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The brain is an inherently dynamic system, and much work has focused on the ability to modify neural activity through both
local perturbations and changes in the function of global network ensembles. Network controllability is a recent concept in
network neuroscience that purports to predict the influence of individual cortical sites on global network states and state
changes, thereby creating a unifying account of local influences on global brain dynamics. While this notion is accepted in
engineering science, it is subject to ongoing debates in neuroscience as empirical evidence linking network controllability to
brain activity and human behavior remains scarce. Here, we present an integrated set of multimodal brain-behavior relation-
ships derived from fMRI, diffusion tensor imaging, and online repetitive transcranial magnetic stimulation (rTMS) applied
during an individually calibrated working memory task performed by individuals of both sexes. The modes describing the
structural network system dynamics showed direct relationships to brain activity associated with task difficulty, with difficult-
to-reach modes contributing to functional brain states in the hard task condition. Modal controllability (a measure quantify-
ing the contribution of difficult-to-reach modes) at the stimulated site predicted both fMRI activations associated with
increasing task difficulty and rTMS benefits on task performance. Furthermore, fMRI explained 64% of the variance between
modal controllability and the working memory benefit associated with 5Hz online rTMS. These results therefore provide evi-
dence toward the functional validity of network control theory, and outline a clear technique for integrating structural net-
work topology and functional activity to predict the influence of stimulation on subsequent behavior.

Key words: controllability; network control theory; networks; TMS; working memory

(s )

The network controllability concept proposes that specific cortical nodes are able to steer the brain into certain physiological
states. By applying external perturbation to these control nodes, it is theorized that brain stimulation is able to selectively tar-
get difficult-to-reach states, potentially aiding processing and improving performance on cognitive tasks. The current study
used rTMS and fMRI during a working memory task to test this hypothesis. We demonstrate that network controllability cor-
relates with fMRI modulation because of working memory load and with the behavioral improvements that result from a mul-
tivisit intervention using 5Hz rTMS. This study demonstrates the validity of network controllability and offers a new
targeting approach to improve efficacy. /
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Introduction

A dominant narrative in contemporary neuroscience is that the
brain is a vastly dynamic system of interacting networks called
into action to achieve different mental states and accomplish
cognition. An emerging notion in such network neuroscience
views is that global brain states might be controllable from a sin-
gle node within a cortical network (Betzel et al., 2016), thereby
imparting certain privileged roles for different brain areas in
directing neural activity, such a conception is supported by
growing evidence for network hubs, such as the dorso-lateral
prefrontal cortex (DLPFC). Within this context, brain states can
be altered through exogenous perturbations via noninvasive neu-
romodulation, such as repetitive transcranial magnetic stimula-
tion (rTMS). This approach is attractive because it raises the
possibility of causally influencing the brain in a controlled
manner to test specific hypotheses about network dynamics.
However, questions remain about the manner in which control
is exerted in the brain (Tu et al., 2018; Pasqualetti et al., 2019)
because of limited empirical evidence supporting the role of con-
trollability in human behavior. Of particular interest for cogni-
tive neuroscience is the concept of modal controllability (MC), a
measure of the ability of a single region to drive the network sys-
tem (brain) into difficult-to-reach states potentially associated
with high cognitive performance (Pasqualetti et al., 2014). Modal
control was originally defined within engineering frameworks to
develop systematic means of adjusting input matrices repre-
senting large-scale linear time-invariant multivariable systems
(Simon and Mitter, 1968). In the present context, MC may be
defined as control that changes the modes (i.e., the eigenvalues
of the system matrix) to achieve the desired control objectives.
Defining “brain state” as the magnitude of neurophysiological
activity across brain regions, we can operationalize MC as
reflecting a region’s contribution to difficult-to-reach global ac-
tivity patterns. The functional relevance of MC may therefore
be evidenced by relationships to cognitive demand, metabolic
cost (e.g., changes in BOLD activation), or rTMS-induced be-
havioral changes.

In light of these questions, we sought to address the validity
of the controllability account by linking MC to fMRI-based brain
states and assessing the value of MC in predicting behavioral per-
formance after exogenous perturbation was used to manipulate
these states. Specifically, we examined the relationship between
MC and the behavioral benefit associated with online rTMS dur-
ing a working memory (WM) task. We chose one of the most
reliable brain patterns in fMRI-based cognitive neuroscience
research to manipulate: the increased activity in frontoparietal
areas associated with greater WM difficulty (Blumenfeld and
Ranganath, 2007). Our choice was influenced by the relatively
high estimation of MC in frontoparietal cortex (Gu et al., 2015)
and a number of computational simulations demonstrating the
capacity of MC to predict functional patterns (Betzel et al., 2016;
Muldoon et al,, 2016), although there are currently little empiri-
cal data supporting this interpretation. Further, the effects of
neuromodulation are typically observed not only in the stimu-
lated site, but also in distally connected regions (Bestmann et al.,
2004; Beynel et al., 2020). Therefore, the controllability frame-
work offers an opportunity to observe how the network proper-
ties of a single node may predict rTMS effects dependent on a
more global WM network.

