recently published study by
Stawarski and colleagues provides strong
support for the alkalinization of the synap-
tic cleft at excitatory glutamatergic synap-
ses. While the mechanism underlying the
alkalinization remains incompletely under-
stood, it likely involves the PMCA trans-
porter. We think these findings will prove
important not for short-term synaptic
plasticity, but for regulating key steps of

the synaptic vesicle cycle such as vesicle
loading and endocytosis.
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