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Information-Limiting Correlations in Large Neural Populations
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Understanding the neural code requires understanding how populations of neurons code information. Theoretical models predict that
information may be limited by correlated noise in large neural populations. Nevertheless, analyses based on tens of neurons have failed
to find evidence of saturation. Moreover, some studies have shown that noise correlations can be very small, and therefore may not affect
information coding. To determine whether information-limiting correlations exist, we implanted eight Utah arrays in prefrontal cortex
(PFC; area 46) of two male macaque monkeys, recording �500 neurons simultaneously. We estimated information in PFC about saccades
as a function of ensemble size. Noise correlations were, on average, small (�10 �3). However, information scaled strongly sublinearly
with ensemble size. After shuffling trials, destroying noise correlations, information was a linear function of ensemble size. Thus, we
provide evidence for the existence of information-limiting noise correlations in large populations of PFC neurons.
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Introduction
Understanding information coding in the brain has long been
one of the goals of systems neurophysiology (Adrian, 1928; Bull-
ock, 1959; Perkel and Bullock, 1969; Rieke et al., 1997). Much of
our knowledge about coding comes from single-neuron studies.
However, it is clear that labeled line codes, feature detectors, and
other properties of single cells cannot account for perception
(Paradiso, 1988), decision making (Beck et al., 2008), or motor
control (Sparks et al., 1976; Georgopoulos et al., 1986; Lee et al.,
1988). Therefore, to understand the neural code we need to un-
derstand the population code.

Theoretical and experimental studies on population coding
have often focused on correlations between neurons, specifically
noise correlations (Gawne and Richmond, 1993), and their ef-

fects on information coding (Averbeck and Lee, 2004; Kohn and
Smith, 2005; Averbeck et al., 2006a; Cohen and Kohn, 2011;
Kohn et al., 2016). Some empirical studies have found correlation
coefficients around 0.2 in visual cortex and theoretical studies
have shown how these correlations can limit information in large
populations of neurons (Zohary et al., 1994; Abbott and Dayan,
1999; Kohn and Smith, 2005). However, another line of research
has shown that correlations in populations of cortical neurons,
under some conditions, can be around 0.01 (Averbeck and Lee,
2003; Ecker et al., 2010) or even 0 (Renart et al., 2010). Correla-
tions of this magnitude may be too small to have a substantial
effect on information coding. However, theoretical work has
shown that even small correlations can limit information in large
populations (Moreno-Bote et al., 2014). Information-limiting
correlations can be hard to measure, as they can be mixed within
stronger, non-information-limiting correlations (Moreno-Bote
et al., 2014). Therefore, it is unclear whether the small correla-
tions measured in some systems limit information.

Measuring correlations alone does not show whether they im-
pact information coding, because it is the relation between aver-
age population activity and the structure of the noise correlations
that affects information. Noise correlations have been shown to
increase (Romo et al., 2003; Zavitz et al., 2019), decrease (Chen et
al., 2015; Graf and Andersen, 2015), or have minimal effect
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Significance Statement

Recent theoretical work has shown that even small correlations can limit information if they are “differential correlations,” which
are difficult to measure directly. However, they can be detected through decoding analyses on recordings from a large number of
neurons over a large number of trials. We have achieved both by collecting neural activity in dorsal-lateral prefrontal cortex of
macaques using eight microelectrode arrays (768 electrodes), from which we were able to compute accurate information esti-
mates. We show, for the first time, strong evidence for information-limiting correlations. Despite pairwise correlations being
small (on the order of 10 �3), they affect information coding in populations on the order of 100 s of neurons.
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(Averbeck and Lee, 2003, 2006; Averbeck et al., 2003) on infor-
mation coding. Across these studies, measured effects have been
modest, and they were estimated in small ensembles of at most
10 s of neurons. Theoretical work has suggested that noise corre-
lations can lead to information saturation in large populations
(Zohary et al., 1994; Abbott and Dayan, 1999). Also, populations
of 100 s of neurons would be required to see an effect of noise

correlations on information coding (Sompolinsky et al., 2001;
Shamir and Sompolinsky, 2004). They have also shown that the
impact of correlated noise depends specifically on the presence of
information-limiting correlations (Moreno-Bote et al., 2014;
Kanitscheider et al., 2015a). For instance, in a population of com-
pletely independent, homogeneous neurons, information scales
linearly with the number of neurons. However, the presence of

Figure 1. Task and recording sites. A, Schematic of the saccade task. The animals were required to fixate centrally and after a variable fixation time the fixation spot was toggled off at the same
time a target was presented either to the left or right. The animals then made a saccade toward the target and were required to hold the target for 500 ms to successfully complete a trial. Stochastic
reward ( p � 0.7) was delivered for correct trials. B, Location of the 8 microelectrode arrays on the prefrontal cortex, surrounding the principal sulcus. Each array had 96 electrodes in a 10 � 10
arrangement. Numbers on the gray squares are an example of categorical distance, from the array located ventrolateral to the caudal end of the principal sulcus of the left hemisphere (labeled 0).
PS, principal sulcus; Arc, arcuate sulcus; CS, central sulcus.