We tested our empirical data against the predictions set out
by network control theory. To bridge the gap between theoretical
and observed brain states, we first investigated the relationship
between global brain activation pattern and the eigenmodes of

J. Neurosci., August 26, 2020 - 40(35):6770—6778 « 6771

the structural brain networks, from which MC is derived.
Specifically, we predicted that the activation pattern in the hard-
est task condition should align with eigenmodes representing
theoretically difficult-to-reach states. We related MC at the stim-
ulation site to the parametric increase of functional activation as
a function of WM difficulty. A higher parametric increase in ac-
tivity would suggest that additional neural resources are being
successfully recruited in the more difficult task conditions, and
that state transitions can be relatively easy to achieve. Within this
context, if MC indicates a transition into a difficult-to-reach
state, we predicted a negative relationship between MC and diffi-
culty-driven BOLD activation (i.e., as a function of WM load).
Last, if difficult state transitions can be augmented by exogenous
stimulation with excitatory rTMS to a region with high MC, then
we predicted that subjects with higher MC and lower parametric
activation at the stimulated site would show the greatest benefit
from rTMS. Such a set of findings will help validate the value of
network controllability in predicting brain states and help predict
r'TMS effects foundational to many FDA-approved treatments.

Materials and Methods

Subjects

Twenty-nine young adults (mean age 23.38 == 5.13 years; 14 females)
completed this 6-day study (Fig. 1A), approved by the Duke Medical
School Institutional Review Board (#Pro00065334). All procedures and
analyses were performed in accordance with Institutional Review Board
guidelines and regulations for experimental testing. Subjects had no his-
tory of psychiatric or neurologic disorders and were not using psychoac-
tive drugs or medications known to lower seizure threshold. Five
subjects were excluded because of incomplete imaging data (because of
excessive movement).

Experimental design
The following description outlines relevant design details and parame-
ters for our 6-day protocol; additional information can be found in
Davis et al. (2018) and Beynel et al. (2019). This study is a reanalysis of
data previously reported by Beynel et al. (2019) that is now extended to
report on controllability, including diffusion weighted imaging (DWI)
data, which were not reported on in these previous articles. During the
first visit, subjects consented to participate and were screened to make
sure they did not have any contraindications to TMS or MRI. Resting
motor threshold (RMT) was then assessed and subjects performed the
WM task. We used a modified Sternberg task in which arrays of letters
were manipulated within WM (D’Esposito et al., 1999), noted here as
the delayed-response alphabetization task (DRAT; Fig. 1B). For each
trial, letters were presented, followed by a delay period during which
subjects mentally reorganized letters into alphabetical order. A letter
with a number above it was then presented, and subjects were asked
whether (1) the probe letter was or was not in the original set; (2) the let-
ter was in the original set and the number matched the serial position of
the letter once the sequence was alphabetized; or (3) the letter was in the
original set but the number did not match the serial position of the letter
once alphabetized. These conditions are referred to as New, Valid, and
Invalid, and consisted of 20%, 40%, and 40% of the trials, respectively.
During the second visit, MRI was performed in a 3 T gradient-echo
scanner (General Electric 3.0 Tesla Sigma Excite HD short bore scanner),
equipped with an 8-channel head coil at the Duke Brain Imaging
Analysis Center. A structural MRI and a DWI scans were acquired, as
well as four blocks of functional acquisitions while subjects performed
the DRAT with four difficulty levels (Very Easy, Easy, Medium, Hard)
that were individualized based on performance from the first visit. The
anatomic MRI was acquired using a 3D TI1-weighted echo-planar
sequence (matrix =2562, TR=12ms, TE=5ms, FOV =24 cm, slices =
68, slice thickness=1.9 mm, sections =248). DWI data were collected
using a single-shot EPI sequence (TR = 1700 ms, slices = 50, thickness =
2.0 mm, FOV =256 x 256 mmz, matrix size 128 x 128, voxel size=2
mm’, b value=1000 s/mm?, diffusion-sensitizing directions = 36, total
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Study Timeline
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images=960, total scan time=>5min).

Finally, in the fMRI runs, coplanar functional A l
images were acquired using an inverse spiral |
sequence (64 x 64 matrix, TR=2000ms, Visit 1
TE=31ms, FOV =240 mm, 37 slices, 3.8 B Suen

mm slice thickness, 254 images). The total
scan time was ~1 h 40 min. fMRI analysis
was then performed (see fMRI analysis) to
define a target for the subsequent rTMS B
visits.

During Visits 3-6, active and sham rTMS
were performed with an active/placebo fig-
ure-8 coil (A/P Cool-B65) and a MagPro
X100 stimulator with MagOption (Mag-
Venture). Sham stimulation was applied
using the same coil in placebo mode, which
produces clicking sounds and somatosensory
sensation via electrical stimulation with scalp
electrodes mimicking those occurring in the
active mode, but with a substantially attenu-
ated E-field penetrating the head. The coil position over the individual-
ized fMRI target within the left medial frontal gyrus was continually
monitored through a stereotaxic neuronavigation system (Brainsight,
Rogue Research) and maintained at a high level of precision throughout the
session with real-time robotic guidance (Smart Move Robot, Advanced
Neuro Technology).

