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Humans can rapidly encode information from faces to support social judgments and facilitate interactions with others. We
can also recall complex knowledge about those individuals, such as their social relationships with others, but the time course
of this process has not been examined in detail. This study addressed the temporal dynamics of emerging visual and social
relationship information using EEG and representational similarity analysis. Participants (female = 23, male = 10) became fa-
miliar with a 10-person social network, and were then shown faces of that network’s members while EEG was recorded. To
examine the temporal dynamics of the cognitive processes related to face perception, we compared the similarity structure of
neural pattern responses to models of visual processing, face shape similarity, person identity, and social relationships. We
found that all types of information are associated with neural patterns after a face is seen. Visual models became significant
early after image onset, and identity across a change in facial expression was uniquely associated with neural patterns at sev-
eral points throughout the time course. Additionally, a model reflecting perceived frequency of social interaction was present
beginning at ;110ms, even in the absence of an explicit task to think about the relationships among the network members.
This study highlights the speed and salience of social information relating to group dynamics that are present in the brain
during person perception.
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Significance Statement

We live our lives in social groups where complex relationships form among and around us. It is likely that some of the infor-
mation about social relationships that we observe is integral during person perception, to better help us interact in differing
situations with a variety of people. However, when exactly this information becomes relevant has been unclear. In this study,
we present evidence that information reflecting observed relationships among a social network is spontaneously represented
in whole-brain patterns shortly following presentation of a face. These results are consistent with neuroimaging studies show-
ing spontaneous spatial representation of social network characteristics, and contribute novel insights into the timing of these
neural processes.

Introduction
In a socially interconnected world, the ability to perceive and
understand complex information about other people is critical.
Humans rely heavily on faces to provide social information, and
we can make rapid judgments about the age, sex, trustworthi-
ness, and identity of another within a few hundred milliseconds
of viewing a face (Todorov et al., 2009; Young and Burton, 2018;
Dobs et al., 2019). Recently, it has been shown that information
about the social connections and network positions of those we

know is represented in a distributed set of brain regions, includ-
ing inferior parietal, superior temporal, and medial prefrontal
cortices (Parkinson et al., 2017; Morelli et al., 2018; Thornton et
al., 2019). However, this work has so far not revealed how such
representations unfold over time. Rapid encoding of information
about the social connections of others could be critical during
social interactions, as it can help us know who to trust, who
might have access to resources we need, or who might be a good
source of social support (Sutcliffe et al., 2012; Zerubavel et al.,
2015; Feldman-Hall, 2017).

Cognitive (Bruce and Young, 1986; Barry et al., 1998), com-
putational (Burton et al., 1990), and neuroanatomical (Gobbini
and Haxby, 2007) models of person identification propose a se-
quential process, whereby the visual properties of faces are first
analyzed to support recognition, followed by access to biographi-
cal details, such as social relationships, to aid identification.
Models differ in the way that knowledge of the social relation-
ships of an individual are stored and accessed. According to one
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proposal, social relationships are stored as general semantic
memory, and accessed by the activation of a person-identity
node (Burton et al., 1990). In contrast, others have suggested that
information about the associations between people are directly
linked to the representation of each individual (Barry et al., 1998;
Wiese and Schweinberger, 2011). Priming presentations of social
connections by viewing the face of an associate immediately
before viewing a face modulates the N400 ERP, indicating that
knowledge of social associations can be accessed at least within
300-400ms (Wiese and Schweinberger, 2008, 2011). These pri-
ming effects are distinct from priming because of semantic cate-
gorization (e.g., having the same occupation), and suggest a
representation of connections between people we know that is
accessible in the first few hundred milliseconds of observing
them. Determining how these social connections are represented,
how the neural basis of the process unfolds over time, and how it
interacts with the processing of individual identity, is an impor-
tant step in furthering our knowledge of the neural underpin-
nings of person identification and social cognition. If we expect
that knowledge of social relationships is stored as general seman-
tic memory, we should see patterns of neural activity associated
with these connections at;400ms that are dissociated from ear-
lier patterns of neural activity associated with identity. If, how-
ever, these social associations are more closely tied to an
individual’s identity, we should expect to see these patterns
covary with patterns of identity earlier than 400ms, around the
time that identity itself is processed.