Figure 2. Neural responses. A, Raster plots of two example single cells with saccade direction selective activity. Each row of blue ticks represents the spikes during a trial. Red dots along each line
represent trial start, cue onset, reward time and end of trial. Trials are aligned to cue onset and sorted by saccade direction. B, Venn diagrams illustrating the proportion of units responsive to the task.
Blue circles represent neurons that significantly changed their activity between the fixation and the saccade and holding epochs of the task, tagged as “Task Responsive” (ANOVA, epoch wide firing
rate, p � 0.05). Red circles represent units with a significant effect of saccade direction at any point during the saccade and hold epoch (ANOVA, 300 ms sliding window, p � 0.05). White circles
indicate the total number of neurons recorded in each session (two sessions from each animal, Monkey W and Monkey V). C, Fraction of neurons responsive to saccade direction during trial execution
at each array location. Spike counts from a 100 ms bin moving in 10 ms steps were used as dependent variable for an ANOVA with “direction” as factor. Results were pooled across hemispheres. Array
numbers in legend correspond to those shown in Figure 1B. Plots show means � SEM across the four sessions. D, Effect magnitude during trial execution measured as the negative logarithm of the
p-value calculated from the ANOVAs. Same conventions as in C.
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information-limiting correlations limits the amount of informa-
tion that the population can encode, because these correlations
cannot be averaged out by any decoding mechanism, leading to
sub-linear scaling with population size.

We implanted eight Utah arrays in area 46 of macaque pre-
frontal cortex (PFC), bilaterally. We were able to record from up
to 828 neurons simultaneously, which allowed us to estimate
information in the regime in which theoretical studies have sug-
gested that correlations should impact information. Information
was estimated using a simple binary task because accurate infor-
mation estimates require a large number of trials per condition
(Averbeck, 2009), and information metrics that assess the impact
of noise correlations are only defined for binary decisions (Arndt,
2001), or locally in the case of Fisher information for a continu-
ous variable (Kay, 1993). In addition, PFC neurons respond well
to eye movements (Averbeck et al., 2006b; Seo et al., 2012) and it
contains many neurons that have poly-synaptic oculomotor pro-
jections (Moschovakis et al., 2004). Therefore, a large fraction of
neurons was active during the task.

Materials and Methods
Procedures. All experimental procedures were performed in accordance
with the ILAR Guide for the Care and Use of Laboratory Animals under
a protocol approved by the NIMH Animal Care and Use Committee.
Two male monkeys (Macaca mulatta; Monkey W: 6.7 kg, age 4.5 y; Mon-
key V: 7.3 kg, age 5 y) were used as subjects in this study. All analyses were
performed using custom-made scripts for MATLAB (The MathWorks).

Task. Monkeys were trained to perform left or right saccadic eye move-
ments. The animals were comfortably seated in front of a computer
screen. Each trial started with the presentation of a fixation dot on the
center of the screen that the monkeys were required to fixate. After a
variable time (400 – 800 ms) had elapsed, the fixation dot was toggled
off and a target (white square, 2° � 2° side) was presented either to the
left or right of the fixation point. The monkeys had to make a saccade

toward the cue and hold for 500 ms. Seventy percent of the correctly
performed trials were rewarded stochastically (see Fig. 1A) with a
drop of juice (daily total 175–225 mL). Typically, monkeys performed
�1000 correct trials in a recording session. All behavioral parameters
were controlled using the open source MonkeyLogic software
(http://www.brown.edu/Research/monkeylogic/).

Data acquisition and preprocessing. Microelectrode arrays (BlackRock
Microsystems) were surgically implanted over the PFC surrounding the
principal sulcus (see Fig. 1B). Four 96-electrode (10 � 10 layout) arrays
were implanted on each hemisphere. Details of the surgery and implant
design have been described previously (Mitz et al., 2017). Briefly, a single
bone flap was temporarily removed from the skull to expose the PFC, and
then the dura mater was cut open to insert the electrode arrays into the
cortical parenchyma. The dura mater was then sutured, and the bone flap
sewn back into place with absorbable suture, thus protecting the brain
and the implanted arrays. In parallel, a custom-designed connector
holder, 3D-printed using biocompatible material, was implanted onto
the posterior portion of the skull.