rTMS was applied “online” (i.e., while subjects performed the WM
task at three difficulty levels: Easy, Medium, Hard). Online stimulation
was chosen over offline rTMS to observe the immediate and specific
effects of rTMS rather than cumulative effects over time; and to promote
Hebbian-like plasticity through the concurrent activation of the fronto-
parietal network both endogenously through the WM task and exoge-
nously with rTMS. Although in many studies online rTMS has been
used to disrupt neurocognitive processes, online rTMS has also been
shown to enhance cognitive processes (Hamidi et al., 2008). One expla-
nation is that rTMS can entrain endogenous task-related oscillatory dy-
namics (Thut et al,, 2011; Luber and Lisanby, 2014). In our study, online
r'TMS was applied at 5Hz to entrain theta oscillations because (1) the
theta frequency has been shown to play a crucial role in WM (Roux and
Uhlhaas, 2014), since it increases with the number of items being main-
tained (Boonstra et al., 2013), and increases at the onset of a WM task,
continuing its activation until the trial’s end (Raghavachari et al., 2001);
and (2) because there is evidence that theta-band rTMS can enhance
WM (Luber et al,, 2007; Yamanaka et al,, 2010; Albouy et al, 2018;
Riddle et al., 2020). During each visit, 10 blocks of the DRAT were per-
formed (25 trials per block, 20% of those trials were New conditions and
were therefore excluded from the analysis, resulting in 20 trials of inter-
est per block): four blocks with active stimulation, and four blocks with
sham stimulation, both preceded by a block without stimulation. The
order of the stimulation type (active or sham) was presented according
to an ABBA schedule on Visits 1 and 2, and a BAAB schedule on Visits
3 and 4. Twenty-five rTMS pulses were applied either before encoding
or during the delay period of the DRAT, and this stimulation timing was
alternated from block to block. Subjects’ responses were collected on
each trial, and feedback was displayed at the end of each block to inform
the participant about their overall accuracy on that block of trials. The
protocol included four visits, each with 8 blocks with stimulation, and 20
trials of interest per block, resulting in 640 trials that were divided across
24 conditions: Valid/Invalid, Active/Sham, rTMS before the encoding/
during the delay, and Easy/Medium/Hard difficulty levels. This led to a
total of ~27 trials per condition.

RMT assessment

Cue: 3s

Delay: 5s

Figure 1.

Statistical analysis

fMRI analysis. Functional images were preprocessed using image
processing tools, including FLIRT (FMRIB’s. Linear Image Registration
Tool) and FEAT (FMRIB Expert Analysis Tool) from FMRIB’s Software
Library (FSL, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Images were corrected
for slice acquisition timing, motion, and linear trend; motion correction was
performed using FSL’s MCFLIRT, and six motion parameters estimated

3 Very Easy Easy
Probe: 4s L

Study protocol. A, Timeline of the experimental protocol. B, The DRAT, with examples of the four levels of diffi-
culty (levels were individually titrated); the easiest difficulty level was dropped for Visits 3-6.

| | | | | -

Visit 2 @ Visits 3-6 .

® Structural MRI * Online rTMS (5s @ 5 Hz, 100% RMT) ('
* MRI: DRAT with 4 = Active or electrical sham | i
difficulty levels = Real-time robotic control -

Delayed-Response
Alphabetization Task (DRAT)
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from the step were then regressed out of each functional voxel using stand-
ard linear regression. Images were then temporally smoothed with a high-
pass filter using a 190 s cutoff and normalized to the MNI stereotaxic space.
White matter and CSF signals were also removed from the data and
regressed from the functional data using the same method as the motion
parameters. Spatial filtering with a Gaussian kernel of FWHM of 6 mm
was applied. BOLD activations during the array presentation, the delay
period, and the response period were entered in a standard GLM, using
HRF-convolved trial regressors and the temporal derivatives. Since the
delay period has been associated with WM processing, the delay period
was modeled by four independent regressors (Very Easy/Easy/
Medium/Hard) to capture the whole-brain activation pattern as a func-
tion of task difficulty. To quantify the difficulty-driven state transition,
the functional modulation (FM) of task difficulty was modeled in an
additional GLM analysis by a single delay-period parametric regressor
weighted linearly by the four levels of difficulty in the DRAT (ortho-
gonalized to a nonweighted regressor for the same event), as well as its
temporal derivative. Output from this model thus reflects the paramet-
ric increase in brain activation associated with the increase in task diffi-
culty (for more conventional univariate models of these same data, see
Davis et al,, 2018 and Beynel et al., 2019).

Electric-field modeling. For rTMS targeting, the peak activation
within left medial frontal gyrus was selected in each participant, and
electric field (E-field) modeling was used to refine the optimal coil posi-
tion and orientation. The E-field was simulated using T1, T2, and DWI
images and the finite element method in the SimNIBS software package
(Thielscher et al., 2015). The models featured five compartments with
distinct electrical conductivities: skin, skull, CSF, gray matter (GM), and
white matter. The DWI information was used to generate anisotropic
conductivities for the white matter using the volume-normalized
approach. The E-field was simulated at 54 candidate coil placements: 9
positions generated by placing a 3 x 3 grid with 1 cm spacing above the
peak fMRI activation and 6 orientations per position corresponding to
30° rotation increments in a 180° semicircle. The coil position and orien-
tation showing the highest correlation between the E-field magnitude
and the fMRI activation pattern were selected as the rTMS target.
This final target was then entered into the neuronavigation system
(BrainSight, Rogue Research) and maintained at a high level of precision
throughout the session with real-time robotic guidance (SmartMove
Robot, Advanced Neuro Technology).

Structural network construction. Information on the structural con-
nections based on diffusion tractography between each pair of regions in
our data was assessed with a standard DWI processing pipeline used pre-
viously in our group. DWI data were analyzed using FSL (https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki) and MRtrix (http://mrtrix.org) software pack-
ages. Data were denoised, corrected with eddy current correction, and
bias-field corrected using MRtrix (Tournier et al, 2007) and FSL.
Constrained spherical deconvolution was used in calculating the fiber
orientation distribution. This fiber orientation distribution was used
along with the brain mask to generate whole-brain tractography.
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Relevant parameters regarding track generation were as follows: seed =
at random within mask; step size = 0.2 mm; 10 million tracts. After tracts
were generated, they were filtered using spherical-deconvolution
informed filtering of tractograms (Smith et al, 2012) to improve the
quantitative nature of the whole-brain streamline reconstructions used
here. This process utilizes an algorithm that determines whether a
streamline should be removed or not based on information obtained
from the fiber orientation distribution, which improves the selectivity of
structural connectomes by using a cost function to eliminate false-posi-
tive tracts. Tracts were SIFTed until 1 million tracts remained.
Connectomes were then generated by using FLIRT to apply a linear
registration to the atlas used in the present study (described below) to
register them to native diffusion space. Subsequent connectomes
describe the number of streamlines connecting any pair of regions
within this atlas, the summary network density measure describes the
total number of streamlines within a subject’s structural connectome.