To examine the temporal dynamics of neural activity associ-
ated with representing social relationships, we used EEG and
temporal representational similarity analysis (RSA) as partici-
pants viewed the faces of individuals from a social network.
Participants first become familiar with the individuals and
learned relationships between them in a naturalistic setting by
viewing episodes of a television show in which the members
interacted. We hypothesized that patterns of neural activity,
evoked by viewing the faces of members of the network, would
represent the connections between each member. Our data also
allowed us to reveal how the representations of social connec-
tions evolve over time, and their relationship to the visual and
nonvisual identity processing of each face.

Materials and Methods
Participants
Thirty-three right-handed adults with normal or corrected vision (10
males; age range 18-29 years; average age = 21 years; ethnicity = 47%
Asian, 5% Black/African American, 16% Hispanic/Latino/a, 26% White/
white, 5% Other) participated in this study. Thirty participants were
sought, consistent with (or beyond) the number of participants in prior
studies of temporal dynamics of face processing (Dering et al., 2011;
Negrini et al., 2017; Ambrus et al., 2019; Dobs et al., 2019), and three
more were collected because of overscheduling to ensure enough partici-
pants with high-quality data. They were recruited from the George
Mason University psychology research participation pool, flyers posted
on campus, emails, and social media posts. Participants signed a consent
form in accordance with the Declaration of Helsinki and the Human
Subjects Review Board at George Mason University and were compen-
sated for their time through money or course credit.

Task design
Behavioral task. Participants watched three episodes of NBC’s “Parks

and Recreation” (63min total; 21min each) through the video streaming

service Netflix. All subjects reported that they were naive viewers of the
episodes on a prescreening survey before participation. Through view-
ing, they became familiar with a social network consisting of 10 charac-
ters. The characters in the network are friends and coworkers with
varying levels of social closeness, as shown through the quantity and
quality of social interaction throughout the episodes.

This method of social network exposure was chosen to be realistic to
how social relationships are observed in the real world in a variety of sit-
uations. Previous studies in the authors’ laboratory used a paired associa-
tion learning task to familiarize participants with social networks, with
frequency of face image pairing indicating closer relationships (Dziura
and Thompson, 2019). Frequency of association (i.e., proximity) is
highly related to social closeness but is not necessarily the same thing
(Marsden and Campbell, 1984; Tarr et al., 2016), so this more naturalis-
tic observational method was chosen to incorporate interaction quality
as well as quantity.

After watching the show, participants filled out a survey where they
reported several relationship characteristics among the network. These
included the following: (1) how frequently each character interacted, (2)
how much they like each other, (3) how similar their personalities are,
and (4) based on all other factors, how close they are to each other.
These four questions were used to create models of perceived social rela-
tionships to include in the analysis. We expected that the final question
would yield the strongest and most relevant cue, as a measure of “close-
ness” is thought to be a strong indicator of relationship strength, encom-
passing qualities that are more complex than frequency of contact
(Marsden and Campbell, 1984). All four of these models were specific to
each individual subject, rather than a group average or objective mea-
sure, and therefore encompassed any individual variability associated
with different perceptions of relationship strength. The questions were
asked on a scale of 0 to 6 (except for the liking question, which ranged
from �6 to 6) where higher numbers indicate higher/greater relation-
ship characteristic. True interaction time for each character pair was also
collected by a researcher going through the episodes and hand-coding
the time (in seconds) that each character was in a scene with the other
character. This included group interactions, not only the time characters
directly spoke to each other one-on-one (e.g., some scenes had one char-
acter talking to several others, or a number of people all talking in
sequence). This interaction time measure reflects an objective measure
of relationship strength that is not created from subject-specific percep-
tions, and the resulting dissimilarity model tested was therefore the same
for every subject. The true interaction times of character pairs ranged
from 0 (they were never actually seen to interact through the three epi-
sodes) to 450 s (see Figs. 2, 3A).