Recordings were made using the Grapevine System (Ripple). Two
neural interface processors (NIPs) made up the recording system, one
NIP (384 channels each) was connected to the 4 multielectrode arrays of
each hemisphere. Behavioral codes from MonkeyLogic and eye tracking
signals were split and sent to each Ripple box. The raw extracellular signal
was high-pass filtered (1 kHz cutoff) and digitized (30 kHz) to acquire
single unit activity. Spikes were detected online and the waveforms (snip-
pets) were stored using the Trellis package (Grapevine). Single units were
manually sorted offline.

We collected data in four recording sessions (two sessions per animal).
ANOVAs were applied to the single-unit data to assess task responsive-
ness (main effect of task epoch: fixation period vs saccade and hold
period) and saccade direction selectivity (sliding window 300 ms, 20 ms
steps, saccade and hold period, main effect saccade direction). Sepa-
rately, spike-train vectors with a 1 ms resolution were built on a trial-by-
trial basis for each sorted unit. Spike trains were aligned and trimmed to
span from 0 to 600 ms after cue onset.

Figure 3. Noise correlations. A, Distribution of pairwise correlation coefficients. All possible pairs of simultaneously recorded neurons are included (n � 902659), and all recording sessions were
pooled. B, Distribution of pairwise correlation coefficients including only same-array pairs of neurons (n � 125,552). All recording sessions were pooled. C, Noise correlations as a function of signal
correlations. For individual sessions, the coefficient (mean � SD) was 0.036 � 0.017. Across all sessions, r � 0.02669 ( p � 2.57 � 10 �141). All correlations are Pearson coefficients. D, Scree plots
from an eigenvalue decomposition of the noise covariance matrices illustrating the cumulative percentage of variance explained as a function of the number of principal components. The inset is a
close up of the first 20 principal components. Vertical solid and dotted lines indicate the total number of components for each curve. E, Average correlation coefficient split by categorical-distance
for each animal (V, W) and session (1, 2) separately. Categorical distance 0 indicates that the two units were recorded on the same multielectrode array, 1 indicates units were recorded in adjacent
arrays, and so on. For interhemispheric distances, 5 indicates units recorded in location-matching arrays, 6 indicate units in adjacent to location-matching arrays, etc. (see example in Fig. 1B).
Asterisks indicate a significant difference with respect to pairs recorded in the same array (U test, p � 0.05).
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Comparison of covariance. To compare two covariance matrices, we
used S statistics (Garcia, 2012). Briefly, the S statistics index the overall
difference (S1 � S2 	 S3) between two covariance matrices (A and B) by
estimating the difference in orientation (S2) and shape (S3) of the hyper-
ellipses specified by the matrices. The estimates are based on the projec-
tion of the covariance matrix A onto the eigenvectors of the covariance
matrix B, thus reflecting the amount of shared variance and the angle
between corresponding eigenvectors. The index takes values ranging
from 0, when the two samples have identical covariance, to 8 in the
extreme case in which all the variance of both samples is explained by
only one eigenvector, and the eigenvector sets of matrices A and B are
orthogonal to each other.

Decoding analysis. We used a support vector machine (SVM; Matlab
statistics toolbox) to decode saccade direction from the neural data. We
regularized the SVM by decreasing the value of the soft margin violation
penalty coefficient, thus allowing more margin violations, until the de-
coding accuracy of a test set started to decrease, and then kept the previ-
ous value. For cross-validation, we split the data into three subsets of
randomly selected trials: (1) A training set (90% of the trials) was used
to train the SVM, (2) a testing subset (5% of the trials) was used for

regularization, and (3) a reporting subset
(5% of the trials) was used to make predic-
tions and measure information (see below).
We used 20 different splits for cross-
validation.

We tested three different kernels: linear,
quadratic polynomial, and radial basis func-
tion. We observed that the quadratic polyno-
mial yielded slightly higher information values
(see Fig. 4), which resulted in a significant in-
crease (z-test, p � 0.001) of saturation values
(Eq. 3). Hence, we report results obtained us-
ing a quadratic polynomial kernel.