Cortical parcellation and ROI extraction. A consistent parcellation
scheme across all subjects and all modalities (DWI, fMRI) was used.
Subjects” T1-weighted images were segmented using SPM12 (www.fil.
ion.ucl.ac.uk/spm/software/spm12/), yielding a GM and white matter
mask in the T1 native space for each subject. The entire GM was then
parcellated into 471 ROIs, each representing a network node by using a
sub-parcellated version of the Harvard-Oxford Atlas (HOA), defined
originally in MNI space. This parcellation scheme was built by trans-
forming the standard HOA of 110 anatomically defined regions. The
advantage of the standard HOA over other atlases is that the results are
easier to link to the cognitive neuroscience literature on various brain
regions than with other atlases, whereas the disadvantage is that the
ROIs could have different sizes. This issue was addressed by the sub-par-
cellation into 471 ROIs (Fornito et al., 2010), which has four important
strengths for the current study: (1) the cortical surface areas (~2cm?)
are consistent with the estimated area of maximal effect for standard
r'TMS targeting (Deng et al., 2013) (in contrast, most widely used parcel-
lations that are comprised of much larger frontal ROIs); (2) it provides
better coverage of many subcortical structures, such as the medial tem-
poral lobes known to facilitate memory functioning; (3) it produces
nearly isometric volume across all ROIs, which reduces bias in both
DWI tractography and in the estimation of BOLD-related FM; and (4) it
results in a level of dimensionality comparable to other investigations of
cortical control (Gu et al., 2015; Medaglia et al., 2018). The T1-weighted
image was then nonlinearly normalized to the ICBM152 template in
MNI space using fMRIB’s Non-linear Image Registration Tool (FNIRT,
FSL, www.fmrib.ox.ac.uk/fsl/). The inverse transformations were applied
to the HOA atlas in the MNI space, resulting in native-T1-space GM
parcellations for each subject. T1-weighted images were then coregis-
tered to native diffusion space using the subjects’ unweighted diffusion
image as a target; this transformation matrix was then applied to the GM
parcellations above, using FSL’s FLIRT linear registration tool, resulting
in a native-diffusion-space parcellation for each subject. For each subject,
the peak fMRI activation coordinates were transformed back into MNI
coordinates. The atlas ROI corresponding to the peak coordinates was
then extracted as the individualized stimulated site ROI; the same ROI
was used to define the MC values at the targeted site.

Brain states and controllability measures. We adopted a mathemati-
cal definition of controllability from Pasqualetti et al. (2014) where brain
system dynamics are modeled with a linear discrete-time and time-
invariant model as follows:

x(t+1) = Ax(t) +u(t) (1)

Here, the N-by-N weighted adjacency matrix A describes the struc-
tural connectivity between each pair of nodes (N = 471). The N-by-1 col-
umn vector x(¢) describes the brain state (i.e., functional activities in all
brain regions). The N-by-1 column vector u(t) indicates external input,
where the only non-zero entry u;(t) denotes rTMS applied at brain
region i. While modeling neural dynamics that occurs in a highly com-
plex system, such as the brain would require nonlinear modeling, a nec-
essary simplification of this approach is to use canonical linear dynamics
(Kenett et al., 2018), since the controllability of nonlinear systems is

J. Neurosci., August 26, 2020 - 40(35):6770—6778 « 6773

structurally similar to the ones of linear systems. This approach is now
commonly used (Liu et al., 2011), and the predictions of this structurally
derived framework show a strong correlation to in vivo output of
observed brain state dynamics (e.g., Kenett et al., 2018; Stiso et al., 2019).
To establish a link between actual brain state and this system dynamic
model, we may represent the brain state using the eigenmodes of the
brain network system as follows:

x= Zzll Bvi (2)

Here, v; represents the unit-length eigenvector (eigenmode) with
corresponding eigenvalue A ;, both of which are intrinsic to the structural
brain network A. 3; denotes the loadings of each eigenmode, and larger
B7 indicates greater contribution of v; to brain state x. Combining (1)
and (2), without external input, the brain state at t can be expressed as
x(t) = S°F7% A B,v;, which theoretically predicts that an eigenmode v;
with larger |A ;| would be more robust (i.e., slow-decaying) and easier to
reach, whereas another eigenmode v; with smaller |A ;| would be less ro-
bust and harder to reach (Stiso et al., 2019). In addition, a parallel inter-
pretation of the eigenmodes comes from previous work by Medaglia et
al. (2018), which suggests that easy-to-reach eigenmodes resemble possi-
ble activation patterns that are aligned to the anatomic brain network,
whereas difficult-to-reach eigenmodes resemble activation patterns that
are liberal (i.e., misaligned to the network). We offer an intuitive illustra-
tion to such interpretation by showing the spatial patterns of several
eigenmodes in one participant (see Fig. 3B).

To test whether this theoretical model predicts the influence of task
difficulty on brain states, we investigated how the brain states consist of
the eigenmodes differently because of the change in task difficulty for
each participant, according to Equation 2. Here, A, {v;}, and {A ;} are par-
ticipant-wise measurements, and {f3;} are participant- and condition-
wise measurements (see Fig. 3). To quantify the contribution of each
eigenmode state to the brain state, we scaled the loadings {3} with the
reciprocal of 2-norm of the brain state, such that >3} 82 = 1. Greater
7 indicates greater contribution of the eigenmode v; to the brain state.