EEG task. After the behavioral tasks, participants completed an EEG
session where they viewed images of each of the 10 characters. Stimuli

Figure 1. Experimental design. Faces were presented centrally one at a time while partici-
pants engaged in a 1-back task.
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consisted of two color images of every char-
acter, each presented a total of 96 times
across the entire session. The two images of
each character differed in facial expression
from happy or smiling with mouth open, to
neutral or mouth closed. (An exception was
made for one character because no recogniz-
able high-quality images of him smiling with
teeth were available. His happy image was
therefore smiling with mouth closed.) All
images were collected from an Internet image
search, rather than by taking screenshots of
the episodes, and were cropped to an oval
(370� 492 px) ranging from the top of the
character’s head to the chin, and including
ears if they were visible. Some hair was
included for some subjects, if it also fell
within this oval surrounding the face. The
screen background was gray (RGB=127)
with a constant white fixation dot. Each
image was presented for 800ms with a vari-
able interstimulus interval ranging from 1000
to 1400ms. Participants completed a 1-back
task, where they pressed a button after an im-
mediate repeat of an image (Fig. 1). This was
to ensure visual attention, and neural data
from the repeated images were not included
in further analysis; 8000ms rest periods were
presented after every 21 images, and a self-
paced break period was presented after 2
blocks to ensure that participants did not get
overly fatigued and had time to rest their eyes.

Data acquisition and analysis
EEG acquisition. EEG signal was

recorded with 64 active Ag/AgCl electrodes
(Brain Products actiCHamp system; http://www.brainproducts.com/)
placed on the head according to the modified 10–20 system (American
Electroencephalographic Society, 1994). Four extra channels were placed
around the eyes (two near the outer canthi of each eye and two above and
below the left eye) to monitor horizontal saccades and vertical eyeblinks. A
final electrode was placed on the nose to use as a reference. All EEG elec-
trode impedances were reduced to ,50 kX before beginning the experi-
ment, and the signals were low- and high-pass filtered online between
0.1Hz and 249Hz and digitized at 500Hz.

Data preprocessing. All EEG preprocessing was completed in
MATLAB R2017a (The MathWorks; https://www.mathworks.com/).
Initial steps were conducted using the EEGLAB and ERPLAB toolboxes
(Delorme and Makeig, 2004; Lopez-Calderon and Luck, 2014). Signals
from electrodes with a high amount of noise were removed and replaced
with interpolated data from surrounding electrodes. Data were bandpass
filtered between 0.5 and 30Hz using a noncausal Butterworth impulse
response function to remove very low and very high frequency noise. A
combination of artifact correction (using independent components anal-
ysis) and artifact rejection was conducted. Components that were (1) in-
dicative of noise and (2) correlated with EOG channels (indicative of
blinks) were selected for rejection using SASICA (Chaumon et al., 2015)
and subsequently subtracted from the data. Following this, any trials
remaining with EEG signal6100mV in any channel were removed from
the data (Sawaki et al., 2015).

Data were separated into epochs ranging from �200ms before stim-
ulus onset to 600ms after stimulus onset and averaged within conditions
(each individual face image as conditions of interest, and a separate 1-
back repeat condition that was subsequently discarded). This yielded a
single datapoint for every electrode for every time point (2ms apart)
from �200 to 600ms for each condition. Prestimulus onset data were
checked to ensure that there were no significantly.0 correlations.

RSA. RSA is used to compare between-stimulus similarity across
modalities that may be very different on the surface (Kriegeskorte et al.,

2008). In this case, averaged ERPs from 64 scalp sites are correlated
with proposed models of different types of information suspected to
be involved in face perception. Dissimilarity matrix models repre-
senting three types of information were used to this end: visual
properties, character identity, and social relationships (Fig. 2).