Information measure. We used the squared
value of the discriminability index d
 as a mea-
sure of information. To calculate d 2, we gener-
ated distributions of the values of the SVM
scores (distance to the boundary) separately
for each saccade direction. Then, we fit a
Gaussian function to each distribution (least
squares). The estimated mean and SD of each
Gaussian (�, �) were used to calculate, using
the error function (erf in Matlab), the proba-
bility of decoding correctly any given trial ( P).
In other words, the fraction of the area under
the curve on the same side as the � parameter
with respect to the decision boundary, aver-
aged for the two directions. We then calculated
d 2 using the following equation:

d2 � �2�2erf�1�2 � 2P��2 (1)

where erf � 1 is the inverse of the complemen-
tary error function (Averbeck and Lee, 2006).
We also computed d 2 using the difference in
the means of the two distributions, and a
pooled estimate of their SD, with the following
equation:

d2 � ��2 � �1

�1,2
� 2

(2)

When we computed d 2 with a pooled estimate
of the SD, information also saturated. How-
ever, the values of d2 from Equation 1 were
larger. In addition, it was frequently the case
that the SDs of the two Gaussians were not the
same. Therefore, we adopted the numerical
technique as it was more accurate.

Projection of information to a population of
infinite size. We estimated the maximum

amount of information in an ensemble of infinite size by using the d 2

values as a function of ensemble size to fit the saturating function
(Zohary et al., 1994; Abbott and Dayan, 1999) as follows:

d2 �
bS

a � S
(3)

where S is the ensemble size, b is the asymptotic information, and a is the
saturation rate. Furthermore, if � is a fraction of the asymptotic infor-
mation (� � d�S�2/b), then, the ensemble size needed to encode a given
� is given by the following:

S� �
a�

1 � �
(4)

Results
Representation of saccade direction in area 46 neural activity
Previous studies of information scaling and correlated activity
have been largely theoretical with few exceptions reporting re-

Figure 4. Comparison of different SVM kernels. Information measures obtained using three different kernels for the SVM
classifier: linear and quadratic polynomials, and radial basis function (RBF). Decoding analyses for d 2 estimations as a function of
ensemble size (number of neurons) were performed for each animal/session and using both unshuffled data and shuffled data.
n � 500 ensembles of each size randomly drawn from the full recorded population.
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cordings of small populations, the largest
in the range of �50 neurons. To address
how information scales with ensemble
size and the impact of correlated activity
in large populations of neurons, we
trained 2 male macaques to perform a sac-
cade direction task (Fig. 1A). The animals
were required to acquire a fixation point
at the center of the computer screen. After
a variable time (400 – 800 ms) a target was
presented either to the left or right of the
fixation point. Then, they had to make a
saccade toward the target and hold for 500
ms. While the monkeys performed this
task, we recorded the extracellular activity
of neural populations in the prefrontal
cortex (PFC area 46). We were able to si-
multaneously record between 510 and 828
units using 8 microelectrode arrays (Fig.
1B). Across 4 sessions, two from each an-
imal, we recorded from 902659 pairs of
neurons. The choice of a simple task was
important to ensure that we were extract-
ing as much information as possible by
collecting as many trials per condition as
possible. The number of completed trials
per recording session varied between 1187 and 2383. Saccade
reaction times from cue onset had a mean of 212.95 ms and a SD
of 34 ms. The lower, middle, and upper quartiles were 192, 207,
and 225 ms, respectively.

Recorded neurons were evenly distributed across the left and
right hemispheres (left: 50.70 � 0.71% and right: 49.29 � 0.71%,
mean � SD). We observed a broad diversity of activity profiles in
single neurons, including differential responses to the saccade
direction after cue onset. The latter included neurons responding
preferentially to a given saccade direction, left or right, by either
increasing or decreasing their firing rate (Fig. 2A). An ANOVA
comparing the average firing rate before and after cue onset re-
vealed that 78.8 � 6.9% (mean � SD) of the recorded neurons
responded to the cue presentation. Furthermore, when an
ANOVA on a sliding window of 300 ms (steps of 20 ms) was
performed, we found a significant effect of saccade direction on
the firing rate in at least one window after cue onset for 50.8 �
6.9% (mean � SD) of the recorded neurons (Fig. 2B–D). Despite
a systematic increase in response latency across array locations
(Fig. 2C,D), we observed that the largest difference in the re-
sponse occurred within the first 500 ms after cue onset, which
would include the saccade and the post-saccade hold period.
Hence, we focused further analyses on this period since it con-
tained most of the information about the saccade direction. To
decode saccade direction from neural activity we used spike
counts in bins of different sizes centered at different times within
the 500 ms window.