The eigenmodes of the brain network are directly linked to the MC
measure (Kalman, 1964), interpreted here and elsewhere (Gu et al,
2015) as the ability of one region to steer the brain toward difficult-to-
reach states. The MC of brain region i is defined as follows:

0 = 2471(1 _ /\12)‘/%] 3)

j=1

where v;; denotes the i-th entry in A;’s corresponding eigenmode v;, that
is, the value of this eigenmode at the i-th brain region. By extension of
the Popov-Belovich-Hautus test (Lathi, 2005), the controllability of the
j-th eigenmode in region i is proportional to v;; in other words, this
eigenmode would be uncontrollable from region i if it does not contrib-
ute to the value in this region. Meanwhile, the coefficient (1 — A ]2) favors
the controllability of the respective eigenmode state with low robustness
(i.e., harder to reach). Therefore, as a composite measurement, the MC
theoretically predicts whether stimulating a brain region can move
the brain into difficult-to-reach states. Last, while baseline differences
between MC values across subjects were modest (mean MC=0.994;
SD =0.005); the rank of MC within each individual was used rather than
the raw MC values. This allowed us to: (1) remain consistent with previ-
ous investigations of MC (Gu et al., 2015), (2) control for cross-subject
noise, and (3) indicate to what extent rTMS has optimally targeted at the
difficult-to-reach state for each participant. Furthermore, a principle rea-
son for using rank instead of absolute value is that relative value (e.g., the
coordinate of a peak voxel, an ROI that ranks the highest in a certain
measure) is more helpful in determining optimal TMS target in individ-
ual subjects, and such practice is consistent with a few recent TMS stud-
ies using peak values of neuroimaging measures for individualized
targeting (Beynel et al., 2019).

In this study, since our rTMS effects were found only in the most dif-
ficult task conditions, we focused our analyses on MC. Nonetheless,
other controllability measures are often discussed in the context of
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neuroscience-based applications of network con-

trol theory. For example, average controllability A
purports to describe the capacity of a network
node to move the brain into easy-to-reach states
with a little energy, and is often discussed in the
context of resting-state-based analysis since they
have been mainly reported in the default mode
network (Gu et al, 2015). Boundary control- ﬂ?%; \
lability is purported to control the dyna- ==
mics between different networks in hierarchical
modular networks (Pasqualetti et al., 2014). This B
measure therefore describes the capacity of a
network node to integrate or segregate the infor-
mation from different networks, and would be
associated with integration of sensory-motor
areas that underlie creativity processes (Kenett et
al,, 2018) as well as into cognitive functions
(Medaglia et al., 2018). Such approaches there-
fore lie orthogonal to our principle goal relating
MC to difficulty-to-reach brain states character-
ized by increasing WM load.

Mediation analysis. Mediation analysis was
performed with structural equation modeling,
using the lavaan package (version 0.5) (Rosseel, 2012) in R version 3.3.3
(R Core Team, 2016). The standard errors in the mediation model were
estimated using robust structural equation modeling option. In addition,
age, gender, and starting set size were modeled as three independent
covariates to eliminate potential confounding effect to each of the three
variables of interest (i.e., rTMS effect, MC, and FM). To ensure the reli-
ability of the mediation analysis, we repeated the analysis on all possible
alternative mediation models, where the directions of mediation and the
mediator were reversed.

Figure 2.

Results

Modal controllability, Functional modulation, and
eigenmode analysis

DWI-based streamline counts were used to construct structural
networks for each participant, and MC values were computed
across 471 cortical sites. Figure 2A illustrates the rank of group
mean MC values for all regions across the brain (lighter warm
colors representing greater MC). While the frontal regions
stimulated in the current study (Fig. 24, inset; Fig. 4) were not
selected on the basis of their MC value, the global distribution of
MC values is nonetheless consistent with earlier investigations
based on other cortical parcellations (Gu et al., 2015; Khambhati
et al., 2018; Medaglia et al., 2018). Also consistent with Gu et al.
(2015), regions with higher MC were characterized by a lower
structural connectivity strength with the rest of the brain (r(470) =
-0.88; Fig. 20).

The current analysis focused on whole-brain evidence for the
importance of functional transitions between active brain states,
based on the modulation across levels of WM difficulty.
Targeting focused on the cortical ROI, which demonstrated the
greatest FM in WM load within each individual (for full imaging
results, see Davis et al., 2018); thus, while the group map pre-
sented below represents a general pattern across subjects, each
subject was stimulated at a unique cortical site determined by
their individual parametric map (see Fig. 4A). As such, a group
summary of the rank value based on our univariate fMRI analy-
sis revealed a typical pattern of BOLD activity associated with
increasing WM load (lighter cool colors represent greater FM;
Fig. 2B). The spatial pattern of FM is independent of the spatial
pattern of MC, as evidenced by a weak correlation between the
ranks of mean MC and mean FM across regions (r(70) = 0.11;
Fig. 2D). Such independence between MC and functional activity
further suggests the possibility that the interplay between MC,
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FM, and the behavioral rTMS effect should be highly specific to
the rTMS-targeted region.