Models were compared with neural distance over a sliding window
of 30ms across two different facial expressions within each character
identity. The models of visual properties included distance between the
first convolutional layer (“VGG-early”) and the last convolutional layer
before the fully connected layers (“VGG-late”) of a convolutional artifi-
cial neural network trained on thousands of faces (VGG-Face) (Parkhi et
al., 2015) and the distance of faces in face shape principal components
analysis (PCA) space (“Face Shape”) (Kramer et al., 2016). We consid-
ered VGG-early as a model of early visual feature processing, while
VGG-late was considered a model of mid-to-high level visual processing.
The Face Shape model was created using Interface (Kramer et al., 2016)
by placing 82 fiducial landmarks on each face. PCA was then performed
on the set of faces, and the distance between each face in PCA space was
calculated. This model reflects low dimensional representation of face
shape, and has been used successfully as a model of face perception
(Hancock et al., 1996; Leopold et al., 2001) and the neural processing of
faces in human (Gao and Wilson, 2013) and monkey (Chang and Tsao,
2017) face-selective cortex. The early and late dissimilarity matrices cre-
ated from the VGG model were correlated across layers but not identical
(Pearson’s r= 0.44, p, 0.001), while the Face Shape dissimilarity matrix

Figure 2. Dissimilarity matrices. All matrices represent distances across a change in facial expression for each character,
where the diagonal represents the same character, rather than the same image. The first five models are identical inputs for all
subjects, while the final four show subject-specific models that were converted to distances (inverted as 7 – true response)
from their survey responses. The matrices in the figure are example models from a single subject. First row, Distance from the
early and late layer outputs of the VGG model of visual and extrastriate cortex responses; distance between principal compo-
nents in representational face space (Face Shape). Second row, Identity of the characters, with 0 on the diagonal indicating dif-
ferent images of the same characters and all other pairings as equally dissimilar; true interaction time (inverted as 700 – time)
in seconds between each character; perceived interaction frequency between characters Third row, Perceived personality simi-
larity among characters; perceived liking among characters; perceived closeness among characters.

Table 1. Social network survey measuresa

Perceived interaction frequency Liking Personality similarity

Liking 0.79 — —
Personality similarity 0.80 0.81
Closeness 0.91 0.85 0.77
aPearson correlations among the measures in the perceived social network survey. All correlations are signifi-
cant at p, 0.00001.
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was correlated with both the VGG-early model (r=0.28, p, 0.05) and
the VGG-late model (r = 0.37, p, 0.05). Character identity was
modeled as either the same (0) or different (1) across the two
images of each character (Vida et al., 2016). The social relationship
between each character was quantified using the four within-sub-
ject responses to a questionnaire administered after the video
viewing portion (interaction frequency, personality similarity, lik-
ing, and closeness). Finally, an objective social relationship model
based on the true interaction time between each character was cre-
ated. Unlike the social network survey models (which were created
from subject-specific responses), this was identical across all sub-
jects because they all watched the same episodes.

To compare the contribution of each model to EEG pattern simi-
larity during face perception, we performed partial Spearman’s cor-
relations, in which we correlated the rank-ordered distance in EEG
patterns within each 30ms sliding window from each face to the
rank-ordered distance in each model response to the same faces,
partialing out the contribution of other, related models, for each
participant separately. To supplement these analyses, we performed
variance partitioning using custom MATLAB scripts to illustrate the
unique and shared variance across the various models (Kerlinger
and Pedhazur, 1973; Peres-Neto et al., 2006; Groen et al., 2018).
Multiple rank-ordered regression analysis was performed at each
30ms window for each participant separately, with rank-ordered
distance between EEG patterns to each face first regressed onto all
eight models (three visual, one identity, and four social) to obtain a
full model-adjusted R2 time series, adjusted for bias using the for-
mula of Zar (1999). Subsequent regressions comprised of different
combinations of models (e.g., visual models and the identity model
vs identity alone) were performed, with the adjusted R2 from these
models used to estimate unique and shared variance, using the parti-
tioning procedures described by Legendre (2019).

Statistical analysis
The CoSMoMVPA toolbox was used for group-level statistical analysis
of RSA model comparison analyses. Individual subject-level partial cor-
relation model results were entered into a group-level Monte Carlo ran-
dom effects estimation (10,000 iterations), and multiple comparisons
were corrected for using threshold-free cluster enhancement (TFCE)
with a temporal neighborhood (Smith and Nichols, 2009). p values were
computed by dividing (r1 1)/(niter1 1), where r denotes the number
of times that the original data were less than the null (North et al., 2002).
Models were considered significantly associated with neural patterns
overall if the test returned a corrected p value, 0.05, and individual
time windows were considered significant at a corrected value of
z. 1.65.