Neuronal responses show correlated variability
To determine whether neural correlations have an impact on the
information encoded by an ensemble, we first assessed the corre-
lations between pairs of neurons. Spikes were binned within 500
ms from cue onset and the Pearson correlation of trial-to-trial
variability (noise) was estimated for all pairs of simultaneously
recorded cells in each session. We found, across all data, that
pairwise noise correlations were symmetrically distributed with a
mean close to zero (Fig. 3A), and similar results were obtained

restricting correlation measures to pairs within the same array
(Fig. 3B).

To rule out the possibility that noise correlations were de-
creased due to pooling neurons with different selectivity (i.e.,
stimulus responsive vs saccade responsive), we analyzed the noise
correlation in 125 ms bins both starting at cue onset and at sac-
cade start. These bins, when aligned to cue onset, do not cover the
period of saccade execution. The correlation coefficients were
similar between cue-aligned data (� � 0.00056, � � 0.033) and
saccade-aligned data (� � 0.00077, � � 0.035). The decrease in
the correlation values for the 125 ms bin aligned to cue onset,
compared with those obtained for the cue-aligned 500 ms bin, is
likely to be the result of using a shorter time bin (Cohen and
Kohn, 2011).

Splitting the data by saccade direction resulted in similar cor-
relation matrices for both left and right saccades. We compared
the underlying covariance matrices using S statistics (Garcia,

Figure 5. Decoding accuracy. Shown is the percentage of correctly decoded test trials as a function of ensemble size. Ensembles
of different sizes were built by drawing units randomly from the simultaneously recorded population (without replacement). An
SVM decoder was fitted and tested on each ensemble. n � 1000 random samples for each ensemble size. Black lines depict results
using normal spike data for decoding, while blue lines depict the results of repeating the analysis after shuffling the spike data
across trials of the same type (left or right trials). Solid line is mean; shaded region is SD.

Figure 6. Example of the distribution of the distances to the SVM classification boundary.
Data is split by trial type (left, right) and shown for two example ensemble sizes (50, 500 units).
Solid lines are Gaussian fits, which were used to calculate the probability of correctly classifying
any given trial. The average probability across trial types was used to calculate the discriminabil-
ity index d 2 as a function of ensemble size (Eq. 1).
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2012) as described in the methods section. There was a small
orientation difference between the left and right noise covariance
matrices (Srotation � SD � 0.0046 � 0.0011), while the difference
in the shape of the hyper-ellipses defined by the covariance ma-
trices was negligible (Sshape � SD � 0.00005 � 0.00001). The
values of the S statistics imply that the main difference between
the two covariance matrices is the angle between corresponding
eigenvectors and that this difference is very small. Furthermore,
we examined whether noise and signal correlations were related
(Fig. 3C) and found that there was a significant correlation (r �
0.0267, p � 2.57 � 10�141). We further characterized the struc-
ture of the noise covariance by performing an eigenvalue decom-
position (Fig. 3D) that included all the neurons recorded in each
individual session (Fig. 2B).

Next, we split correlations according to the categorical dis-
tance between pairs of neurons. We assigned 0 to pairs recorded
in the same multi-electrode array, 1 to pairs recorded in adjacent
arrays, and so on. Likewise, a categorical distance of 5 was as-
signed to neurons recorded in location-matching arrays (as they

were approximately symmetrically placed
on the two hemispheres) but on opposite
hemispheres, whereas a distance index of
6 meant that the neuron pair was recorded
by an array adjacent to the location-
matching array on the opposite hemi-
sphere and so on (Fig. 1B). In agreement
with previous reports (Smith and Kohn,
2008; Rosenbaum et al., 2017), we found
that correlation decreased with increased
distance (Fig. 3E). The lowest correlations
were found for pairs of neurons located in
different hemispheres. Overall, mean cor-
relations were very small. However, such
small correlations can have substantial
impacts in large populations as shown
below.