In order to address the biological plausibility of the state
dynamic model from which MC is derived, we sought to relate
the eigenmodes of the structural network to the brain states (i.e.,
BOLD-related activity) assessed at four levels of task difficulty.
The actual brain state can be decomposed into eigenmodes,
whose loadings reflect their contribution to the brain state.
Figure 3A displays a clear trend indicating that theoretically
easy-to-reach eigenmodes contributed primarily to the brain
states. With the example eigenmodes provided in Figure 3B, this
suggests that whole-brain activation tends to follow connectivity
constraints (Medaglia et al., 2018). We then grouped the eigenm-
odes into three subspaces according to their absolute eigenvalues,
such that Subspace 1 contained the most easy-to-reach eigenmo-
des, Subspace 3 contained the most difficult-to-reach eigenmo-
des, Subspace 2 contained intermediate eigenmodes, and each
subspace contributed almost equally to the actual brain state
(~33%) (collapsed across subjects and task difficulty). A Task
Difficulty-by-Subspace repeated-measures ANOVA exhibited a
trend interaction (Task Difficulty x Subspace: Fg132 = 1.99,
p=0.07), suggesting that the activation patterns at different task
difficulty level may load onto the three subspaces to different
degrees. Intriguingly, the total contribution of Subspace 1
eigenmodes to the brain states was greater in the easiest task con-
dition (paired ¢ test for Very Easy vs Hard: ¢,y = 1.87; p=0.07),
although this was also a trend. In contrast, the total contribution
of Subspace 3 eigenmodes to the brain states was reliably greater
for the most difficult task condition (main effect of Task
Difficulty: Fz 66 = 2.94, p=0.04; paired t test for Very Easy vs
Hard: t;;) = —3.06 p=0.01; Fig. 3C). The effect of difficulty in
the most difficult-to-reach subspace was robust, as it also existed
when the eigenmodes were grouped into 4 or 5 equal subspaces
with regard to their contribution to the brain states (Fz 66 =
2.92, p=0.04; F566) = 2.75, p=0.05, respectively). These results
align with the conceptualization of MC as quantifying controll-
ability of difficult-to-reach states, since the eigenmodes, as the
constituents of MC, demonstrated differential association with
brain states in varying levels of task difficulty.

Effects of rTMS on behavior
Having characterized the spatial distribution of MC measures,
the distribution of functional states associated with WM
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Figure 4.  Stimulation sites and rTMS effect across all subjects. A, Overlap of stimulation targets for all subjects, based on
region with the highest BOLD activity during a WM localizer task. B, Bean plots represent the effects of online rTMS on WM
accuracy (percentage increase in accuracy, e.g., Active — Sham/Sham x 20), with significant rTMS effect only in the hardest
difficulty level (*t,, = 2.19, p = 0.013) (for full analysis, see Beynel et al., 2019). Within each level, tick marks represent the
range across subjects in the benefit in WM function because of TMS.

function, and the eigenmode state synthesis of these two systems,
we next sought to address the relevance of these metrics in pre-
dicting rTMS-related behavioral outcomes. To clarify the behav-
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condition improved from 49.8 * 15.5%
with sham stimulation to 53.3 = 17.5%
with active rTMS. Subsequent analyses
used a within-subject metric to describe
the percent increase in WM accuracy for
active relative to sham rTMS, hereafter
referred to as the “rTMS effect” (i.e.,
[Active rTMS Accuracy - Sham Accuracy]/
Sham Accuracy x 100); subjects in the cur-
rent study demonstrated an average per-
centage increase of 7.32% in the most
difficult condition. While the effect size
was small (Cohen’s d=0.21), the num-
ber of subjects showing performance
improvement with active rTMS is higher
in the hard condition (n=17) compared
with the easy and medium conditions
(n=10 for both easy and medium dif-
ficulties). One participant has been
excluded because their improvement
was beyond 2 SDs from the group mean.
More details on initial findings from this
dataset can be found in Beynel et al.
(2019).

Relationships between modal
controllability, functional modulation,
and behavior

To test the hypothesis that exogenous
input to a node with high MC will facili-
tate brain-state transitions to difficult-
to-reach states, and hence a greater
rTMS-induced effect, we investigated the
relationship between MC, FM, and the
benefit of rTMS in the most difficult WM
condition. Correlations examining func-
tional and structural properties at the tar-
geted stimulation location showed that
MC and fMRI-based FM at the stimu-
lated site were negatively correlated (Fig.
5A; r(22) = -0.53, p=0.01), providing evi-
dence that additional recruitment of neu-
ral resources was impeded by the local
presence of a difficult-to-reach eigen-
mode (i.e., high MC). Moreover, the aver-
age fMRI activation across these levels of
difficulty was unrelated to MC (rz) =
0.04, p=0.85), confirming that this result
was indeed specific to task difficulty.
Second, MC was significantly and posi-
tively related (r) = 0.46, p=0.03) to the
benefit from rTMS in the difficult WM
condition (Fig. 5B). This relationship was

ioral benefit associated with 5 Hz online rTMS, a repeated-measures
ANOVA conducted on WM accuracy to evaluate effects of diffi-
culty (Easy, Medium, Hard) and stimulation type (Active,
Sham) revealed a significant interaction between these two fac-
tors (Fz,44) = 3.04, p=0.05). Decomposition of this interaction
demonstrated that subjects were significantly more accurate
with active compared with sham rTMS, but only in the most
difficult task condition (Fig. 4B). Accuracy in this hardest

not present at Easy (r,) = 0.14, p=0.51) or Medium (r) =
—0.05, p=0.81) difficulty levels, confirming a selective rTMS
effect only at a difficult-to-reach cognitive state. Finally, the FM
associated with difficulty at the stimulated ROI was also signifi-
cantly related to the rTMS effect (Fig. 5C; 12,y = -0.49, p=0.02).
This result supports the theory that rTMS effects depend on
brain state at the time of stimulation (Silvanto and Pascual-
Leone, 2008), and suggests an interpretation that the benefit of
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r'TMS is stronger when the stimulated
region faces difficulty in effectively
modulating its own state.