Results
Survey results
The social network survey yielded pairwise measures of per-
ceived interaction frequency, liking, personality similarity, and
closeness. All measures were significantly correlated with each
other (Table 1). Through these measures, weighted networks
were created for each subject with varying degrees of relationship
strength among members. Every character was connected to ev-
ery other character, as they are all presumed to know each other.
However, within the three episodes, some characters interact
much more often than others (Fig. 3A), and relationships are
therefore shown to develop more strongly among some members
compared with others. The time in seconds that each character
spent interacting across the three episodes ranged from 0 to 450
and yielded a network (Fig. 3C) with density of 63.2 and eigen-
vector centralization index of 79%. Participants were highly

Figure 3. Social network character interaction information. A, Histogram represents the distribution of times the characters spent interacting. B, Correlation between the true time characters
spent interacting and the group average perceived frequency of interaction. C, Network map using true interaction time as connection weight. D, Network map using the group average per-
ceived interaction frequency rating as connection weight.
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accurate at perceiving these interactions,
as the network gathered from the indi-
vidual survey responses of interaction
frequency was highly correlated with
the true interaction time (r= 0.87,
p, 0.001; Fig. 3B). This network ranged
on average from 0.6–5.6 (scale of 0–6),
with a density of 2.2 and eigenvector
centralization index of 32%.

ERPs
As all EEG data were collected in
response to face stimuli, we did not con-
duct any significance tests relative to a
nonface control. However, the N170
face effect has been well documented
(Bentin et al., 1996; Rossion, 2014), and
we therefore expected to see large nega-
tive deflections at ;150-200ms for our
stimuli. We were also particularly inter-
ested in the time at;100ms, important
for visual perception and potentially
sensitive to faces (Liu et al., 2002;
Dering et al., 2011; Colombatto and
McCarthy, 2017) and 250ms, another
time period linked to differences in face
perception (Huang et al., 2017). Figure
4 shows example ERP data averaged
across the entire group. At a temporo-
parietal electrode where we might
expect to see face-relevant activity, there
are characteristic positive and negative
deflections at ;100 and 170ms, respec-
tively (Fig. 4B). These images also show
minor differences in the three wave-
forms for each chosen face stimulus,
which suggests that there are potential
meaningful differences in the data related
to each individual face. The subject-spe-
cific waveforms from these data were subsequently used in RSA
models to examine the representational relationships among the
faces.

RSAmodel comparison
As there were multiple models representing different aspects of
visual processing, we first conducted a correlation analysis to
determine whether any or all of the visual models contributed
unique information to EEG patterns. Partial correlation analyses
with EEG pattern similarity were conducted for each of the
VGG-early layer, VGG-late layer, and the Face Shape model,
controlling for each of the other visual models. As there were
also multiple models representing different aspects of social con-
nection, we conducted similar analyses to determine whether
any or all of the social models contributed unique information to
the EEG patterns. For this, partial correlation analyses with EEG
pattern similarity were conducted for each of the models result-
ing from the four social network survey questions. The first of
these analyses only controlled for the three visual models, and

the second controlled for the three visual models and each of the
other social survey models. We hypothesized that the closeness
model would be significant above and beyond the other three
models, as this is thought to be a strong indicator of relationship
strength, encompassing a number of underlying qualities, such
as frequency of contact, liking, and similarity (Marsden and
Campbell, 1984; Tarr et al., 2016).

All three visual models made unique contributions to the
similarity of patterns of EEG responses to the different faces
(Fig. 5A). Dissimilarity in the output of each of the visual models
to each face was significantly correlated with EEG pattern simi-
larity to each face. The VGG-early model showed the earliest sig-
nificant correlation with EEG pattern similarity (64-162, 198-
220ms), consistent with this model representing early visual
processing. In contrast, the VGG-late model, a model of mid-to-
high level vision, showed significant correlation for much of the
first 500ms of EEG responses (80-122, 128-178, 230-238, 276-
348, 364-410, 492-502ms). The Face Shape model showed
unique correlation with EEG pattern similarity at ;100ms after
face onset (112-130ms). The significance of all three models sug-
gests that each reflects slightly different properties of visual face
perception.