Correlated noise limits information
encoded by neural ensembles
Next, we addressed the impact of noise
correlations on information. To assess in-
formation scaling, we performed a decod-
ing analysis on neural data from
ensembles ranging from 10 to 700 neu-
rons. We built each ensemble by taking a
random subset out from the whole simul-
taneously recorded population and fitting
an SVM classifier with a quadratic poly-
nomial kernel to the subset. The quadratic
kernel performed best (Fig. 4), consistent
with the slight rotation of the covariance
matrix across saccade directions. This
procedure was repeated 1000 times for
each ensemble size. We evaluated the de-
coding accuracy (proportion of correctly
decoded trials) as a function of the
number of neurons in the ensemble.
The analysis was carried out on intact
and trial-shuffled data. Shuffling trials
destroys the noise correlations and pro-
vides an estimate of information in a
non-simultaneously recorded popula-
tion, as well as a reference against which

the effects of correlations can be compared.
We found that the decoding accuracy increased rapidly with

ensemble size (Fig. 5). Shuffling trials, such that noise correla-
tions were eliminated but signal correlations remained intact,
substantially increased the accuracy of the decoding, leading to
almost perfect decoding with ensembles of size �200 or greater.

Decoding accuracy is bounded above by 1. However, informa-
tion can continue to increase, even when perfect performance is
achieved in a dataset with finite trials. To examine information
scaling, we estimated the information in the population, as a
function of ensemble size. To do this we computed the distribu-
tion of distances to the classification boundary (Fig. 6). We then
fit Gaussians to these distributions. Next, we numerically calcu-
lated the fraction of the Gaussian that would have been correctly
classified, and converted this estimate to information, d 2. When
we examined scaling of information with population size (Fig. 7)
we found linear scaling for the shuffled data, consistent with the
fact that information adds in an uncorrelated population. Be-
cause we found approximately linear scaling in the trial-shuffled

Figure 7. Information saturation in the presence of correlated noise. Discriminability index (d 2) as a function of ensemble size
calculated from the response distributions (Fig. 6). All conventions are the same as in Figure 5. n � 1000 samples for each
ensemble size. Solid line is mean; shaded line is SD across samples.
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data, as theoretically predicted, we believe we had sufficient trials
to estimate information in the data. We also found that informa-
tion was sublinear in the original data that contained correla-
tions. Similar results were obtained when we used both shuffled
and unshuffled data aligned to the start of the saccades, counting
spikes in a 500 ms bin that started 200 ms before saccade start
(Fig. 7).

Information encoded by neural ensembles of infinite size is
affected by bin width
The previous analyses were based on a spike count bin of 500 ms.
Therefore, in the next analyses we examined information scaling
using smaller windows, and multiple latencies with respect to cue
onset. Previous studies have shown that noise correlations in-
crease with bin-size, because most correlated variability in the
cortex is due to slow fluctuations (Bair et al., 2001; Averbeck and
Lee, 2003) although it has also been shown that correlations de-
crease for short time bins due to an associated drop in spike
counts (Cohen and Kohn, 2011). Consistent with this, we found
that the mean correlation increased with bin size (Fig. 8A). To
examine the effect of bin size on information, we fit the decoding
model to ensembles of multiple sizes, at a series of bin widths, and
at a series of times relative to cue onset. For each bin width and

time relative to cue onset, this gave us an information scaling
curve. Previous theoretical work (Zohary et al., 1994; Abbott and
Dayan, 1999) has shown that information scales according to a

simple function given by d2 �
bS

a � S
, where S is ensemble size, b

is the information that would be contained in an infinite popu-
lation (S � 
), and a is the scaling rate, or the rate at which
information achieves asymptote. We fit this equation to the in-
formation scaling curves for each bin width and time. The equa-
tion gave excellent fits to these curves (Fig. 8B), which further
supports the hypothesis that information saturates. We next ex-
amined the infinite population information estimates (i.e., b
from Eq. 3), as a function of bin width and time relative to cue
onset. When we did this, we found that information increased
with bin width up to approximately 250 ms, and then began to
decrease, except in one session (Fig. 9). Thus, integrating infor-
mation over more than approximately 250 ms does not lead to
additional information about saccades in prefrontal cortex. In
addition, we can estimate the ensemble size that would contain a
given fraction of the asymptotic information (see Eq. 4). We
estimated that ensembles with �10 5 neurons are required to
code 99% of the available information (Fig. 10), the general trend
is that population size decreases as bin width increases. However,
the estimates of population size were surprisingly consistent
across bin widths.

Discussion
This study provides empirical evidence for information satura-
tion in large neural populations. We recorded large ensembles of
neurons in area 46 of prefrontal cortex while monkeys executed a
visually guided left–right saccade task. We found sub-linear scal-
ing of information as a function of ensemble size, suggesting
information saturation. We computed estimates of infinite
population information, by fitting a theoretically derived scal-
ing function to our data. We also predicted the population size
necessary to achieve 99% of the infinite population informa-
tion and examined the results as a function of different time-
scales for binning spikes, at different times relative to target
onset. Information increased up to a timescale of approxi-
mately 250 ms, and populations of around 10 5 neurons, de-
pending on the timescale, coded 99% of the information that
would be contained in an infinite-size population. Thus, we
show that information-limiting correlations are present in
prefrontal cortex, and they decrease information relative to an
uncorrelated population.