Finally, a mediation analysis was
performed to test the hypothesis that
the MC-r'TMS relationship was medi-
ated by the FM associated with more
difficult trials (Fig. 6). This analysis
yielded a significant total effect (TMS
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significant relationships between the
predictor and mediator (TMS ~ FM:
z, = =3.36, p=0.0008) and the media-
tor and outcome variable (FM ~ MC:
7, = -2.69, p=0.007). Crucially, a sig-
nificant mediation by FM (z,;, = 2.12,
p=0.04) explained a major proportion
of the total effect (64%), resulting in a nonsignificant direct con-
tribution of the rTMS effect to MC (zo = 0.68, p=0.53). To
ensure the reliability and specificity of the mediation by FM, we
repeated the analysis on all possible alternative mediation models
(i.e., reversing the direction and order of the three principle vari-
ables in Fig. 6), where the directions of mediation and the media-
tor were changed. Standard practice in the assessment of
mediation effects is to reverse the directions of causal inference
to determine the selectivity of effect; in our data, no strong medi-
ation effects were observed among all alternative mediation
models, although a model in which MC was the predictor and
TMS effect was the outcome was the closest to reaching signifi-
cance (z,, = 1.71, p=0.058). As such, these results help to con-
firm that our observations are best explained by the model in
Figure 6, as functional activity mediating the relationship
between rTMS effect and structural controllability.

Figure 5.

ROI (see Fig. 4).

Discussion

The current study sought to assess the validity of network control
theory, and specifically the element of MC, in characterizing
whether regional control properties may predict the modulatory
effects of rTMS. In this study, rTMS has been found to improve
performance only in the most difficult condition of our task, and
the effect size was small. While this task-difficulty specificity has
already been observed in former studies (Luber et al, 2007;
Violante et al., 2017), a potential way to improve rTMS effect
size is to find which factors are associated with stronger effect.
We used fMRI and DWI to investigate the functional and struc-
tural information associated with brain-state transitions, and
r'TMS to test whether providing exogenous perturbation to a spe-
cific node could help the brain transition to difficult-to-reach
states. The notion that brain activity could be controlled by exog-
enous input to a single cortical node is still highly debated (Tu et
al., 2018; Pasqualetti et al., 2019), and only a handful of in vivo
studies have investigated its validity in human models (Medaglia
et al., 2018; Stiso et al., 2019). The present analysis sought both
to test these assumptions by examining the relationships between
empirical brain and behavioral data, as well as to use those em-
pirical relationships to clarify the expectations of what the MC
measure can predict. We discuss these results and the implica-
tions of these findings below.

At its heart, network controllability theory assumes that the
state of a system at a given time depends on the functional state
of the network, the structural links connecting the nodes, and
any additional perturbation (Ruths and Ruths, 2014). As such,

400 100 200 300 400 100 200 300 400
Modal Controllability Functional Modulation

Correlations between FM, rTMS effect, and MC. A, Relationship between MC and FM (i.e., the parametric increase in
BOLD-related activity associated with increasing WM load). B, The rTMS effect (i.e., the percentage increase in WM accuracy after
5 Hz online rTMS). €, Correlation between FM and the rTMS effect. All correlations represent values derived from the stimulated
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Figure 6. Mediation analysis investigating the capacity for fMRI activation to explain the
relationship between MC and rTMS effect. Age, gender, and baseline task performance were
controlled as confounding covariates (Cov).

given the metabolic costs, difficult-to-reach states would only be
expressed during demanding cognitive states, making it valuable
to promote these states through exogenous means. We examined
the interactions between MC, functional brain states, and behav-
ior consequences resulting from neuromodulation, and found
significant relationships between these measures. This can be
interpreted as the cost associated with transitions needed to
reach a cognitive state, which was further resolved in our single
mediation model. These results help to show that brain network
information, based on control theory, is supported by both func-
tional and neuromodulatory data, and helps support the use of a
new family of targeting approaches based on the dynamic con-
trol of global brain states.

The principle finding from this study was the observation
that MC was reliably associated with the FM of BOLD activity
associated with parametric increases in WM load (Fig. 5A), and
that the global distribution of these functional patterns aligned
well with the higher, more disordered eigenmodes (i.e., more
difficult-to-reach states; Fig. 3) as defined by the spectral eigena-
nalysis of the structural connectome. This latter finding is partic-
ularly important because it directly relates a decomposition of
the MC measure (a linear combination of the eigenmodes for a
given region) to task-related functional imaging data at the level
of an individual. As such, the clustering of task activations repre-
senting more difficult WM task conditions with eigenmodes of a
higher value (and a generally more disordered distribution across
the cortex) bears direct relevance for the inference that MC
relates some capacity of the network to “transition to difficult-
to-reach states” (Gu et al, 2015; Pasqualetti et al, 2019).
Furthermore, this finding suggests a benefit in applying more
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advanced network science measures to structural and functional
imaging data to individualize TMS targets to enhance the efficacy
of stimulation. Nonetheless, more basic graph measures, such as
node strength and overall network density, must also be consid-
ered, especially when exploring TMS targeting options in differ-
ent patient populations or age groups in which these more basic
graph measures vary systematically.

A second important finding from this study was that MC at
the stimulated site was reliably predicted by the behavioral bene-
fits caused by rTMS in the WM task. This rTMS benefit was seen
as increases in response accuracy and was only found in the most
difficult task condition (Fig. 4B). Correspondingly, the associa-
tion between MC and this performance benefit was selective only
to this difficult condition (Fig. 5B). This result, therefore, sup-
ports existing computational models of network dynamics based
on structural connectivity information, which purport to describe
the energy associated with transitioning between brain states.