Figure 4. ERP data output. Example ERP data from an image of three different characters in the network, averaged across
all subjects. A, The 64-channel scalp maps at three times thought to be relevant to face processing (100, 170, and 250 ms). B,
Waveform images from a right temporoparietal electrode.
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We observed that cross-expression EEG pattern similarity to
the faces was significantly correlated with the identity model af-
ter controlling for the three visual models. This model showed a
sustained association from before 100ms until after 200ms
(66–228 ms) following face onset (Fig. 5B). We also observed sig-
nificant correlations between each of the four social connection
models and EEG pattern similarity in the first 100–200ms
(Closeness: 114–140ms; Frequency: 106–220ms; Personality:
64–72, 102–142ms; Liking: 68–80, 114–218ms) following face
onset, after controlling for the three visual models (Fig. 5C). All
four social connection models showed very similar time courses
of association with EEG pattern similarity, consistent with the
high correlation between each of the social models. When we
examined the unique contribution of each of the social connec-
tion models, controlling each of the three other social models as
well as visual information, we observed that only the model rep-
resenting the perceived frequency of interaction contributed
unique variance in the pattern of EEG responses to the faces
(188–200ms) (Fig. 5D). This was contrary to our hypothesis that
the social closeness model would be the strongest, and indicates
that observed quantity time spent together is a particularly im-
portant social signal. We also ran partial correlations to deter-
mine whether this model was significantly different from the
true interaction time model, and it was not, suggesting that indi-
vidual perception of social interactions is actually quite accurate
(true interaction time controlling for perceived interaction

frequency p= 0.064/perceived interaction frequency controlling
for true interaction time p=0.13).

To illustrate the relative contribution and overlap of different
models to the variance in EEG pattern similarity, we performed a
variance partitioning analysis. A full model (consisting of all
three visual models, the identity model, and the four social con-
nection models) on average explained a bias-adjusted maximum
of ;11%–12% of the variance in EEG pattern similarity (Fig.
6A–C), peaking from 100 to 200ms following face onset. Much
of the explained variance in the similarity of EEG patterns in this
peak came from the visual models (Fig. 6A). Overlap between
the visual models and the identity model was also observed in
the first 100-200ms (Fig. 6A), with a small degree of overlap
between the visual models and the social connection models also
observed in the same period (Fig. 6B). Consistent with what was
found with the partial correlation analyses of the social connec-
tion models, we observed that all four models showed over-
lapping contributions to explained variance in EEG pattern
similarity at ;100ms after face onset, with a small peak in the
unique contribution of the perceived frequency of interaction
model at;200ms (Fig. 6C).

The above analyses show that both identity and social con-
nection representations contribute to the similarity of patterns of
EEG responses to faces in the first 200ms following face onset,
above and beyond the contribution of visual information. To

Figure 5. Model comparisons. Time course of model correlations with EEG pattern similarity to faces from�200 to 600 ms after stimulus onset, controlling for other models. Top, Mean par-
tial correlation, averaged across participants. Bottom, Time course of each significant cluster (TFCE-corrected p, 0.05). A, Mean partial correlations with EEG pattern similarity for VGG-early,
VGG-late, and Face Shape models, controlling for the other visual models. B, Mean partial correlation with EEG pattern similarity for the identity model, controlling for the three visual models.
C, Mean partial correlation with EEG pattern similarity for each of the four social connection models, controlling for the three visual models. D, Mean partial correlations with EEG pattern simi-
larity for each of the four social connection models, controlling for visual models and the three other social models.
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further disentangle the relationship between identity and social
connection representations, we performed additional partial cor-
relation analyses that examined the unique contribution of each
model to EEG pattern similarity. Significant correlation between
the identity model and EEG responses, controlling for visual
models and perceived interaction frequency, was observed (156-
188ms) following face onset (Fig. 7A). Additionally, perceived
interaction frequency was significantly correlated with EEG
responses, after controlling for visual and identity models, for a
brief period (116–126 ms). Variance partitioning analysis
revealed shared variance between identity and perceived interac-
tion frequency immediately before this time (;100ms) when
shared variance with visual models was not controlled for (Fig.
7B). When variance explained by visual models was included in
the analysis, the shared variance between identity and perceived
interaction frequency was diminished, indicating the importance
of visual information during this time period (Fig. 7C).