Information coding in neural populations is a complex topic,
composed of at least three areas of study, including mixed selec-
tivity/nonlinear basis function encoding (Poggio, 1990; Deneve
et al., 2001; Rigotti et al., 2013), low-dimensional dynamics
(Ganguli et al., 2008; Yu et al., 2009; Churchland et al., 2012;
Mante et al., 2013; Kobak et al., 2016; Williamson et al., 2016),
and the role of population activity patterns in information cod-
ing, which we study here (Averbeck and Lee, 2006; Averbeck et
al., 2006a; Cohen and Kohn, 2011; Cohen and Maunsell, 2011).
Theoretical work has made fundamental contributions, defining
clear questions and analytical techniques to answer those ques-
tions. Early studies identified patterns of activity that differed
across stimulus conditions in sensory areas (Gray and Singer,
1989; Dan et al., 1998). Subsequent development of information
theory showed that while patterns of correlated activity were
sometimes present, they did not add information to the neural
code (Panzeri et al., 1999; Martignon et al., 2000; Nirenberg et al.,
2001; Pola et al., 2003).

Figure 8. Effect of bin size. A, Effect of bin size on noise correlations. Correlations increase
with bin width. B, Projection of information to ensembles of infinite size. Examples of nonlinear
fittings to the measured d 2 values from unshuffled spike data to estimate the information value
at the asymptotic level (coefficient b in the equation).
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Theoretical work also suggests that correlations may limit in-
formation in neural populations (Zohary et al., 1994; Abbott and
Dayan, 1999; Sompolinsky et al., 2001; Shamir and Sompolinsky,
2006). Even very small and difficult to measure noise correlations
can lead to information saturation in large populations (Moreno-
Bote et al., 2014; Kanitscheider et al., 2015a,b). Supporting this, we
found small correlations (on the order of 10�3) and also found that
information scales strongly sub-linearly with ensemble size. A simple
model that was previously derived theoretically (Zohary et al., 1994;
Abbott and Dayan, 1999) described scaling in our data. Thus, we
provide evidence that linear information saturates in neural popu-
lations with correlated noise.

Information-limiting correlations have been called f-prime,
or differential, noise correlations (Averbeck and Lee, 2006;
Moreno-Bote et al., 2014). Linear information is conveyed by
changes in the population response for different stimuli, deci-
sions, or actions. A decoder, somewhere within the brain, must
discriminate reliably between different patterns of activity. When
the noise in the system has the same structure as the stimulus-
induced changes, the decoder cannot differentiate between them.
Since such noise cannot be eliminated by averaging over neurons,
increasing the population size will not increase information.

Several lines of evidence suggest that information-limiting corre-
lations exist in the brain. First, the data processing inequality shows

that information cannot be increased by transforming representa-
tions (Averbeck et al., 2006a). Thus, the way information is repre-
sented can be modified and optimized for decoding at each
processing stage (Yamins et al., 2014), but information cannot be
increased over the amount present in the inputs. For example, en-
sembles of retinal ganglion cells shape noise correlations in a
stimulus-dependent way, so that correlations do not harm decoding
(Franke et al., 2016; Zylberberg et al., 2016). The retina, therefore,
has at least as much information as any subsequent stage of visual
processing, and relays it to upstream structures with optimized cor-
relations. V1 uses more neurons to represent information than the
LGN (i.e., has an expanded dimensionality) but it cannot have more
information than the retina. In a motion-direction discrimination
task, correlations increase as motion coherence (i.e., information)
decreases (Chaplin et al., 2018). Considering this, if information-
limiting correlations arise partially because information cannot be
increased within the circuit, more complex stimuli or tasks requiring
more information would lead to a slower saturation rate, and switch
from information-limiting correlations (orthogonal to the decision
boundary) to benign correlations (parallel to the decision boundary)
(Montijn et al., 2016).