Predicting the effect of brain stimulation by using brain net-
work topology is of theoretical and applied significance, and the
current results provide a mechanistic application of these princi-
ples as set forth by Pasqualetti et al. (2014). According to these
authors, the brain constitutes a controllable network that can
be moved into different states with input perturbation, such as
brain stimulation. Recent theoretical (Muldoon et al, 2016)
and empirical work (Betzel et al, 2016) addressing neuronal
control theory have focused on how the brain transitions from
one state of activation to another, and what anatomic sub-
strates facilitate these transitions (Stiso et al., 2019). Within
such a framework, controllability is the mathematical formula-
tion of how a system can move through state-space along a
desired trajectory (Gu et al., 2015). A recent TMS study pro-
vided behavioral evidence supporting the theory that the con-
trollability is a factor accounting for the influence of brain
stimulation (Medaglia et al., 2018); the authors observed that a
median split of subjects based on MC values identified subtle
performance differences in a language production task, provid-
ing some support for the conclusion that MC may influence
task-based response to rTMS. Nonetheless, the observed effects
did not supply evidence that higher MC allows the brain to more
easily traverse functional brain states, as the influence of MC was
found only in the easiest language task condition. Furthermore,
this condition did not show a significant benefit of active rTMS
over sham, and so it is difficult to draw conclusions concerning the
functional relevance of MCin that study.

Finally, we found that the core relationship between rTMS
effect and MC was significantly mediated by the FM associated
with increasing difficulty. The mediation analysis reported above
adds to this finding to suggest MC reflects not only the structural
value, but also the functional capacity for a given node to modify
the derived eigenmatrix. This result helps to advance the notion
that all three metrics examined here (the behavioral benefit from
rTMS, FM, and MC) reflect distinct, but related, constructs of
“difficulty.” In the current approach, we posited that the net-
works identified by parametric changes in functional activation
can be influenced by modulation of a single site. Following Gu et
al. (2015), we treated this influence as an eigenvalue problem,
such that regions with high MC have the greatest influence on
less persistent eigenmodes. MC would thus provide a measure of
the capacity to drive the dynamics of a network toward difficult-
to-reach configurations. This mathematical formulation helps to
explain the more basic mediation finding in that, while MC of
the network reflects the capacity for a node to shift to a new brain
state, FM reflects the degree to which regions effectively do tra-
verse such a brain state. These cooperative contributions in turn
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lead to greater performance improvements after rTMS, and pre-
sumably a successful shift in brain state. Even so, we agree with
Tu et al. (2018) that this is an interpretation at the level of regions
and may not capture multivariate interactions inherent in a
broader, and perhaps less tenable, question: is the brain control-
lable? The current analysis nonetheless seeks to ground this
interpretation by applying the control theory metrics to real
human brain data. Notably, the direction of the best-fitting
model suggested MC as the outcome and TMS effects as a pre-
dictor, whereas the mediation effect (z,,) failed to reach signifi-
cance in the reverse model (z,, = 1.71, p=0.058). Nonetheless,
given the lack of longitudinal data or postscan responses in this
study, it is difficult to build inferences on this asymmetry. Future
studies using both pre- and post-TMS neuroimaging may help to
disambiguate this causality, by assessing measures of longitudinal
change in both FM and structural connectivity, which may shift
the underlying controllability topology. Of note, the critical triad
relationships between MC, FM, and TMS effects were not pres-
ent when using the more basic measurement of network strength
(i.e., weighted degree). While strongly correlated (Fig. 2C), MC
differs from strength in that strength is uncorrelated with para-
metric activation (r = —0.035, p =0.88), and furthermore lacks a
strong theoretical basis: strength values merely represent the sum
of all weighted connections for a given node. We therefore see
MC as a refinement of the streamline values (of which strength is
a simple sum), and endeavored here to show the utility of this
particular structural network metric.

The approach used here has clear implications for the
individualization of TMS targeting, and advances targeting
approaches that have improved from scalp-based, to anatomic,
to functionally guided techniques (Herwig et al, 2001). Both
clinical and basic science targeting approaches for TMS should
consider the consequences of regional brain stimulation in
manipulating more global functional and structural networks
connected to the stimulation site (J. X. Wang and Voss, 2015;
Davis et al., 2017; W. C. Wang et al., 2018). When regional stim-
ulation is applied to models that differ only in their structural
connectivity, the resulting activity patterns differ between indi-
viduals (Jbabdi et al., 2015; Spiegler et al., 2016), suggesting that
functional responses are sensitive to subject-specific differences
in white matter structure. Computational models informed by
both forms of brain information are therefore necessary to pro-
vide realistic, individualized models of immediate TMS out-
comes. The utility of the MC value is clear: when using rTMS to
improve performance in one specific cognitive task, it is straight-
forward to derive an fMRI target from this task; however, when
it comes to clinical application, the choice of the optimal task to
use becomes more complicated. Furthermore, as task-related
fMRI activations suffer from intrasubject and intersubject vari-
ability and depend largely on task performance, using MC, based
on structural acquisition, could represent a way to derive a more
efficient TMS target for clinical applications. Our findings relat-
ing the structural and functional components of a controllable
system suggest that MC may be used as an alternative when
functional localizers for TMS are unfeasible.

In conclusion, by combining information from structural net-
work topology, whole-brain functional activity associated with a
WM task, and brain stimulation, we confirmed the validity of
network controllability by showing a strong interdependence of
these measures. This work helps to outline a clear technique for
integrating structural network topology and functional activity
to inform network-based approaches in selecting an individual-
ized specific cortical target for neurostimulation that could help
increase rTMS efficacy.
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