Discussion
This study examined the neural timing of the representation of
familiar faces who were part of the same social network.
Consistent with previous EEG/MEG research (Vida et al., 2016;
Ambrus et al., 2019; Dobs et al., 2019), visual and identity infor-
mation was present in neural patterns across the whole brain

after image presentation. We also found that information reflect-
ing social connections is uniquely present in these whole-brain
patterns of EEG responses. Our data indicate that social informa-
tion content is actually reflected in neural patterns very early af-
ter a face is seen, around the same time as patterns of visual
information. Unique representations of identity are also present
in the patterns of EEG responses, at this early time point and af-
ter the early representations of social information. A more direct
comparison of these two types of information suggest that the
representations of social connections that a person has are closely
tied to that person’s identity, particularly in neural responses at
;100–200ms after face onset.

Priming of a face by known associates of an individual has
been previously been reported to modulate the N400 ERP
(Wiese and Schweinberger, 2008, 2011). Our data suggest that
neural representations of associations between individuals who
belong to the same social network are encoded as early as
;100ms after first viewing the face. The speed at which this

Figure 6. Model variance partitioning. Time course of variance (adjusted R2) of EEG pat-
tern similarity explained by all models (Full Model), and the shared and unique variance of
reduced models. A, Time course of variance of EEG pattern similarity explained by visual
models, identity model, and the intersection of visual and identity models. B, Time course of
variance of EEG pattern similarity explained by visual models, social models, and the intersec-
tion of visual and social models. C, Time course of variance of EEG pattern similarity
explained by the four different social models, and the sum of all intersections of the four
social models. Figure 7. Identity and frequency model correlations and variance partitioning. A, Time

course of mean partial correlation with EEG pattern similarity (top) and significant (TFCE-cor-
rected p, 0.05) clusters (bottom) for the identity model, controlling for visual and per-
ceived interaction frequency models, and the perceived interaction frequency model,
controlling for visual and identity models. B, Variance of EEG pattern similarity explained by
the identity model, perceived interaction model, and their intersection. C, Variance of EEG
pattern similarity explained by the models in B plus the variance shared between these and
the visual models.
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process happens has implications for a number of potential
behaviors. The more quickly we understand the purpose of
another’s actions, the better able we are to react immediately in
uncertain or dangerous situations. A recent study indicated that
individual characteristics of a face, such as gender and age infor-
mation, is encoded early in the neural response to faces, and that
familiarity of faces boosts these representations even before
100ms, indicating that prior conceptual knowledge about a per-
son can affect initial visual processing of that person (Dobs et al.,
2019). It has also been shown that information acquired from
faces can give near-instantaneous cues toward conspecific threats
(Öhman, 1986). Negative emotions present in faces have been
linked to increased early visual attention at ;120ms, similar in
timing to neural responses to images of snakes, which are
thought to be evolutionarily relevant (Langeslag and Van Strien,
2018). Social information, such as trustworthiness, is also auto-
matically tracked when a face is seen, even in the absence of an
explicit judgment task, and these traits may be fully processed by
100ms (Willis and Todorov, 2006; Engell et al., 2007; Todorov et
al., 2009). Our results show not only that the social information
gathered from faces includes representations of connections
between people, but that this process happens in concert with
visual perception, and nearly at the same time as unique repre-
sentations of identity. Because of how rapidly these patterns
occur, it could suggest that this type of social information con-
tributes to the process of face recognition and person identity
processing. Similar to knowledge (or perceptions) about trust-
worthiness, knowledge about social associations may be able to
aid in rapid judgment processes. For example, if we understand
the connections between people in social groups, we can more
easily trust or rely on critical information that has been passed
among certain group members compared with others.