It is unclear how our findings generalize to other brain regions
and tasks, given differences in local circuitry, the structure of
shared inputs, and the dimensionality expansion seen in early

Figure 9. Asymptotic information value. Information from infinite population is plotted as a function of the lag between the bin center and the time of cue onset, separately for different bin
widths. Each panel shows results for an individual recording session. Insets in each panel show the peak of the asymptotic information estimates as a function of bin width. Values shown are
means � SEM across 500 individual fittings (see Fig. 8B).
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sensory areas that can lead to correlated variability. Similar stud-
ies in different brain regions using different tasks are required to
clarify this question. For example, classification performance sat-
urates rapidly for our task due to its simplicity and the strength of
saccade encoding in dlPFC. Perceptual tasks based on fine dis-
crimination may lead to slower saturation. In addition, we see
minimal differences at small population sizes. There are two ca-
veats to this point, however. First, we have carried out our anal-
yses by randomly sampling sub-populations, as we thought this
would be the most conservative. In an analysis focused on popula-
tions that carried significant information, effects of correlations
might emerge at smaller population sizes. Also, information scaling
is sub-linear, therefore, assuming shuffled information provides an
upper bound, there are differences in smaller populations even
though they are not evident in pairwise comparisons.

Previous experiments have shown that noise is related to the
underlying circuit organization of cortex (Tsodyks et al., 1999;
Kenet et al., 2003; Fukushima et al., 2012; Leavitt et al., 2013).
These studies show that spontaneous activity “looks like” stimu-
lus driven activity (i.e., noise has the same shape as the signal).
This has been interpreted in numerous ways. However, feedfor-
ward processing that increases the dimensionality, or recurrent
connectivity that implements attractor computations (Seriès et
al., 2004), both lead to noise with signal-like structure (Rosen-
baum et al., 2017). Therefore, it is unclear how to implement a

computational system that will not generate information-
limiting correlations at some processing stage, because noise in a
system that is transforming its inputs, when the inputs are sto-
chastic, will reflect the nature of the computation.

Studies on attention have shown that attending to a visual cue
decreases noise correlations in a way that increases information
readability (Cohen and Maunsell, 2009, 2011; Ruff and Cohen,
2014). At a population level, these effects are much larger than
changes in mean responses associated to attention. Therefore,
manipulations that increase behavioral performance also de-
crease information-limiting noise correlations. Similar results
have been seen following perceptual learning (Gu et al., 2011).
And both learning and attention affect correlations (and perfor-
mance) in a similar way (Ni et al., 2018). Furthermore, the rep-
resentation of a saccadic target in the PFC seems to be
dynamically enhanced before saccades, in association with selec-
tive changes in noise correlations (Dehaqani et al., 2018). Also,
modest improvements in decoding accuracy have been observed
after destroying noise correlations in ensembles of an average of
50 neurons (Tremblay et al., 2015).

Our analyses are based on ensembles built by randomly select-
ing units from the recorded population. Some studies have asked
a different question (Leavitt et al., 2017). Specifically, how much
information can be extracted from the most informative individ-
ual neurons recorded in a given experiment. While this is an

Figure 10. Estimated population size to encode 99% of the asymptotic information (S99). Population sizes are plotted as a function of time after cue onset separately for different bin widths as
indicated in the legend. All conventions are the same as in Figure 9.

1676 • J. Neurosci., February 19, 2020 • 40(8):1668 –1678 Bartolo et al. • Information Scaling in Large Populations



interesting question, it may depend heavily on the exact ensemble
recorded. It is unclear how well the brain can sift through a large
population and find the few most informative neurons. Or
whether such a strategy would be generally applicable. If the most
informative neurons change from one context to the next, how
would decoding be adapted? A better analysis would be to esti-
mate the distribution of informativeness in a population, and
then ask how many “very informative” neurons would be re-
quired for some task. The shape of these distributions, however,
remains unclear.

Our results are limited by the simplicity of the task. We used a
simple task so we could collect enough trials to accurately esti-
mate information. More complex tasks/stimuli may reduce, but
not eliminate, the saturation rate. Future work will be required to
extend these results to more complex tasks and additional brain
areas. Another caveat to keep in mind is that we are taking neu-
rons randomly, without distinguishing between interneurons
and projection neurons. The question of how the correlation
pattern between different types of neurons affects information
transmission between brain areas remains open for future re-
search. Another important topic for future work, will be to unite
work on information, which suggests that populations of 10 5

neurons are required to represent sufficient information, with
work on dynamics, that suggests that only a few 10 s of neurons
are required to extract low-dimensional dynamics in cortex (Gao
and Ganguli, 2015). Because noise will be affected by the dynam-
ics that drive computation and mean responses, understanding
low-dimensional dynamics will likely lead to a better understand-
ing of information coding. A unified theory of information and
dynamics will likely push forward our understanding.
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