Furthermore, these data suggest that social connections are
not stored only as general semantic memory that is accessed fol-
lowing the initial activation of a person-identity node representa-
tion, but instead might contribute directly to the representation
of that individual identity. If these connections were explicitly
recalled from memory after the activation of a person-identity
node, we would have expected to see associated patterns of neu-
ral activity later in the EEG time course, following patterns of
identity (Wiese and Schweinberger, 2008, 2011). Instead, we find
evidence of early neural representation of information about the
social connections of a face, even as representations of identity
are unfolding in neural activity. These data, as well as that from
studies, such as Dobs et al. (2019), suggest that, during an initial
sweep of neural activity, a range of social information associated
with an individual face is activated. A recent fMRI study showing
that different face patches encode distinct identity traits, and that
the fusiform face area encodes a number of social traits, also
support these EEG/MEG results (Tsantini et al., 2020). This in-
formation appears to then converge into an integrated represen-
tation of identity. Importantly, the neural patterns we observed
that were related to information about the social networks of dif-
ferent faces were elicited without explicit directions to think
about the identities or social connections among the characters.
This strengthens evidence from previous studies that show spon-
taneous neural coding of network characteristics within partici-
pants’ own social networks (Parkinson et al., 2017). The social

functional theory of face processing posits that attention is natu-
rally allocated to the most relevant cues, which in the case of the
human perceptual system, includes social information (Adams et
al., 2017). This would suggest that these cues about social con-
nections among people are indeed highly relevant to encode.

The divergence between the interaction frequency models
and other measures of social relationships could reflect a differ-
ence between quantity (time spent interacting among people)
and quality (how the people actually feel about those interac-
tions). Our data indicate that perceived interaction frequency is
uniquely present both when compared with the other measures
of social relationships and when compared with other nonsocial
models of face information. This might be a more stable and
therefore reliable cue of observed relationships, as opposed to
other measures, which could vary in definition among subjects.
It may be difficult to accurately observe “closeness” among rela-
tionships where a person is not actually a partner and cannot
directly ask either of the partners. However, the social network
learning task was brief compared with observations of social
interactions that people might generally have among groups in
the real world. Social network research suggests that there is
likely a difference between personally relevant social connection
information (e.g., the relationships among kin or close friends)
and nonpersonal social connection information (e.g., these rela-
tionships among acquaintances or even friends of friends) above
and beyond mere stimulus familiarity (Gobbini et al., 2004;
Krienen et al., 2010; Keyes and Zalicks, 2016; Wlodarski and
Dunbar, 2016; Thornton and Mitchell, 2017; Wiese et al., 2019).
With either more observation time, or more personal relevance
to the groups observed, the other social relationship measures
may prove to be as strong or stronger than mere observed inter-
action frequency. This may also boost the representations of
identity, as previous studies have found longer significant iden-
tity associations, even after controlling for other types of infor-
mation (Ambrus et al., 2019; Dobs et al., 2019; Wiese et al.,
2019). Further research is needed to examine the differences
between neural representations of quantity time observed (famil-
iarity) and potentially more meaningful qualities of a relationship
in the context of larger interconnected social groups.

Different types of visual information are represented by the
first 100ms after face images are presented. The differences
between the VGG and Face Shape models might reflect the more
local processing of visual features, whereas the PCA space model
reflects the contribution of shape features, including global
shape. The early neural representation of the visual similarity of
faces is consistent with prior literature showing MEG and
EEG responses to face stimuli at this time (Seeck et al., 1997;
Schendan et al., 1998; Liu et al., 2002). Other recent work has
highlighted the role of surface texture on the neural representa-
tion of face identity (Nemrodov et al., 2018, 2019). Surface fea-
tures and invariant shape properties might be expected to
contribute to (dis)similarity in low-level models and/or face
space (Johnston et al., 1997), although clearly these models do
not capture the entirety of early representations of face identity.

A significant part of a person’s identity relates to social con-
nections we form among others in groups. People often self-
select into different groups or use group categorizations to form
their own identities (Amiot and Aubin, 2013), and our identity is
in turn often shaped by the people with whom we surround our-
selves (Van Veelen et al., 2013; Vivona, 2013; Guo and Li, 2016).
How these in-group connections interact with each other and
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relate to the individual identities that make up the group, as well
as how they are learned and represented by those outside the
group, is important to understand for people living in a social
world.
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